1
|
Sauerer T, Albrecht L, Sievers NM, Gerer KF, Hoyer S, Dörrie J, Schaft N. Electroporation of mRNA as a Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods Mol Biol 2024; 2786:219-235. [PMID: 38814397 DOI: 10.1007/978-1-0716-3770-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than two decades to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs) and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers (i.e. caIKK), and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs and mRNA-electroporated T cells for therapeutic applications in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types; (2) scalability from 106 to approximately 108 cells per shot; (3) high transfection efficiency (80-99%); (4) homogenous protein expression; (5) GMP compliance if the EP is performed in a class A clean room; and (6) no transgene integration into the genome. The provided protocol involves: OptiMEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time has to be altered. Thus, we share an overview of proven electroporation settings (including recovery media), which we have established for various cell types. Next to the basic protocol, we also provide an extensive list of hints and tricks, which, in our opinion, are of great value for everyone who intends to use this transfection technique.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Leoni Albrecht
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Nico M Sievers
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kerstin F Gerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Novartis Pharma GmbH, Nuremberg, Germany
| | - Stefanie Hoyer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Palliative Medicine, Universitätsklinikum Erlangen, Comprehensive Cancer Center CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Niels Schaft
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
2
|
Current Progress of CAR-NK Therapy in Cancer Treatment. Cancers (Basel) 2022; 14:cancers14174318. [PMID: 36077853 PMCID: PMC9454439 DOI: 10.3390/cancers14174318] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chimeric antigen receptor (CAR)-T and -natural killer (NK) therapies are promising in cancer treatment. CAR-NK therapy gains great attention due to the lack of adverse effects observed in CAR-T therapies and to the NK cells’ unique mechanisms of recognizing target cells. Off-the-shelf products are in urgent need, not only for good yields, but also for lower cost and shorter preparation time. The current progress of CAR-NK therapy is discussed. Abstract CD8+ T cells and natural killer (NK) cells eliminate target cells through the release of lytic granules and Fas ligand (FasL)-induced target cell apoptosis. The introduction of chimeric antigen receptor (CAR) makes these two types of cells selective and effective in killing cancer cells. The success of CAR-T therapy in the treatment of acute lymphoblastic leukemia (ALL) and other types of blood cancers proved that the immunotherapy is an effective approach in fighting against cancers, yet adverse effects, such as graft versus host disease (GvHD) and cytokine release syndrome (CRS), cannot be ignored for the CAR-T therapy. CAR-NK therapy, then, has its advantage in lacking these adverse effects and works as effective as CAR-T in terms of killing. Despite these, NK cells are known to be hard to transduce, expand in vitro, and sustain shorter in vivo comparing to infiltrated T cells. Moreover, CAR-NK therapy faces challenges as CAR-T therapy does, e.g., the time, the cost, and the potential biohazard due to the use of animal-derived products. Thus, enormous efforts are needed to develop safe, effective, and large-scalable protocols for obtaining CAR-NK cells. Here, we reviewed current progress of CAR-NK therapy, including its biological properties, CAR compositions, preparation of CAR-NK cells, and clinical progresses. We also discussed safety issues raised from genetic engineering. We hope this review is instructive to the research community and a broad range of readers.
Collapse
|
3
|
Classification and Treatment of Pediatric Gliomas in the Molecular Era. CHILDREN-BASEL 2021; 8:children8090739. [PMID: 34572171 PMCID: PMC8464723 DOI: 10.3390/children8090739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Abstract
The overall survival of pediatric gliomas varies over a wide spectrum depending on the tumor grade. Low-grade gliomas have an excellent long-term survival, with a possible burden of surgery, irradiation, and chemotherapy; in contrast, high-grade gliomas generally have a short-term, devastating lethal outcome. Recent advances in understanding their molecular background will transform the classification and therapeutic approaches of pediatric gliomas. Molecularly targeted treatments may acquire a leading role in the primary treatment of low-grade gliomas and may provide alternative therapeutic strategies for high-grade glioma cases in the attempt to avoid the highly unsuccessful conventional therapeutic approaches. This review aims to overview this progress.
Collapse
|
4
|
Sievers NM, Dörrie J, Schaft N. CARs: Beyond T Cells and T Cell-Derived Signaling Domains. Int J Mol Sci 2020; 21:E3525. [PMID: 32429316 PMCID: PMC7279007 DOI: 10.3390/ijms21103525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
When optimizing chimeric antigen receptor (CAR) therapy in terms of efficacy, safety, and broadening its application to new malignancies, there are two main clusters of topics to be addressed: the CAR design and the choice of transfected cells. The former focuses on the CAR construct itself. The utilized transmembrane and intracellular domains determine the signaling pathways induced by antigen binding and thereby the cell-specific effector functions triggered. The main part of this review summarizes our understanding of common signaling domains employed in CARs, their interactions among another, and their effects on different cell types. It will, moreover, highlight several less common extracellular and intracellular domains that might permit unique new opportunities. Different antibody-based extracellular antigen-binding domains have been pursued and optimized to strike a balance between specificity, affinity, and toxicity, but these have been reviewed elsewhere. The second cluster of topics is about the cellular vessels expressing the CAR. It is essential to understand the specific attributes of each cell type influencing anti-tumor efficacy, persistence, and safety, and how CAR cells crosstalk with each other and bystander cells. The first part of this review focuses on the progress achieved in adopting different leukocytes for CAR therapy.
