1
|
Regan SB, Medhi D, White TB, Jiang YZ, Jia S, Deng Q, Jasin M. Megabase-scale loss of heterozygosity provoked by CRISPR-Cas9 DNA double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615517. [PMID: 39386534 PMCID: PMC11463394 DOI: 10.1101/2024.09.27.615517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Harnessing DNA double-strand breaks (DSBs) is a powerful approach for gene editing, but it may provoke loss of heterozygosity (LOH), which predisposes to tumorigenesis. To interrogate this risk, we developed a two- color flow cytometry-based system (Flo-LOH), detecting LOH in ∼5% of cells following a DSB. After this initial increase, cells with LOH decrease due to a competitive disadvantage with parental cells, but if isolated, they stably propagate. Segmental loss from terminal deletions with de novo telomere addition and nonreciprocal translocations is observed as well as whole chromosome loss, especially following a centromeric DSB. LOH spans megabases distal from the DSB, but also frequently tens of megabases centromere-proximal. Inhibition of microhomology-mediated end joining massively increases LOH, which is synergistically increased with concomitant inhibition of canonical nonhomologous end joining. The capacity for large-scale LOH must therefore be considered when using DSB-based gene editing, especially in conjunction with end joining inhibition.
Collapse
|
2
|
Zhang P, Ganesamoorthy D, Nguyen SH, Au R, Coin LJ, Tey SK. Nanopore sequencing as a scalable, cost-effective platform for analyzing polyclonal vector integration sites following clinical T cell therapy. J Immunother Cancer 2021; 8:jitc-2019-000299. [PMID: 32527930 PMCID: PMC7292043 DOI: 10.1136/jitc-2019-000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2020] [Indexed: 11/21/2022] Open
Abstract
Background Analysis of vector integration sites in gene-modified cells can provide critical information on clonality and potential biological impact on nearby genes. Current short-read next-generation sequencing methods require specialized instruments and large batch runs. Methods We used nanopore sequencing to analyze the vector integration sites of T cells transduced by the gammaretroviral vector, SFG.iCasp9.2A.ΔCD19. DNA from oligoclonal cell lines and polyclonal clinical samples were restriction enzyme digested with two 6-cutters, NcoI and BspHI; and the flanking genomic DNA amplified by inverse PCR or cassette ligation PCR. Following nested PCR and barcoding, the amplicons were sequenced on the Oxford Nanopore platform. Reads were filtered for quality, trimmed, and aligned. Custom tool was developed to cluster reads and merge overlapping clusters. Results Both inverse PCR and cassette ligation PCR could successfully amplify flanking genomic DNA, with cassette ligation PCR showing less bias. The 4.8 million raw reads were grouped into 12,186 clusters and 6410 clones. The 3′long terminal repeat (LTR)-genome junction could be resolved within a 5-nucleotide span for a majority of clusters and within one nucleotide span for clusters with ≥5 reads. The chromosomal distributions of the insertional sites and their predilection for regions proximate to transcription start sites were consistent with previous reports for gammaretroviral vector integrants as analyzed by short-read next-generation sequencing. Conclusion Our study shows that it is feasible to use nanopore sequencing to map polyclonal vector integration sites. The assay is scalable and requires minimum capital, which together enable cost-effective and timely analysis. Further refinement is required to reduce amplification bias and improve single nucleotide resolution.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Devika Ganesamoorthy
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Son Hoang Nguyen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Raymond Au
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Disease, Imperial College London, London, London, UK
| | - Siok-Keen Tey
- Department of Immunology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia .,Department of Haematology and Bone Marrow Transplantation, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Wambach JA, Yang P, Wegner DJ, Heins HB, Luke C, Li F, White FV, Cole FS. Functional Genomics of ABCA3 Variants. Am J Respir Cell Mol Biol 2020; 63:436-443. [PMID: 32692933 DOI: 10.1165/rcmb.2020-0034ma] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rare or private, biallelic variants in the ABCA3 (ATP-binding cassette transporter A3) gene are the most common monogenic cause of lethal neonatal respiratory failure and childhood interstitial lung disease. Functional characterization of fewer than 10% of over 200 disease-associated ABCA3 variants (majority missense) suggests either disruption of ABCA3 protein trafficking (type I) or of ATPase-mediated phospholipid transport (type II). Therapies remain limited and nonspecific. A scalable platform is required for functional characterization of ABCA3 variants and discovery of pharmacologic correctors. To address this need, we first silenced the endogenous ABCA3 locus in A549 cells with CRISPR/Cas9 genome editing. Next, to generate a parent cell line (A549/ABCA3-/-) with a single recombination target site for genomic integration and stable expression of individual ABCA3 missense variant cDNAs, we used lentiviral-mediated integration of a LoxFAS cassette, FACS, and dilutional cloning. To assess the fidelity of this cell-based model, we compared functional characterization (ABCA3 protein processing, ABCA3 immunofluorescence colocalization with intracellular markers, ultrastructural vesicle phenotype) of two individual ABCA3 mutants (type I mutant, p.L101P; type II mutant, p.E292V) in A549/ABCA3-/- cells and in both A549 cells and primary, human alveolar type II cells that transiently express each cDNA after adenoviral-mediated transduction. We also confirmed pharmacologic rescue of ABCA3 variant-encoded mistrafficking and vesicle diameter in A549/ABCA3-/- cells that express p.G1421R (type I mutant). A549/ABCA3-/- cells provide a scalable, genetically versatile, physiologically relevant functional genomics platform for discovery of variant-specific mechanisms that disrupt ABCA3 function and for screening of potential ABCA3 pharmacologic correctors.
