1
|
Dan-Jumbo SO, Riley SE, Cortes-Araya Y, Ho W, Lee S, Thrower T, Esteves CL, Donadeu FX. Derivation and long-term maintenance of porcine skeletal muscle progenitor cells. Sci Rep 2024; 14:9370. [PMID: 38653980 DOI: 10.1038/s41598-024-59767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Culture of muscle cells from livestock species has typically involved laborious enzyme-based approaches that yield heterogeneous populations with limited proliferative and myogenic differentiation capacity, thus limiting their use in physiologically-meaningful studies. This study reports the use of a simple explant culture technique to derive progenitor cell populations from porcine muscle that could be maintained and differentiated long-term in culture. Fragments of semitendinosus muscle from 4 to 8 week-old piglets (n = 4) were seeded on matrigel coated culture dishes to stimulate migration of muscle-derived progenitor cells (MDPCs). Cell outgrowths appeared within a few days and were serially passaged and characterised using RT-qPCR, immunostaining and flow cytometry. MDPCs had an initial mean doubling time of 1.4 days which increased to 2.5 days by passage 14. MDPC populations displayed steady levels of the lineage-specific markers, PAX7 and MYOD, up until at least passage 2 (positive immunostaining in about 40% cells for each gene), after which the expression of myogenic markers decreased gradually. Remarkably, MDPCs were able to readily generate myotubes in culture up until passage 8. Moreover, a decrease in myogenic capacity during serial passaging was concomitant with a gradual increase in the expression of the pre-adipocyte markers, CD105 and PDGFRA, and an increase in the ability of MDPCs to differentiate into adipocytes. In conclusion, explant culture provided a simple and efficient method to harvest enriched myogenic progenitors from pig skeletal muscle which could be maintained long-term and differentiated in vitro, thus providing a suitable system for studies on porcine muscle biology and applications in the expanding field of cultured meat.
Collapse
Affiliation(s)
- Susan O Dan-Jumbo
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Susanna E Riley
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Yennifer Cortes-Araya
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - William Ho
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Seungmee Lee
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Thomas Thrower
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cristina L Esteves
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - F Xavier Donadeu
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
2
|
Gartling G, Nakamura R, Bing R, Branski RC. A Novel Method for Thyroarytenoid Myofiber Culture. Laryngoscope 2023; 133:3109-3115. [PMID: 37227163 PMCID: PMC11881223 DOI: 10.1002/lary.30756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES/HYPOTHESIS Myofiber culture has been employed to investigate muscle physiology in vitro and is well-established in the rodent hind limb. Thyroarytenoid (TA) myofiber culture has not been described, providing an opportunity to employ this method to investigate distinct TA myofiber functions. The purpose of this study was to assess the feasibility of a TA myofiber culture model. STUDY DESIGN In vitro. METHODS TA muscles from five Sprague Dawley rats were independently isolated and digested for 90 min. A smooth-tip, wide-bored pipette dissociated TA myofibers from cartilage, and the fibers were distributed on collagen-coated dishes and incubated at 37°C, 5% CO2 for 2 h. Myofiber specificity was determined via immunolabeling for desmin and myosin heavy chain (MHC). Myofibers viability was assessed over 7 days via esterase assay. Additional myofibers were immunolabeled for satellite cell marker Pax-7. Glucocorticoid (GC) receptor (GR) was immunolabeled following GC treatment. RESULTS The harvest technique yielded ~120 myofibers per larynx. By day 7, ~60% of the fibers remained attached and were calcein AM-positive/ethidium homodimer-negative, indicating viability. Myofibers were positive for desmin and MHC, indicating muscle specificity. Cells surrounding myofibers were positive for Pax-7, indicating the presence of myogenic satellite cells. Myofibers also responded to GC treatment as determined by GR nuclear translocation. CONCLUSION TA myofibers remained viable in culture for at least 7 days with a predictable response to exogenous stimuli. This technique provides novel investigative opportunities regarding TA structure and function. LEVEL OF EVIDENCE N/A Laryngoscope, 133:3109-3115, 2023.