Collapse
Affiliation(s)
- Nico M. Sievers
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Abstract
Immune modulatory treatment regimens, led by immune checkpoint inhibitors, have transformed the treatment of clear-cell renal cell carcinoma. First-in-class, the PD-1 inhibitor nivolumab improved overall survival in advanced renal cell carcinoma following prior anti-angiogenic therapy, an important shift in the management of clear-cell renal cell carcinoma. Further improvements of long-term outcomes will be driven by combinations in the first-line setting, including PD-1/PD-L1 associated with antiangiogenic therapies, or PD1/PD-L1 inhibitors with other immune checkpoint inhibitors such as anti-CTLA-4, anti-LAG-3 or TIM-3 targeted therapies. The first two randomized Phase 3 trials assessing these combinations have now challenged sunitinib in first-line setting. First, the CheckMate 214 trial demonstrated an objective response rate and overall survival benefit for the combination of nivolumab plus ipilimumab in the intermediate- and poor-risk patients. Second, the IMMotion 151 study demonstrated a progression-free survival benefit for the atezolizumab plus bevacizumab combination by investigator assessment. Further Phase 3 trials are awaited with tyrosine kinase and immune checkpoint inhibitor combinations. Clinical trials of immune checkpoint inhibitors are also actively investigated in the localized adjuvant or neoadjuvant setting. Nevertheless, the search for biomarkers along with new clinical trial designs will be crucial to better select the patients that may derive the greatest benefit from these advances. The continuing improvement of antitumor immunity comprehension and the emergence of new immune modulatory treatments will deeply change the management of renal cell carcinoma for the years to come.
Collapse
|
6
|
John S, Chen H, Deng M, Gui X, Wu G, Chen W, Li Z, Zhang N, An Z, Zhang CC. A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML. Mol Ther 2018; 26:2487-2495. [PMID: 30131301 DOI: 10.1016/j.ymthe.2018.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
To effectively improve treatment for acute myeloid leukemia (AML), new molecular targets and therapeutic approaches need to be identified. Chimeric antigen receptor (CAR)-modified T cells targeting tumor-associated antigens have shown promise in the treatment of some malignancies. However, CAR-T cell development for AML has been limited by lack of an antigen with high specificity for AML cells that is not present on normal hematopoietic stem cells, and thus will not result in myelotoxicity. Here we demonstrate that leukocyte immunoglobulin-like receptor-B4 (LILRB4) is a tumor-associated antigen highly expressed on monocytic AML cells. We generated a novel anti-LILRB4 CAR-T cell that displays high antigen affinity and specificity. These CAR-T cells display efficient effector function in vitro and in vivo against LILRB4+ AML cells. Furthermore, we demonstrate anti-LILRB4 CAR-T cells are not toxic to normal CD34+ umbilical cord blood cells in colony-forming unit assays, nor in a humanized hematopoietic-reconstituted mouse model. Our data demonstrate that anti-LILRB4 CAR-T cells specifically target monocytic AML cells with no toxicity to normal hematopoietic progenitors. This work thus offers a new treatment strategy to improve outcomes for monocytic AML, with the potential for elimination of leukemic disease while minimizing the risk for on-target off-tumor toxicity.
Collapse
Affiliation(s)
- Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zunling Li
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA.
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Xu D, Jin G, Chai D, Zhou X, Gu W, Chong Y, Song J, Zheng J. The development of CAR design for tumor CAR-T cell therapy. Oncotarget 2018; 9:13991-14004. [PMID: 29568411 PMCID: PMC5862632 DOI: 10.18632/oncotarget.24179] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, the chimeric antigen receptor modified T cells (Chimeric antigen receptor T cells, CAR-T) immunotherapy has developed rapidly, which has been considered the most promising therapy. Efforts to enhance the efficacy of CAR-based anti-tumor therapy have been made, such as the improvement of structures of CAR-T cells, including the development of extracellular antigen recognition receptors, intracellular co-stimulatory molecules and the combination application of CARs and synthetic small molecules. In addition, effects on the function of the CAR-T cells that the space distance between the antigen binding domains and tumor targets and the length of the spacer domains have are also being investigated. Given the fast-moving nature of this field, it is necessary to make a summary of the development of CAR-T cells. In this review, we mainly focus on the present design strategies of CAR-T cells with the hope that they can provide insights to increase the anti-tumor efficacy and safety.