Collapse
Affiliation(s)
| | - Ping Yang
- Edward Mallinckrodt Department of Pediatrics
| | | | | | - Cliff Luke
- Edward Mallinckrodt Department of Pediatrics
| | - Fuhai Li
- Edward Mallinckrodt Department of Pediatrics.,Institute for Informatics, and
| | - Frances V White
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
4
|
Zimbres ACG, Reuwsaat JCV, Barcellos VA, Joffe LS, Fonseca FL, Staats CC, Schrank A, Kmetzsch L, Vainstein MH, Rodrigues ML. Pharmacological inhibition of pigmentation inCryptococcus. FEMS Yeast Res 2018; 19:5173039. [DOI: 10.1093/femsyr/foy119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana Claudia G Zimbres
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro 21941-902, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Julia C V Reuwsaat
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Vanessa A Barcellos
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Luna S Joffe
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro 21941-902, Brazil
| | - Fernanda L Fonseca
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro 21941-902, Brazil
| | - Charley C Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Livia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Marilene H Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Marcio L Rodrigues
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratory of Gene Expression Regulation (LabReg), Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR 81310-020, Brazil
| |
Collapse
|
5
|
Bennett JA, Kandell GV, Kirk SG, McCormick JR. Visual and Microscopic Evaluation of Streptomyces Developmental Mutants. J Vis Exp 2018. [PMID: 30272646 PMCID: PMC6235167 DOI: 10.3791/57373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Streptomycetes are filamentous soil bacteria belonging to the phylum Actinobacteria that are found throughout the world and produce a wide array of antibiotics and other secondary metabolites. Streptomyces coelicolor is a well-characterized, non-pathogenic species that is amenable to a variety of analyses in the lab. The phenotyping methods described here use S. coelicolor as a model streptomycete; however, the methods are applicable to all members of this large genus as well as some closely related actinomycetes. Phenotyping is necessary to characterize new species of Streptomyces identified in the environment, and it is also a vital first step in characterizing newly isolated mutant strains of Streptomyces. Proficiency in phenotyping is important for the many new researchers who are entering the field of Streptomyces research, which includes the study of bacterial development, cell division, chromosome segregation, and second messenger signaling. The recent crowdsourcing of antibiotic discovery through the isolation of new soil microbes has resulted in an increased need for training in phenotyping for instructors new to the field of Streptomyces research and their college or high school students. This manuscript describes methods for bacterial strain propagation, storage, and characterization through visual and microscopic examination. After reading this article, new researchers (microbiology education laboratories and citizen scientists) should be able to manipulate Streptomyces strains and begin visual characterization experiments.
Collapse
Affiliation(s)
- Jennifer A Bennett
- Department of Biology and Earth Science, Biochemistry and Molecular Biology Program, Otterbein University;
| | - Garrett V Kandell
- Department of Biology and Earth Science, Biochemistry and Molecular Biology Program, Otterbein University
| | - Sean G Kirk
- Department of Biology and Earth Science, Biochemistry and Molecular Biology Program, Otterbein University
| | | |
Collapse
|
6
|
Joffe LS, Schneider R, Lopes W, Azevedo R, Staats CC, Kmetzsch L, Schrank A, Del Poeta M, Vainstein MH, Rodrigues ML. The Anti-helminthic Compound Mebendazole Has Multiple Antifungal Effects against Cryptococcus neoformans. Front Microbiol 2017; 8:535. [PMID: 28400768 PMCID: PMC5368277 DOI: 10.3389/fmicb.2017.00535] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/14/2017] [Indexed: 11/24/2022] Open
Abstract
Cryptococcus neoformans is the most lethal pathogen of the central nervous system. The gold standard treatment of cryptococcosis, a combination of amphotericin B with 5-fluorocytosine, involves broad toxicity, high costs, low efficacy, and limited worldwide availability. Although the need for new antifungals is clear, drug research and development (R&D) is costly and time-consuming. Thus, drug repurposing is an alternative to R&D and to the currently available tools for treating fungal diseases. Here we screened a collection of compounds approved for use in humans seeking for those with anti-cryptococcal activity. We found that benzimidazoles consist of a broad class of chemicals inhibiting C. neoformans growth. Mebendazole and fenbendazole were the most efficient antifungals showing in vitro fungicidal activity. Since previous studies showed that mebendazole reaches the brain in biologically active concentrations, this compound was selected for further studies. Mebendazole showed antifungal activity against phagocytized C. neoformans, affected cryptococcal biofilms profoundly and caused marked morphological alterations in C. neoformans, including reduction of capsular dimensions. Amphotericin B and mebendazole had additive anti-cryptococcal effects. Mebendazole was also active against the C. neoformans sibling species, C. gattii. To further characterize the effects of the drug a random C. gattii mutant library was screened and indicated that the antifungal activity of mebendazole requires previously unknown cryptococcal targets. Our results indicate that mebendazole is as a promising prototype for the future development of anti-cryptococcal drugs.