Collapse
Affiliation(s)
- Gary Gartling
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York City, New York, USA
| | - Ryosuke Nakamura
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York City, New York, USA
| | - Renjie Bing
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York City, New York, USA
| | - Ryan C Branski
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York City, New York, USA
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York City, New York, USA
| |
Collapse
|
3
|
Ganassi M, Zammit PS, Hughes SM. Isolation, Culture, and Analysis of Zebrafish Myofibers and Associated Muscle Stem Cells to Explore Adult Skeletal Myogenesis. Methods Mol Biol 2023; 2640:21-43. [PMID: 36995585 DOI: 10.1007/978-1-0716-3036-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Adult skeletal musculature experiences continuous physical stress, and hence requires maintenance and repair to ensure its continued efficient functioning. The population of resident muscle stem cells (MuSCs), termed satellite cells, resides beneath the basal lamina of adult myofibers, contributing to both muscle hypertrophy and regeneration. Upon exposure to activating stimuli, MuSCs proliferate to generate new myoblasts that differentiate and fuse to regenerate or grow myofibers. Moreover, many teleost fish undergo continuous growth throughout life, requiring continual nuclear recruitment from MuSCs to initiate and grow new fibers, a process that contrasts with the determinate growth observed in most amniotes. In this chapter, we describe a method for the isolation, culture, and immunolabeling of adult zebrafish myofibers that permits examination of both myofiber characteristics ex vivo and the MuSC myogenic program in vitro. Morphometric analysis of isolated myofibers is suitable to assess differences among slow and fast muscles or to investigate cellular features such as sarcomeres and neuromuscular junctions. Immunostaining for Pax7, a canonical stemness marker, identifies MuSCs on isolated myofibers for study. Furthermore, the plating of viable myofibers allows MuSC activation and expansion and downstream analysis of their proliferative and differentiative dynamics, thus providing a suitable, parallel alternative to amniote models for the study of vertebrate myogenesis.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
4
|
Gala HP, Saha D, Venugopal N, Aloysius A, Purohit G, Dhawan J. A transcriptionally repressed quiescence program is associated with paused RNAPII and is poised for cell cycle reentry. J Cell Sci 2022; 135:275901. [PMID: 35781573 DOI: 10.1242/jcs.259789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence/ G0, associated with low transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA Polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (Nucleolin, Rps24, Ctdp1); release of pausing is associated with their increased expression in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; NELF, a regulator of pausing appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition.
Collapse
Affiliation(s)
- Hardik P Gala
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Debarya Saha
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Nisha Venugopal
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Ajoy Aloysius
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India.,National Center for Biological Sciences, Bangalore, 560065, India
| | - Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
5
|
Ganassi M, Zammit PS, Hughes SM. Isolation of Myofibres and Culture of Muscle Stem Cells from Adult Zebrafish. Bio Protoc 2021; 11:e4149. [PMID: 34604454 PMCID: PMC8443456 DOI: 10.21769/bioprotoc.4149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/02/2022] Open
Abstract
Skeletal muscles generate force throughout life and require maintenance and repair to ensure efficiency. The population of resident muscle stem cells (MuSCs), termed satellite cells, dwells beneath the basal lamina of adult myofibres and contributes to both muscle growth and regeneration. Upon exposure to activating signals, MuSCs proliferate to generate myoblasts that differentiate and fuse to grow or regenerate myofibres. This myogenic progression resembles aspects of muscle formation and development during embryogenesis. Therefore, the study of MuSCs and their associated myofibres permits the exploration of muscle stem cell biology, including the cellular and molecular mechanisms underlying muscle formation, maintenance and repair. As most aspects of MuSC biology have been described in rodents, their relevance to other species, including humans, is unclear and would benefit from comparison to an alternative vertebrate system. Here, we describe a procedure for the isolation and immunolabelling or culture of adult zebrafish myofibres that allows examination of both myofibre characteristics and MuSC biology ex vivo. Isolated myofibres can be analysed for morphometric characteristics such as the myofibre volume and myonuclear domain to assess the dynamics of muscle growth. Immunolabelling for canonical stemness markers or reporter transgenes identifies MuSCs on isolated myofibres for cellular/molecular studies. Furthermore, viable myofibres can be plated, allowing MuSC myogenesis and analysis of proliferative and differentiative dynamics in primary progenitor cells. In conclusion, we provide a comparative system to amniote models for the study of vertebrate myogenesis, which will reveal fundamental genetic and cellular mechanisms of MuSC biology and inform aquaculture. Graphic abstract: Schematic of Myofibre Isolation and Culture of Muscle Stem Cells from Adult Zebrafish.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL, UK
| | - Simon M. Hughes