Collapse
Affiliation(s)
- Dandan Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guoliang Jin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaowan Zhou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weiyu Gu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanyun Chong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyuan Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Engineered T lymphocytes eliminate lung metastases in models of pancreatic cancer. Oncotarget 2018; 9:13694-13705. [PMID: 29568387 PMCID: PMC5862608 DOI: 10.18632/oncotarget.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/13/2017] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer is known as one of the most lethal cancers in the world. A majority of advanced stage pancreatic cancer patients are diagnosed with distant metastasis and given poor prognoses, calling for a better therapeutic option. Mesothelin, which is overexpressed in pancreatic cancer and other solid tumors, is a potential target for pancreatic cancer immunotherapy. Adoptive transfer of T cells engineered with chimeric antigen receptors (CART cells) was effective for treating CD19-positive leukemia, but it is more difficult for CART cells to eliminate solid tumors. Because distal metastasis is an important malignant behavior of solid tumors, we investigated whether meso-CART cells exert anti-tumor effects against distant metastases. After expressing meso-CAR in human primary T lymphocytes, the resultant meso-CART cells released cytokines in response to and exhibited cytolytic effects on mesothelin-positive tumor cells in vitro. Injection of meso-CART cells into tumor-bearing mice moderately delayed subcutaneous tumor growth and eliminated lung metastases. This is the first study to show that meso-CART cells are effective against lung metastases induced by intravenous injection of pancreatic tumor cells. Our results suggest that meso-CART cells may be an effective clinical treatment for mesothelin-positive primary and metastatic tumors in pancreatic cancer patients.
Collapse
|
9
|
Harrer DC, Simon B, Fujii SI, Shimizu K, Uslu U, Schuler G, Gerer KF, Hoyer S, Dörrie J, Schaft N. RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma. BMC Cancer 2017; 17:551. [PMID: 28818060 PMCID: PMC5561563 DOI: 10.1186/s12885-017-3539-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Background Adoptive T-cell therapy relying on conventional T cells transduced with T-cell receptors (TCRs) or chimeric antigen receptors (CARs) has caused substantial tumor regression in several clinical trials. However, genetically engineered T cells have been associated with serious side-effects due to off-target toxicities and massive cytokine release. To obviate these concerns, we established a protocol adaptable to GMP to expand and transiently transfect γ/δ T cells with mRNA. Methods PBMC from healthy donors were stimulated using zoledronic-acid or OKT3 to expand γ/δ T cells and bulk T cells, respectively. Additionally, CD8+ T cells and γ/δ T cells were MACS-isolated from PBMC and expanded with OKT3. Next, these four populations were electroporated with RNA encoding a gp100/HLA-A2-specific TCR or a CAR specific for MCSP. Thereafter, receptor expression, antigen-specific cytokine secretion, specific cytotoxicity, and killing of the endogenous γ/δ T cell-target Daudi were analyzed. Results Using zoledronic-acid in average 6 million of γ/δ T cells with a purity of 85% were generated from one million PBMC. MACS-isolation and OKT3-mediated expansion of γ/δ T cells yielded approximately ten times less cells. OKT3-expanded and CD8+ MACS-isolated conventional T cells behaved correspondingly similar. All employed T cells were efficiently transfected with the TCR or the CAR. Upon respective stimulation, γ/δ T cells produced IFNγ and TNF, but little IL-2 and the zoledronic-acid expanded T cells exceeded MACS-γ/δ T cells in antigen-specific cytokine secretion. While the cytokine production of γ/δ T cells was in general lower than that of conventional T cells, specific cytotoxicity against melanoma cell lines was similar. In contrast to OKT3-expanded and MACS-CD8+ T cells, mock-electroporated γ/δ T cells also lysed tumor cells reflecting the γ/δ T cell-intrinsic anti-tumor activity. After transfection, γ/δ T cells were still able to kill MHC-deficient Daudi cells. Conclusion We present a protocol adaptable to GMP for the expansion of γ/δ T cells and their subsequent RNA-transfection with tumor-specific TCRs or CARs. Given the transient receptor expression, the reduced cytokine release, and the equivalent cytotoxicity, these γ/δ T cells may represent a safer complementation to genetically engineered conventional T cells in the immunotherapy of melanoma (Exper Dermatol 26: 157, 2017, J Investig Dermatol 136: A173, 2016). Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3539-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dennis C Harrer
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany.,Department of Dermatology, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bianca Simon
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany.,Department of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen-Nürnberg, Erlangen, Germany
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ugur Uslu
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany.,Department of Dermatology, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kerstin F Gerer
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany.,Department of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Hoyer
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany.,Department of Dermatology, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany. .,Department of Dermatology, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
10
|
Insights into molecular therapy of glioma: current challenges and next generation blueprint. Acta Pharmacol Sin 2017; 38:591-613. [PMID: 28317871 DOI: 10.1038/aps.2016.167] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma.