Collapse
Affiliation(s)
- Luna S Joffe
- Laboratório de Biologia Celular de Leveduras Patogênicas, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Rafael Schneider
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - William Lopes
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Renata Azevedo
- Fundação Oswaldo Cruz - Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde Rio de Janeiro, Brazil
| | - Charley C Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Maurizio Del Poeta
- Veterans Administration Medical Center, NorthportNY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA
| | - Marilene H Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Marcio L Rodrigues
- Laboratório de Biologia Celular de Leveduras Patogênicas, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Fundação Oswaldo Cruz - Fiocruz, Centro de Desenvolvimento Tecnológico em SaúdeRio de Janeiro, Brazil
| |
Collapse
|
7
|
CONTRAILS: A tool for rapid identification of transgene integration sites in complex, repetitive genomes using low-coverage paired-end sequencing. GENOMICS DATA 2015; 6:175-81. [PMID: 26697366 PMCID: PMC4664744 DOI: 10.1016/j.gdata.2015.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Transgenic crops have become a staple in modern agriculture, and are typically characterized using a variety of molecular techniques involving proteomics and metabolomics. Characterization of the transgene insertion site is of great interest, as disruptions, deletions, and genomic location can affect product selection and fitness, and identification of these regions and their integrity is required for regulatory agencies. Here, we present CONTRAILS (Characterization of Transgene Insertion Locations with Sequencing), a straightforward, rapid and reproducible method for the identification of transgene insertion sites in highly complex and repetitive genomes using low coverage paired-end Illumina sequencing and traditional PCR. This pipeline requires little to no troubleshooting and is not restricted to any genome type, allowing use for many molecular applications. Using whole genome sequencing of in-house transgenic Glycine max, a legume with a highly repetitive and complex genome, we used CONTRAILS to successfully identify the location of a single T-DNA insertion to single base resolution. We developed a pipeline for transgene identification using paired-end sequencing. This method requires little troubleshooting and is applicable to any genome. Identification of insertion sites is required for deregulation of modified food crops. This assists in identifying potential genomic disruptions in transgenic events.
Collapse
|
8
|
Aguado C, Gayà-Vidal M, Villatoro S, Oliva M, Izquierdo D, Giner-Delgado C, Montalvo V, García-González J, Martínez-Fundichely A, Capilla L, Ruiz-Herrera A, Estivill X, Puig M, Cáceres M. Validation and genotyping of multiple human polymorphic inversions mediated by inverted repeats reveals a high degree of recurrence. PLoS Genet 2014; 10:e1004208. [PMID: 24651690 PMCID: PMC3961182 DOI: 10.1371/journal.pgen.1004208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/14/2014] [Indexed: 01/17/2023] Open
Abstract
In recent years different types of structural variants (SVs) have been discovered in the human genome and their functional impact has become increasingly clear. Inversions, however, are poorly characterized and more difficult to study, especially those mediated by inverted repeats or segmental duplications. Here, we describe the results of a simple and fast inverse PCR (iPCR) protocol for high-throughput genotyping of a wide variety of inversions using a small amount of DNA. In particular, we analyzed 22 inversions predicted in humans ranging from 5.1 kb to 226 kb and mediated by inverted repeat sequences of 1.6-24 kb. First, we validated 17 of the 22 inversions in a panel of nine HapMap individuals from different populations, and we genotyped them in 68 additional individuals of European origin, with correct genetic transmission in ∼ 12 mother-father-child trios. Global inversion minor allele frequency varied between 1% and 49% and inversion genotypes were consistent with Hardy-Weinberg equilibrium. By analyzing the nucleotide variation and the haplotypes in these regions, we found that only four inversions have linked tag-SNPs and that in many cases there are multiple shared SNPs between standard and inverted chromosomes, suggesting an unexpected high degree of inversion recurrence during human evolution. iPCR was also used to check 16 of these inversions in four chimpanzees and two gorillas, and 10 showed both orientations either within or between species, providing additional support for their multiple origin. Finally, we have identified several inversions that include genes in the inverted or breakpoint regions, and at least one disrupts a potential coding gene. Thus, these results represent a significant advance in our understanding of inversion polymorphism in human populations and challenge the common view of a single origin of inversions, with important implications for inversion analysis in SNP-based studies.