- Randall Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL, UK
| |
Collapse
|
6
|
Abstract
The resident stem cell for skeletal muscle is the satellite cell. On the 50th anniversary of its discovery in 1961, we described the history of skeletal muscle research and the seminal findings made during the first 20 years in the life of the satellite cell (Scharner and Zammit 2011, doi: 10.1186/2044-5040-1-28). These studies established the satellite cell as the source of myoblasts for growth and regeneration of skeletal muscle. Now on the 60th anniversary, we highlight breakthroughs in the second phase of satellite cell research from 1980 to 2000. These include technical innovations such as isolation of primary satellite cells and viable muscle fibres complete with satellite cells in their niche, together with generation of many useful reagents including genetically modified organisms and antibodies still in use today. New methodologies were combined with description of endogenous satellite cells markers, notably Pax7. Discovery of the muscle regulatory factors Myf5, MyoD, myogenin, and MRF4 in the late 1980s revolutionized understanding of the control of both developmental and regerenative myogenesis. Emergence of genetic lineage markers facilitated identification of satellite cells in situ, and also empowered transplantation studies to examine satellite cell function. Finally, satellite cell heterogeneity and the supportive role of non-satellite cell types in muscle regeneration were described. These major advances in methodology and in understanding satellite cell biology provided further foundations for the dramatic escalation of work on muscle stem cells in the 21st century.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
7
|
Stange K, Ahrens HE, von Maltzahn J, Röntgen M. Isolation and ex vivo cultivation of single myofibers from porcine muscle. In Vitro Cell Dev Biol Anim 2020; 56:585-592. [PMID: 32964376 PMCID: PMC7532130 DOI: 10.1007/s11626-020-00492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2020] [Indexed: 11/27/2022]
Abstract
The isolation and cultivation of intact, single myofibers presents a superior approach for studying myogenic cells in their native position. The cells’ characteristics remain more similar to muscle tissue than in cell culture. Nevertheless, no routinely used method in higher vertebrates exists. Therefore, we aimed at establishing the isolation and cultivation of single myofibers from porcine muscle. For the first time, we implemented the isolation of intact myofibers from porcine fibularis tertius muscle by enzymatic digestion and their subsequent cultivation under floating conditions. Confocal microscopy showed intact myofibrill structures in isolated myofibers. Myogenic cells were able to proliferate at their parent myofiber as shown by the increase of myonuclear number during culture. Additionally, the described method can be used to investigate myogenic cells migrated from isolated myofibers. These cells expressed myogenic markers and were able to differentiate. In the future, our method can be used for genetic manipulation of cells at myofibers, investigation of growth factors or pharmacological substances, and determination of interactions between myofibers and associated cells. Working with isolated myofibers has the potential to bridge conventional cell culture and animal experiments. Adapting the method to porcine muscle allows for application possibilities in veterinary medicine as well as in biomedical research, which cannot be addressed in rodent model systems.
Collapse
Affiliation(s)
- Katja Stange
- Institute of Muscle Biology and Growth, Growth and Development Unit, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Hellen Elisa Ahrens
- Research Group Stem Cells in Regeneration of Skeletal Muscle, Leibniz Institute on Aging, 07745, Jena, Germany
| | - Julia von Maltzahn
- Research Group Stem Cells in Regeneration of Skeletal Muscle, Leibniz Institute on Aging, 07745, Jena, Germany
| | - Monika Röntgen
- Institute of Muscle Biology and Growth, Growth and Development Unit, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
8
|
Hiebert A, Anderson J. Satellite cell division and fiber hypertrophy alternate with new fiber formation during indeterminate muscle growth in juvenile lake sturgeon (Acipenser fulvescens). CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-dependent changes in muscle fiber size, myonuclear domain volume, fiber-end-terminal configuration, fiber and fish growth, and stem cell or satellite cell (SC) number and proliferation were investigated in developing lake sturgeon (Acipenser fulvescens Rafinesque, 1817) to characterize indeterminate muscle growth during early life. We hypothesized that up to 29 months post hatch (MPH), SC numbers and mitotic activity, the mitotic cycle duration of SCs, fiber morphology, and the volume of cytoplasmic domains around fiber nuclei would change during periods of fiber hypertrophy and hyperplasia. Single-fiber cultures were used in pulse-chase studies of SC division and the Pax7+ SC population. The number of SCs per fiber increased until 17 MPH, peaking as a proportion of fiber nuclei at 3 and 17 MPH. SC cycle time decreased in duration with age after peaks at 3 and 5 MPH. Domain volume was high at 1 and 29 MPH and low from 2 to 6 MPH. Fibers with uniformly tapered ends were most frequent at 4 MPH. Results suggest 3 and 6–17 MPH as intervals for both SC proliferation and fiber hypertrophy, and that fiber growth alternated with new fiber formation (termed fiber hyperplasia) from 4 to 5 MPH and from 17 to 29 MPH. These patterns of cellular dynamics in lake sturgeon muscle growth advance our understanding of indeterminate growth.