Collapse
|
11
|
Kueberuwa G, Gornall H, Alcantar-Orozco EM, Bouvier D, Kapacee ZA, Hawkins RE, Gilham DE. CCR7 + selected gene-modified T cells maintain a central memory phenotype and display enhanced persistence in peripheral blood in vivo. J Immunother Cancer 2017; 5:14. [PMID: 28239467 PMCID: PMC5319186 DOI: 10.1186/s40425-017-0216-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Adoptive T cell immunotherapy (ATCT) for cancer entails infusing patients with T cells that recognise and destroy tumour cells. Efficient engraftment of T cells and persistence in the circulation correlate with favourable clinical outcomes. T cells of early differentiation possess an increased capacity for proliferation and therefore persistence, using these cells for ATCT could therefore lead to improved clinical outcomes. METHOD We describe a method to enrich T cells of early differentiation status using paramagnetic beads and antibodies targeting cells expressing C-C motif chemokine receptor 7 (CCR7). RESULTS Selection of cells expressing CCR7 enriches T cells of bearing markers of early differentiation status. This was validated through analysis of an array of surface markers and an observed reduction in effector cell functions ex vivo. CCR7 selection resulted in dramatic 83.6 and 137 fold increases in circulating levels of CD4 and CD8 T cells respectively compared to non-sorted T cells 3 weeks after adoptive transfer to NSG mice. We observed no significant difference in the engraftment levels of CCR7 or CD62L selected cells in the NSG mouse model. Comparison of cells ex vivo, however, suggests CCR7 selection is superior to CD62L selection in enriching T cells of early differentiation status. CONCLUSIONS CCR7 selection offers a means to enrich T cells of early differentiation status for ACTC. Together our data suggests that these T cells are likely to display enhanced engraftment and persistence in patients in vivo and could therefore improve therapeutic efficacy of ACTC.
Collapse
Affiliation(s)
- Gray Kueberuwa
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Hannah Gornall
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Erik Marcelo Alcantar-Orozco
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Deborah Bouvier
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Zainul Abedin Kapacee
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Robert Edward Hawkins
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - David Edward Gilham
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| |
Collapse
|
12
|
Gerer KF, Hoyer S, Dörrie J, Schaft N. Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods Mol Biol 2017; 1499:165-178. [PMID: 27987149 DOI: 10.1007/978-1-4939-6481-9_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 106 to approximately 108 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.
Collapse
Affiliation(s)
- Kerstin F Gerer
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Stefanie Hoyer
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany.
| |
Collapse
|
13
|
Inoo K, Inagaki R, Fujiwara K, Sasawatari S, Kamigaki T, Nakagawa S, Okada N. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16024. [PMID: 27909701 PMCID: PMC5111575 DOI: 10.1038/mto.2016.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/27/2016] [Indexed: 01/03/2023]
Abstract
We previously reported that tumor vessel-redirected T cells, which were genetically engineered with chimeric antigen receptor (CAR) specific for vascular endothelial growth factor receptor 2 (VEGFR2), demonstrated significant antitumor effects in various murine solid tumor models. In the present study, we prepared anti-VEGFR2 CAR-T cells by CAR-coding mRNA electroporation (mRNA-EP) and analyzed their immunological characteristics and functions for use in clinical research. The expression of anti-VEGFR2 CAR on murine and human T cells was detected with approximately 100% efficiency for a few days, after peaking 6-12 hours after mRNA-EP. Triple transfer of murine anti-VEGFR2 CAR-T cells into B16BL6 tumor-bearing mice demonstrated an antitumor effect comparable to that for the single transfer of CAR-T cells engineered with retroviral vector. The mRNA-EP did not cause any damage or defects to human T-cell characteristics, as determined by viability, growth, and phenotypic parameters. Additionally, two kinds of human anti-VEGFR2 CAR-T cells, which expressed different CAR construction, differentiated to effector phase with cytokine secretion and cytotoxic activity in antigen-specific manner. These results indicate that our anti-VEGFR2 CAR-T cells prepared by mRNA-EP have the potential in terms of quality and performance to offer the prospect of safety and efficacy in clinical research as cellular medicine.
Collapse
Affiliation(s)
- Kanako Inoo
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Ryo Inagaki
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Kento Fujiwara
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | | | - Takashi Kamigaki
- MEDINET Co., Ltd., Kanagawa, Japan; Seta Clinic Group, Tokyo, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Naoki Okada
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| |
Collapse
|
14
|
Retargeted human avidin-CAR T cells for adoptive immunotherapy of EGFRvIII expressing gliomas and their evaluation via optical imaging. Oncotarget 2016; 6:23735-47. [PMID: 26124178 PMCID: PMC4695148 DOI: 10.18632/oncotarget.4362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/31/2015] [Indexed: 12/02/2022] Open
Abstract
There has been significant progress in the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. However, the challenge of monitoring the therapy in real time has been continually ignored. To address this issue, we developed optical molecular imaging approaches to evaluate a recently reported novel CAR strategy for adoptive immunotherapy against glioma xenografts expressing EGFRvIII. We initially biotinylated a novel anti-EGFRvIII monoclonal antibody (biotin-4G1) to pre-target EGFRvIII+ gliomas and then redirect activated avidin-CAR expressing T cells against the pre-targeted biotin-4G1. By optical imaging study and bio-distribution analysis, we confirmed the specificity of pre-target and target and determined the optimal time for T cells adoptive transfer in vivo. The results showed this therapeutic strategy offered efficient therapy effect to EGFRvIII+ glioma-bearing mice and implied that optical imaging is a highly useful tool in aiding in the instruction of clinical CAR-T cells adoptive transfer in future.