Collapse
Affiliation(s)
- Cristina Aguado
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Magdalena Gayà-Vidal
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Sergi Villatoro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Meritxell Oliva
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - David Izquierdo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Carla Giner-Delgado
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Víctor Montalvo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Judit García-González
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | - Laia Capilla
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Aurora Ruiz-Herrera
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- Departament de Biologia Celular, Fisiologia i Immunologia. Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Xavier Estivill
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
9
|
Hirai I, Fukui N, Taguchi M, Yamauchi K, Nakamura T, Okano S, Yamamoto Y. Detection of chromosomal blaCTX-M-15 in Escherichia coli O25b-B2-ST131 isolates from the Kinki region of Japan. Int J Antimicrob Agents 2013; 42:500-6. [PMID: 24091130 DOI: 10.1016/j.ijantimicag.2013.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Escherichia coli O25b-B2-ST131 isolates harbouring bla(CTX-M-15) are distributed worldwide. The bla(CTX-M-15) transposition unit has often been found on plasmids and the genetic contexts have been examined; however, less is known about the frequency and contexts of the bla(CTX-M-15) transposition unit on the chromosome. This study was performed to determine the chromosomal location of the bla(CTX-M-15) transposition unit and to analyse the molecular structure of the region surrounding the bla(CTX-M-15) transposition unit in E. coli O25b-B2-ST131 isolates. Twenty-two E. coli O25b-B2-ST131 strains harbouring bla(CTX-M-15) that had been isolated from university hospital patients and nursing home residents in the Kinki region of Japan were examined. Inverse PCR (iPCR) targeting bla(CTX-M-15) was performed to classify the molecular structure of the region surrounding the bla(CTX-M-15) transposition unit. The isolates were classified into nine types (types A-I) considering the iPCR results; type A was the most prevalent type (13/22 isolates). Sequences of the iPCR-amplified DNA fragments showed that the bla(CTX-M-15) transposition unit consisted of ISEcp1, bla(CTX-M-15) and orf477Δ. A homology search of the obtained sequences showed that the bla(CTX-M-15) transposition unit was inserted into different chromosomal regions in eight of the nine classified types. Although 21 of the 22 E. coli isolates possessed chromosomally located bla(CTX-M-15) transposition units, clonal spread was not evident on pulsed-field gel electrophoresis (PFGE) analysis. Taken together, these data indicate that certain E. coli O25b-B2-ST131 strains harbouring chromosomal bla(CTX-M-15) have emerged and spread in the Kinki region of Japan.
Collapse
Affiliation(s)
- Itaru Hirai
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Japan; Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother 2012; 56:3917-22. [PMID: 22491691 PMCID: PMC3393385 DOI: 10.1128/aac.00419-12] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/01/2012] [Indexed: 12/26/2022] Open
Abstract
Nonmutational resistance to linezolid is due to the presence of cfr, which encodes a methyltransferase responsible for methylation of A2503 in the 23S rRNA. The cfr gene was first described in animal isolates of staphylococci, and more recently, it has been identified in Staphylococcus aureus from human clinical infections, including in an outbreak of methicillin-resistant S. aureus. In enterococci, cfr has been described in an animal isolate of Enterococcus faecalis from China. Here, we report an isolate of linezolid-resistant E. faecalis (603-50427X) recovered from a patient in Thailand who received prolonged therapy with the antibiotic for the treatment of atypical mycobacterial disease. The isolate lacked mutations in the genes coding for 23S rRNA and L3 and L4 ribosomal proteins and belonged to the multilocus sequence type (MLST) 16 (ST16), which is commonly found in enterococcal isolates from animal sources. Resistance to linezolid was associated with the presence of cfr on an ~97-kb transferable plasmid. The cfr gene environment exhibited DNA sequences similar to those of other cfr-carrying plasmids previously identified in staphylococci (nucleotide identity, 99 to 100%). The cfr-carrying plasmid was transferable by conjugation to a laboratory strain of E. faecalis (OG1RF) but not to Enterococcus faecium or S. aureus. The cfr gene was flanked by IS256-like sequences both upstream and downstream. This is the first characterization of the potential horizontal transferability of the cfr gene from a human linezolid-resistant isolate of E. faecalis.
Collapse
Affiliation(s)
- Lorena Diaz
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Diana Panesso
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Kavindra V. Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas
| | - Cesar A. Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|