Collapse
Affiliation(s)
- A. Hiebert
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - J.E. Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Smith LR, Meyer GA. Skeletal muscle explants: ex-vivo models to study cellular behavior in a complex tissue environment. Connect Tissue Res 2020; 61:248-261. [PMID: 31492079 PMCID: PMC8837600 DOI: 10.1080/03008207.2019.1662409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Skeletal muscle tissue explants have been cultured and studied for nearly 100 years. These cultures, which retain complex tissue structure in an environment suited to precision manipulation and measurement, have led to seminal discoveries of the extrinsic and intrinsic mechanisms regulating contractility, metabolism and regeneration. This review discusses the two primary models of muscle explant: isolated myofiber and intact muscle.Materials and Methods: Relevant literature was reviewed and synthesized with a focus on the unique challenges and capabilities of each explant model.Results: Impactful past, current and future novel applications are discussed.Conclusions: Experiments using skeletal muscle explants have been integral to our understanding of the fundamentals of muscle physiology. As they are refined and adapted, they are poised to continue to inform the field for years to come.
Collapse
Affiliation(s)
- Lucas R Smith
- Departments of Neurobiology, Physiology and Behavior and Physical Medicine and Rehabilitation, University of California, Davis, CA, USA
| | - Gretchen A Meyer
- Program in Physical Therapy and Departments of Neurology, Biomedical Engineering and Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
10
|
Renzini A, Benedetti A, Bouchè M, Silvestroni L, Adamo S, Moresi V. Culture conditions influence satellite cell activation and survival of single myofibers. Eur J Transl Myol 2018; 28:7567. [PMID: 29991990 PMCID: PMC6036316 DOI: 10.4081/ejtm.2018.7567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023] Open
Abstract
Single myofiber isolation protocols allow to obtain an in vitro system in which the physical association between the myofiber and its stem cells, the satellite cells, is adequately preserved. This technique is an indispensable tool by which the muscle regeneration process can be recapitulated and studied in each specific phase, from satellite cell activation to proliferation, from differentiation to fusion. This study aims to clarify the effect of different culture conditions on single myofibers, their associated satellite cells, and the physiological behavior of the satellite cells upon long term culture. By direct observations of the cultures, we compared different experimental conditions and their effect on both satellite cell behavior and myofiber viability.
Collapse
Affiliation(s)
- Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Anna Benedetti
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Marina Bouchè
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Leopoldo Silvestroni
- Department of Fundamental and Basic Sciences for Engineering, Sapienza University of Rome, Italy
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| |
Collapse
|
11
|
Lim CL, Ling KH, Cheah PS. Isolation, cultivation and immunostaining of single myofibers: An improved approach to study the behavior of satellite cells. J Biol Methods 2018; 5:e87. [PMID: 31453240 PMCID: PMC6706169 DOI: 10.14440/jbm.2018.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/29/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022] Open
Abstract
Satellite cells are myogenic cells responsible for muscle growth shortly after birth and muscle repair/regeneration during adulthood. Therapies based on satellite cells hold promise for treating muscular dysfunctions. Studying satellite cells is technically challenging owing to their low abundance, small size and anatomical dispersed location between the basal lamina and the sarcolemma of myofibers. In this article, we present three improved protocol strategies for studying the properties of satellite cells of the mouse during the different stages of muscle regeneration: (1) immunostaining of freshly isolated single myofibers to facilitate the study of quiescent satellite cells, (2) cultivation of single myofibers on Matrigel®-coated dish to study the myogenesis programs initiated by satellite cell activation, and (3) cultivation of single myofibers in floating conditions to analyze activated satellite cells or the doubling time of satellite cells in myofibers. In brief, when compared to previously published protocols, this article presented an improved protocol that requires shorter experimental time and less laborious approach for higher yield of intact single myofibers for downstream analyses.