Collapse
|
15
|
Faitschuk E, Nagy V, Hombach AA, Abken H. A dual chain chimeric antigen receptor (CAR) in the native antibody format for targeting immune cells towards cancer cells without the need of an scFv. Gene Ther 2016; 23:718-726. [DOI: 10.1038/gt.2016.48] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/22/2023]
|
16
|
Vu BT, Tan Le D, Van Pham P. Synergistic effect of chimeric antigen receptors and cytokineinduced killer cells: An innovative combination for cancer therapy. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0025-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Flippot R, Malouf GG, Su X, Khayat D, Spano JP. Oncogenic viruses: Lessons learned using next-generation sequencing technologies. Eur J Cancer 2016; 61:61-8. [PMID: 27156225 DOI: 10.1016/j.ejca.2016.03.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 01/04/2023]
Abstract
Fifteen percent of cancers are driven by oncogenic human viruses. Four of those viruses, hepatitis B virus, human papillomavirus, Merkel cell polyomavirus, and human T-cell lymphotropic virus, integrate the host genome. Viral oncogenesis is the result of epigenetic and genetic alterations that happen during viral integration. So far, little data have been available regarding integration mechanisms and modifications in the host genome. However, the emergence of high-throughput sequencing and bioinformatic tools enables researchers to establish the landscape of genomic alterations and predict the events that follow viral integration. Cooperative working groups are currently investigating these factors in large data sets. Herein, we provide novel insights into the initiating events of cancer onset during infection with integrative viruses. Although much remains to be discovered, many improvements are expected from the clinical point of view, from better prognosis classifications to better therapeutic strategies.
Collapse
Affiliation(s)
- Ronan Flippot
- University Hospital Pitié Salpêtrière, Department of Medical Oncology, University Pierre and Marie Curie, Paris, France
| | - Gabriel G Malouf
- University Hospital Pitié Salpêtrière, Department of Medical Oncology, University Pierre and Marie Curie, Paris, France.
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, U.S.A
| | - David Khayat
- University Hospital Pitié Salpêtrière, Department of Medical Oncology, University Pierre and Marie Curie, Paris, France
| | - Jean-Philippe Spano
- University Hospital Pitié Salpêtrière, Department of Medical Oncology, University Pierre and Marie Curie, Paris, France
| |
Collapse
|
18
|
Abstract
mRNA cancer vaccines are a relatively new class of vaccines, which combine the potential of mRNA to encode for almost any protein with an excellent safety profile and a flexible production process. The most straightforward use of mRNA vaccines in oncologic settings is the immunization of patients with mRNA vaccines encoding tumor-associated antigens (TAAs). This is exemplified by the RNActive® technology, which induces balanced humoral and cellular immune responses in animal models and is currently evaluated in several clinical trials for oncologic indications. A second application of mRNA vaccines is the production of personalized vaccines. This is possible because mRNA vaccines are produced by a generic process, which can be used to quickly produce mRNA vaccines targeting patient-specific neoantigens that are identified by analyzing the tumor exome. Apart from being used directly to vaccinate patients, mRNAs can also be used in cellular therapies to transfect patient-derived cells in vitro and infuse the manipulated cells back into the patient. One such application is the transfection of patient-derived dendritic cells (DCs) with mRNAs encoding TAAs, which leads to the presentation of TAA-derived peptides on the DCs and an activation of antigen-specific T cells in vivo. A second application is the transfection of patient-derived T cells with mRNAs encoding chimeric antigen receptors, which allows the T cells to directly recognize a specific antigen expressed on the tumor. In this chapter, we will review preclinical and clinical data for the different approaches.
Collapse
Affiliation(s)
- Katja Fiedler
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany.