Collapse
Affiliation(s)
- Chai Ling Lim
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Li H, Pei W, Vergarajauregui S, Zerfas PM, Raben N, Burgess SM, Puertollano R. Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Hum Mol Genet 2018; 26:2701-2718. [PMID: 28449103 DOI: 10.1093/hmg/ddx158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease characterized by neurologic and ophthalmologic abnormalities. There is currently no effective treatment. MLIV is caused by mutations in MCOLN1, a lysosomal cation channel from the transient receptor potential (TRP) family. In this study, we used genome editing to knockout the two mcoln1 genes present in Danio rerio (zebrafish). Our model successfully reproduced the retinal and neuromuscular defects observed in MLIV patients, indicating that this model is suitable for studying the disease pathogenesis. Importantly, our model revealed novel insights into the origins and progression of the MLIV pathology, including the contribution of autophagosome accumulation to muscle dystrophy and the role of mcoln1 in embryonic development, hair cell viability and cellular maintenance. The generation of a MLIV model in zebrafish is particularly relevant given the suitability of this organism for large-scale in vivo drug screening, thus providing unprecedented opportunities for therapeutic discovery.
Collapse
Affiliation(s)
- Huiqing Li
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sivia Vergarajauregui
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Nguyen PD, Gurevich DB, Sonntag C, Hersey L, Alaei S, Nim HT, Siegel A, Hall TE, Rossello FJ, Boyd SE, Polo JM, Currie PD. Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest. Cell Stem Cell 2017; 21:107-119.e6. [DOI: 10.1016/j.stem.2017.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/20/2017] [Accepted: 06/09/2017] [Indexed: 12/18/2022]
|
14
|
Ohtsubo H, Sato Y, Suzuki T, Mizunoya W, Nakamura M, Tatsumi R, Ikeuchi Y. Data supporting possible implication of APOBEC2 in self-renewal functions of myogenic stem satellite cells: Toward understanding the negative regulation of myoblast differentiation. Data Brief 2017; 12:269-273. [PMID: 28462365 PMCID: PMC5403764 DOI: 10.1016/j.dib.2017.03.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 11/19/2022] Open
Abstract
This paper provides in vitro phenotypical data to show that APOBEC2, a member of apoB mRNA editing enzyme, catalytic polypeptide-like family, may implicate in self-renewal functions of myogenic stem satellite cells, namely in the re-establishment of quiescent status after activation and proliferation of myoblasts in single-myofiber culture.
Collapse
Affiliation(s)
- Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | - Yusuke Sato
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
- Department of Bio-Productive Science, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
- Department of Molecular and Developmental Biology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
- Correspondence to: Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan. Fax: +81 92 642 2951.
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
- Correspondence to: Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan. Fax: +81 92 642 2951.
| |
Collapse
|
15
|
García-Castañeda M, Vega AV, Rodríguez R, Montiel-Jaen MG, Cisneros B, Zarain-Herzberg A, Avila G. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1. J Physiol 2017; 595:4167-4187. [PMID: 28303574 DOI: 10.1113/jp273948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/11/2017] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1) result in oculopharyngeal muscular dystrophy (OPMD). This disease is of late-onset, but the underlying mechanism is unclear. Ca2+ stimulates muscle growth and contraction and, because OPMD courses with muscle atrophy and weakness, we hypothesized that the homeostasis of Ca2+ is altered in this disorder. C2C12 myotubes were transfected with cDNAs encoding either PABPN1 or the PABPN1-17A OPMD mutation. Subsequently, they were investigated concerning not only excitation-contraction coupling (ECC) and intracellular levels of Ca2+ , but also differentiation stage and nuclear structure. PABPN1-17A gave rise to: inhibition of Ca2+ release during ECC, depletion of sarcoplasmic reticulum Ca2+ content, reduced expression of ryanodine receptors, altered nuclear morphology and incapability to stimulate myoblast fusion. PABPN1-17A failed to inhibit ECC in adult muscle fibres, suggesting that its effects are primarily related to muscle regeneration. ABSTRACT Oculopharyngeal muscular dystrophy (OPMD) is linked to mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1). OPMD mutations consist of an expansion of a tract that contains 10 alanines (to 12-17). This disease courses with muscle weakness that begins in adulthood, but the underlying mechanism is unclear. In the present study, we investigated the functional effects of PABPN1 and an OPMD mutation (PABPN1-17A) using myotubes transfected with cDNAs encoding these proteins (GFP-tagged). PABPN1 stimulated myoblast fusion (100%), whereas PABPN1-17A failed to mimic this effect. Additionally, the OPMD mutation markedly altered nuclear morphology; specifically, it led to nuclei with a more convoluted and ovoid shape. Although PABPN1 and PABPN1-17A modified the expression of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase and calsequestrin, the corresponding changes did not have a clear impact on [Ca2+ ]. Interestingly, neither L-type Ca2+ channels, nor voltage-gated sarcoplasmic reticulum (SR) Ca2+ release (VGCR) was altered by PABPN1. However, PABPN1-17A produced a selective inhibition of VGCR (50%). This effect probably arises from both lower expression of RyR1 and depletion of SR Ca2+ . The latter, however, was not related to inhibition of store-operated Ca2+ entry. Both PABPN1 constructs promoted a moderated decrease in cytosolic [Ca2+ ], which apparently results from down-regulation of excitation-coupled Ca2+ entry. On the other hand, PABPN1-17A did not alter ECC in muscle fibres, suggesting that adult muscle is less prone to developing deleterious effects. These results demonstrate that PABPN1 proteins regulate essential processes during myotube formation and support the notion that OPMD involves disruption of myogenesis, nuclear structure and homeostasis of Ca2+ .
Collapse
Affiliation(s)
| | - Ana Victoria Vega
- UBIMED FES-Iztacala, National Autonomous University of Mexico, Mexico City, México
| | - Rocío Rodríguez
- Department of Molecular Biology, Cinvestav-IPN AP 14-740, México City, México
| | | | - Bulmaro Cisneros
- Department of Molecular Biology, Cinvestav-IPN AP 14-740, México City, México
| | - Angel Zarain-Herzberg
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, México
| | - Guillermo Avila
- Department of Biochemistry, Cinvestav-IPN AP 14-740, México City, México
| |
Collapse
|
16
|
Altered Satellite Cell Responsiveness and Denervation Implicated in Progression of Rotator-Cuff Injury. PLoS One 2016; 11:e0162494. [PMID: 27668864 PMCID: PMC5036792 DOI: 10.1371/journal.pone.0162494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background Rotator-cuff injury (RCI) is common and painful; even after surgery, joint stability and function may not recover. Relative contributions to atrophy from disuse, fibrosis, denervation, and satellite-cell responsiveness to activating stimuli are not known. Methods and Findings Potential contributions of denervation and disrupted satellite cell responses to growth signals were examined in supraspinatus (SS) and control (ipsilateral deltoid) muscles biopsied from participants with RCI (N = 27). Biopsies were prepared for explant culture (to study satellite cell activity), immunostained to localize Pax7, BrdU, and Semaphorin 3A in satellite cells, sectioning to study blood vessel density, and western blotting to measure the fetal (γ) subunit of acetylcholine receptor (γ-AchR). Principal component analysis (PCA) for 35 parameters extracted components identified variables that contributed most to variability in the dataset. γ-AchR was higher in SS than control, indicating denervation. Satellite cells in SS had a low baseline level of activity (Pax7+ cells labelled in S-phase) versus control; only satellite cells in SS showed increased proliferative activity after nitric oxide-donor treatment. Interestingly, satellite cell localization of Semaphorin 3A, a neuro-chemorepellent, was greater in SS (consistent with fiber denervation) than control muscle at baseline. PCAs extracted components including fiber atrophy, satellite cell activity, fibrosis, atrogin-1, smoking status, vascular density, γAchR, and the time between symptoms and surgery. Use of deltoid as a control for SS was supported by PCA findings since “muscle” was not extracted as a variable in the first two principal components. SS muscle in RCI is therefore atrophic, denervated, and fibrotic, and has satellite cells that respond to activating stimuli. Conclusions Since SS satellite cells can be activated in culture, a NO-donor drug combined with stretching could promote muscle growth and improve functional outcome after RCI. PCAs suggest indices including satellite cell responsiveness, atrogin-1, atrophy, and innervation may predict surgical outcome.