| | - Sandra Lazzaro
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Johannes Lutz
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Susanne Rauch
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | | |
Collapse
|
19
|
Hillis J, O'Dwyer M, Gorman AM. Neurotrophins and B-cell malignancies. Cell Mol Life Sci 2016; 73:41-56. [PMID: 26399960 PMCID: PMC11108515 DOI: 10.1007/s00018-015-2046-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
Neurotrophins and their receptors act as important proliferative and pro-survival factors in a variety of cell types. Neurotrophins are produced by multiple cell types in both pro- and mature forms, and can act in an autocrine or paracrine fashion. The p75(NTR) and Trk receptors can elicit signalling in response to the presence or absence of their corresponding neurotrophin ligands. This signalling, along with neurotrophin and receptor expression, varies between different cell types. Neurotrophins and their receptors have been shown to be expressed by and elicit signalling in B lymphocytes. In general, most neurotrophins are expressed by activated B-cells and memory B-cells. Likewise, the TrkB95 receptor is seen on activated B-cells, while TrkA and p75(NTR) are expressed by both resting and active B-cells as well as memory B-cells. Nerve growth factor stimulates B-cell proliferation, memory B-cell survival, antibody production and CD40 expression. Brain-derived neurotrophic factor is involved in B-cell maturation in the bone marrow through TrkB95. Overall neurotrophins and their receptors have been shown to be involved in B-cell proliferation, development, differentiation, antibody secretion and survival. As well as expression and activity in healthy B-cells, the neurotrophins and their receptors can contribute to B-cell malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, Burkitt's lymphoma and multiple myeloma. They are involved in B-cell malignancy survival and potentially in drug resistance.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Follicular/pathology
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Nerve Growth Factors/analysis
- Nerve Growth Factors/genetics
- Nerve Growth Factors/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptors, Nerve Growth Factor/analysis
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Jennifer Hillis
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Michael O'Dwyer
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Haematology, University College Hospital, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
20
|
Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA. Cell Discov 2015; 1:15040. [PMID: 27462436 PMCID: PMC4860832 DOI: 10.1038/celldisc.2015.40] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor T cell immunotherapy is a promising therapeutic strategy for treating tumors, demonstrating its efficiency in eliminating several hematological malignancies in recent years. However, a major obstacle associated with current chimeric antigen receptor T cell immunotherapy is that the limited replicative lifespan of chimeric antigen receptor T cells prohibits the long-term persistence and expansion of these cells in vivo, potentially hindering the long-term therapeutic effects of chimeric antigen receptor T cell immunotherapy. Here we showed that the transient delivery of modified mRNA encoding telomerase reverse transcriptase to human chimeric antigen receptor T cells targeting the CD19 antigen (CD19 chimeric antigen receptor T cells) would transiently elevate the telomerase activity in these cells, leading to increased proliferation and delayed replicative senescence without risk of insertion mutagenesis or immortalization. Importantly, compared to conventional CD19 chimeric antigen receptor T cells, after the transient delivery of telomerase reverse transcriptase mRNA, these CD19 chimeric antigen receptor T cells showed improved persistence and proliferation in mouse xenograft tumor models of human B-cell malignancies. Furthermore, the transfer of CD19 chimeric antigen receptor T cells after the transient delivery of telomerase reverse transcriptase mRNA enhanced long-term antitumor effects in mouse xenograft tumor models compared with conventional CD19 chimeric antigen receptor T cell transfer. The results of the present study provide an effective and safe method to improve the therapeutic potential of chimeric antigen receptor T cells, which might be beneficial for treating other types of cancer, particularly solid tumors.
Collapse
|
21
|
Abstract
INTRODUCTION Adoptive cell therapy of malignant diseases takes advantage of the cellular immune system to recognize and destroy cancer cells. This is impressively demonstrated by redirecting T cells with a chimeric antigen receptor (CAR) towards CD19, inducing complete and lasting remission of leukemia in more than two-thirds of patients in early phase trials. AREAS COVERED We outline how the CAR strategy is highly specific in redirecting T cells towards pre-defined target cells, however, reaches its limits when targeting solid tumors with a tremendous phenotypic heterogeneity. After initial tumor reduction by CAR T cells, antigen-negative cancer cells not recognized by CAR may give rise to tumor relapse. The situation may be overcome by CAR-mediated activation of T cells in the tumor, releasing inducible IL-12 which augments T-cell activation and attracts and activates innate immune cells to eliminate antigen-negative cancer cells in the targeted lesion. EXPERT OPINION CAR T cells with a transgenic 'payload', so-called TRUCK T cells or the 'fourth-generation' CAR T cells, are worthwhile to explore to shape the tumor environment by the inducible release of transgenic immune modifiers. Such TRUCK T cells are moreover envisioned to be applied in fields beyond cancer therapy including the therapy of virus infections, auto-immune diseases or metabolic disorders.
Collapse
Affiliation(s)
- Markus Chmielewski
- University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Clinic I for Internal Medicine , Robert-Koch-Street 21, D-50931 Cologne , Germany
| | | |
Collapse
|
22
|
Festuccia M, Martino M, Ferrando F, Messina G, Moscato T, Fedele R, Boccadoro M, Giaccone L, Bruno B. Allogeneic stem cell transplantation in multiple myeloma: immunotherapy and new drugs. Expert Opin Biol Ther 2015; 15:857-72. [PMID: 25865214 DOI: 10.1517/14712598.2015.1036735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Autologous (auto) stem cell transplantation (SCT) and the development of new drugs have improved the survival of multiple myeloma (MM) patients. By contrast, though potentially curative, the use of allogeneic (allo)-SCT is controversial. AREAS COVERED A review has been conducted to examine the current evidence for the use of allo-SCT in MM. We have examined novel cell therapies that may be exploited to induce myeloma-specific immune responses including the new promising frontier of chimeric antigen receptor (CAR)-T and -natural killer (NK) cells. EXPERT OPINION One of the major controversies facing researchers in exploring the allo approach is the remarkable recent treatment improvement observed with second- and third-generation proteasome inhibitors and immunomodulatory drugs, monoclonal antibodies and deacetylase inhibitors. Despite these great advances, the disease remains to be incurable and allo-SCT may still play a role in the cure of MM. We think that allo-SCT conserves a role in MM and its curative potential in high-risk patients should be explored in the setting of control clinical trials. Novel cell therapies such as CAR technologies may open new avenues of research toward a potential cure. Data from currently ongoing prospective studies will be helpful to clarify pending clinical questions.
Collapse
Affiliation(s)
- Moreno Festuccia
- University of Torino, Presidio Molinette, and Department of Molecular Biotechnology and Health Sciences, Division of Hematology, A.O.U. Citta' della salute e della scienza di Torino, Presidio Molinette , Torino , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Figueroa JA, Reidy A, Mirandola L, Trotter K, Suvorava N, Figueroa A, Konala V, Aulakh A, Littlefield L, Grizzi F, Rahman RL, Jenkins MR, Musgrove B, Radhi S, D'Cunha N, D'Cunha LN, Hermonat PL, Cobos E, Chiriva-Internati M. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy. Int Rev Immunol 2015; 34:154-187. [PMID: 25901860 DOI: 10.3109/08830185.2015.1018419] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer immunotherapy comprises different therapeutic strategies that exploit the use of distinct components of the immune system, with the common goal of specifically targeting and eradicating neoplastic cells. These varied approaches include the use of specific monoclonal antibodies, checkpoint inhibitors, cytokines, therapeutic cancer vaccines and cellular anticancer strategies such as activated dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs) and, more recently, genetically engineered T cells. Each one of these approaches has demonstrated promise, but their generalized success has been hindered by the paucity of specific tumor targets resulting in suboptimal tumor responses and unpredictable toxicities. This review will concentrate on recent advances on the use of engineered T cells for adoptive cellular immunotherapy (ACI) in cancer.
Collapse
Affiliation(s)
- Jose A Figueroa
- Division of Hematology and Oncology, Texas Tech University Health Sciences Center , Lubbock, TX , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mechanisms of tumor-induced T cell immune suppression and therapeutics to counter those effects. Arch Pharm Res 2015; 38:1415-33. [PMID: 25634101 DOI: 10.1007/s12272-015-0566-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/18/2015] [Indexed: 02/07/2023]
Abstract
The theory of tumor immune surveillance states that the host immune system has means to recognize transformed cells and kills them to prevent growth and spreading of those cells. Nevertheless, cancer cells often survive and outgrow to form a tumor mass and metastasize to other tissues or organs. During the stage of immune evasion of tumor, various changes takes place both in the tumor cells and the tumor microenvironment to divert the anti-tumor immune responses by T cells and natural killer cells. Advances in the basic science in tumor immunology have led to development of many creative strategies to overcome the immune suppression imposed during tumor progression, a few of which have been approved for the treatment of cancer patients in the clinic. In the first part of this review, mechanisms of tumor-induced T cell immune suppression resulting in immune evasion of tumors will be discussed. In the second part, emerging methods to harness the immune responses against tumors will be introduced.
Collapse
|
25
|
Krug C, Wiesinger M, Abken H, Schuler-Thurner B, Schuler G, Dörrie J, Schaft N. A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor. Cancer Immunol Immunother 2014; 63:999-1008. [PMID: 24938475 PMCID: PMC11029092 DOI: 10.1007/s00262-014-1572-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/08/2014] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptors (CARs), which combine an antibody-derived binding domain (single chain fragment variable) with T-cell-activating signaling domains, have become a promising tool in the adoptive cellular therapy of cancer. Retro- and lenti-viral transductions are currently the standard methods to equip T cells with a CAR; permanent CAR expression, however, harbors several risks like uncontrolled auto-reactivity. Modification of T cells by electroporation with CAR-encoding RNA to achieve transient expression likely circumvents these difficulties. We here present a GMP-compliant protocol to activate and expand T cells for clinical application. The protocol is optimized in particular to produce CAR-modified T cells in clinically sufficient numbers under full GMP-compliance from late-stage cancer patients. This protocol allows the generation of 6.7 × 10(8) CAR-expressing T cells from one patient leukapheresis. The CAR-engineered T cells produced pro-inflammatory cytokines after stimulation with antigen-bearing tumor cells and lysed tumor cells in an antigen-specific manner. This functional capacity was maintained after cryopreservation. Taken together, we provide a clinically applicable protocol to transiently engineer sufficient numbers of antigen-specific patient T cells for use in adoptive cell therapy of cancer.