Collapse
|
17
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
18
|
Gallot YS, Hindi SM, Mann AK, Kumar A. Isolation, Culture, and Staining of Single Myofibers. Bio Protoc 2016; 6:e1942. [PMID: 27819014 DOI: 10.21769/bioprotoc.1942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adult skeletal muscle regeneration is orchestrated by a specialized population of adult stem cells called satellite cells, which are localized between the basal lamina and the plasma membrane of myofibers. The process of satellite cell-activation, proliferation, and subsequent differentiation that occurs during muscle regeneration can be recapitulated ex vivo by isolation of single myofibers from skeletal muscles and culturing them under suspension conditions. Here, we describe an improved protocol to evaluate ex vivo satellite cells activation through isolation of single myofibers from extensor digitorum longus (EDL) muscle of mice and culturing and staining of myofiber-associated satellite cells with the markers of self-renewal, proliferation, and differentiation.
Collapse
Affiliation(s)
- Yann Simon Gallot
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, USA
| | - Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, USA
| | | | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, USA
| |
Collapse
|
19
|
Hepatocyte Growth Factor and Satellite Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:1-25. [PMID: 27003394 DOI: 10.1007/978-3-319-27511-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satellite cells are the "currency" for the muscle growth that is critical to meat production in many species, as well as to phenotypic distinctions in development at the level of species or taxa, and for human muscle growth, function and regeneration. Careful research on the activation and behaviour of satellite cells, the stem cells in skeletal muscle, including cross-species comparisons, has potential to reveal the mechanisms underlying pathological conditions in animals and humans, and to anticipate implications of development, evolution and environmental change on muscle function and animal performance.
Collapse
|
20
|
Komiya Y, Anderson JE, Akahoshi M, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Protocol for rat single muscle fiber isolation and culture. Anal Biochem 2015; 482:22-4. [PMID: 25912416 DOI: 10.1016/j.ab.2015.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 11/19/2022]
Abstract
To attain a superior in vitro model of mature muscle fibers, we modified the established protocol for isolating single muscle fibers from rat skeletal muscle. Muscle fiber cultures with high viability were obtained using flexor digitorum brevis muscle and lasted for at least 7 days. We compared the expression levels of adult myosin heavy chain (MyHC) isoforms in these single muscle fibers with myotubes formed from myoblasts; isolated fibers contained markedly more abundant adult MyHC isoforms than myotubes. This muscle fiber model, therefore, will be useful for studying the various functions and cellular processes of mature muscles in vitro.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mariko Akahoshi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Mako Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Ryuichi Tatsumi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshihide Ikeuchi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
21
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
22
|
Zhang H, Anderson JE. Satellite cell activation and populations on single muscle-fiber cultures from adult zebrafish (Danio rerio). ACTA ACUST UNITED AC 2014; 217:1910-7. [PMID: 24577448 DOI: 10.1242/jeb.102210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Satellite cells (SCs), stem cells in skeletal muscle, are mitotically quiescent in adult mammals until activated for growth or regeneration. In mouse muscle, SCs are activated by nitric oxide (NO), hepatocyte growth factor (HGF) and the mechanically induced NO-HGF signaling cascade. Here, the SC population on fibers from the adult, ectothermic zebrafish and SC responsiveness to activating stimuli were assessed using the model system of isolated fibers cultured at 27 and 21°C. SCs were identified by immunostaining for the HGF receptor, c-met, and activation was determined using bromodeoxyuridine uptake in culture or in vivo. In dose-response studies, SC activation was increased by treatment with the NO-donor drug isosorbide dinitrate (1 mmol l(-1)) or HGF (10 ng ml(-1)) to maximum activation at lower concentrations of both than in previous studies of mouse fibers. HGF-induced activation was blocked by anti-c-met antibody, and reduced by culture at 21°C. The effect of cyclical stretch (3 h at 4 cycles per minute) increased activation and was blocked by nitric oxide synthase inhibition and reduced by culture at 21°C. The number of c-met+ SCs per fiber increased rapidly (by 3 h) after stretching. The character of signaling in SC activation on zebrafish fibers, in particular temperature-dependent responses to HGF and stretch, gives new insights into the influence of ectothermy on regulation of muscle growth in teleosts and suggests the use of the single-fiber model system to explore the basis of fiber hyperplasia and the conservation of regulatory pathways between species.
Collapse
Affiliation(s)
- Helia Zhang
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
23
|
Archacka K, Pozzobon M, Repele A, Rossi CA, Campanella M, De Coppi P. Culturing muscle fibres in hanging drop: a novel approach to solve an old problem. Biol Cell 2014; 106:72-82. [PMID: 24405025 DOI: 10.1111/boc.201300028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND INFORMATION The satellite cells (SCs) associated with muscle fibres play a key role in postnatal growth and regeneration of skeletal muscle. Commonly used methods of isolation and in vitro culture of SCs lead to the mixture of their subpopulations that exist within muscle. To solve this problem, we used the well established technique, the hanging drop system, to culture SCs in a three-dimensional environment and thus, to monitor them in their original niche. RESULTS Using hanging drop technique, we were able to culture SCs associated with the fibre at least for 9 days with one transfer of fibres to the fresh drops. In comparison, in the classical method of myofibres culture, that is, on the dishes coated with Matrigel, SCs leave the fibres within 3 days after the isolation. Cells cultured in both systems differed in expression of Pax7 and MyoD. While almost all cells cultured in adhesion system expressed MyoD before the fifth day of the culture, the majority of SCs cultured in hanging drop still maintained expression of Pax7 and were not characterised by the presence of MyoD. Among the cells cultured with single myofibre for up to 9 days, we identified two different subclones of SCs: low proliferative clone and high proliferative clone, which differed in proliferation rate and membrane potential. CONCLUSIONS The hanging drop enables the myofibres to be kept in suspension for at least 9 days, and thus, allows SCs and their niche to interact each other for prolonged time. In a consequence, SCs cultured in hanging drop maintain expression of Pax7 while those cultured in a traditional adhesion culture, that is, devoid of signals from the original niche, activate and preferentially undergo differentiation as manifested by expression of MyoD. Thus, the innovative method of SCs culturing in the hanging drop system may serve as a useful tool to study the fate of different subpopulations of these cells in their anatomical location and to determine reciprocal interactions between them and their niche.
Collapse
Affiliation(s)
- Karolina Archacka
- Stem Cells and Regenerative Medicine Lab, Foundation Institute of Pediatic Research Città della Speranza, Padua, 35127, Italy; Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | | | | | | | | | | |
Collapse
|
24
|
Pasut A, Jones AE, Rudnicki MA. Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle. J Vis Exp 2013:e50074. [PMID: 23542587 PMCID: PMC3639710 DOI: 10.3791/50074] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Muscle regeneration in the adult is performed by resident stem cells called satellite cells. Satellite cells are defined by their position between the basal lamina and the sarcolemma of each myofiber. Current knowledge of their behavior heavily relies on the use of the single myofiber isolation protocol. In 1985, Bischoff described a protocol to isolate single live fibers from the Flexor Digitorum Brevis (FDB) of adult rats with the goal to create an in vitro system in which the physical association between the myofiber and its stem cells is preserved 1. In 1995, Rosenblattmodified the Bischoff protocol such that myofibers are singly picked and handled separately after collagenase digestion instead of being isolated by gravity sedimentation 2, 3. The Rosenblatt or Bischoff protocol has since been adapted to different muscles, age or conditions 3-6. The single myofiber isolation technique is an indispensable tool due its unique advantages. First, in the single myofiber protocol, satellite cells are maintained beneath the basal lamina. This is a unique feature of the protocol as other techniques such as Fluorescence Activated Cell Sorting require chemical and mechanical tissue dissociation 7. Although the myofiber culture system cannot substitute for in vivo studies, it does offer an excellent platform to address relevant biological properties of muscle stem cells. Single myofibers can be cultured in standard plating conditions or in floating conditions. Satellite cells on floating myofibers are subjected to virtually no other influence than the myofiber environment. Substrate stiffness and coating have been shown to influence satellite cells' ability to regenerate muscles 8, 9 so being able to control each of these factors independently allows discrimination between niche-dependent and -independent responses. Different concentrations of serum have also been shown to have an effect on the transition from quiescence to activation. To preserve the quiescence state of its associated satellite cells, fibers should be kept in low serum medium 1-3. This is particularly useful when studying genes involved in the quiescence state. In serum rich medium, satellite cells quickly activate, proliferate, migrate and differentiate, thus mimicking the in vivo regenerative process 1-3. The system can be used to perform a variety of assays such as the testing of chemical inhibitors; ectopic expression of genes by virus delivery; oligonucleotide based gene knock-down or live imaging. This video article describes the protocol currently used in our laboratory to isolate single myofibers from the Extensor Digitorum Longus (EDL) muscle of adult mice (6-8 weeks old).
Collapse
Affiliation(s)
- Alessandra Pasut
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute
| | | | | |
Collapse
|