Collapse
Affiliation(s)
- Christian Krug
- Department of Dermatology, Universtitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
- Chair of Genetics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Manuel Wiesinger
- Department of Dermatology, Universtitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, Universtitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, Universtitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universtitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universtitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| |
Collapse
|
26
|
Matsueda S, Graham DY. Immunotherapy in gastric cancer. World J Gastroenterol 2014; 20:1657-1666. [PMID: 24587645 PMCID: PMC3930966 DOI: 10.3748/wjg.v20.i7.1657] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/15/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the second most common of cancer-related deaths worldwide. In the majority of cases gastric cancer is advanced at diagnosis and although medical and surgical treatments have improved, survival rates remain poor. Cancer immunotherapy has emerged as a powerful and promising clinical approach for treatment of cancer and has shown major success in breast cancer, prostate cancer and melanoma. Here, we provide an overview of concepts of modern cancer immunotherapy including the theory, current approaches, remaining hurdles to be overcome, and the future prospect of cancer immunotherapy in the treatment of gastric cancer. Adaptive cell therapies, cancer vaccines, gene therapies, monoclonal antibody therapies have all been used with some initial successes in gastric cancer. However, to date the results in gastric cancer have been disappointing as current approaches often do not stimulate immunity efficiently allowing tumors continue to grow despite the presence of a measurable immune response. Here, we discuss the identification of targets for immunotherapy and the role of biomarkers in prospectively identifying appropriate subjects or immunotherapy. We also discuss the molecular mechanisms by which tumor cells escape host immunosurveillance and produce an immunosuppressive tumor microenvironment. We show how advances have provided tools for overcoming the mechanisms of immunosuppression including the use of monoclonal antibodies to block negative regulators normally expressed on the surface of T cells which limit activation and proliferation of cytotoxic T cells. Immunotherapy has greatly improved and is becoming an important factor in such fields as medical care and welfare for human being. Progress has been rapid ensuring that the future of immunotherapy for gastric cancer is bright.
Collapse
|
27
|
Tools and methods for identification and analysis of rare antigen-specific T lymphocytes. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 104:73-88. [PMID: 24214619 DOI: 10.1007/978-3-0348-0726-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T lymphocytes are essential as effector and memory cells for immune defense against infections and as regulatory T cells in the establishment and maintenance of immune tolerance. However, they are also involved in immune pathology being effectors in autoimmune and allergic diseases or suppressors of immunity in cancer, and they often cause problems in transplantation. Therefore, strategies are being developed that allow the in vivo amplification or isolation, in vitro expansion and genetic manipulation of beneficial T cells for adoptive cell therapies or for the tolerization, or elimination of pathogenic T cells. The major goal is to make use of the exquisite antigen specificity of T cells to develop targeted strategies and to develop techniques that allow for the identification and depletion or enrichment of very often rare antigen-specific naïve as well as effector and memory T cells. Such techniques are very useful for immune monitoring of T cell responses in diagnostics and vaccination and for the development of T cell-based assays for the replacement of animal testing in immunotoxicology to identify contact allergens and drugs that cause adverse reactions.
Collapse
|
28
|
Cheadle EJ, Gornall H, Baldan V, Hanson V, Hawkins RE, Gilham DE. CAR T cells: driving the road from the laboratory to the clinic. Immunol Rev 2013; 257:91-106. [DOI: 10.1111/imr.12126] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Eleanor J. Cheadle
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
- Targeted Therapy Group; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - Hannah Gornall
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - Vania Baldan
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - Vivien Hanson
- Transplantation Laboratory; Oxford University Hospitals NHS Foundation Trust; Oxford UK
| | - Robert E. Hawkins
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| | - David E. Gilham
- Clinical and Experimental Immunotherapy Group; Department of Medical Oncology; Institute of Cancer Sciences; The University of Manchester; Manchester Academic Healthcare Science Centre; Manchester UK
| |
Collapse
|
29
|
Han EQ, Li XL, Wang CR, Li TF, Han SY. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol 2013; 6:47. [PMID: 23829929 PMCID: PMC3706354 DOI: 10.1186/1756-8722-6-47] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 01/01/2023] Open
Abstract
Recent years have witnessed much progress in both basic research and clinical trials regarding cancer immunotherapy with chimeric antigen receptor (CAR)-engineered T cells. The unique structure of CAR endows T cell tumor specific cytotoxicity and resistance to immunosuppressive microenvironment in cancers, which helps patients to better tackle the issue of immunological tolerance. Adoptive immunotherapy (AIT) using this supernatural T cell have gained momentum after decades of intense debates because of the promising results obtained from preclinical models and clinical trials. However, it is very important for us to evaluate thoroughly the challenges/obstacles before widespread clinical application, which clearly warrants more studies to improve our understanding of the mechanism underlying AIT. In this review, we focus on the critical issues related to the clinical outcomes of CAR-based adoptive immunotherapy and discuss the rationales to refine this new cancer therapeutic modality.
Collapse
Affiliation(s)
- Ethan Q Han
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
30
|
Shen CJ, Yang YX, Han EQ, Cao N, Wang YF, Wang Y, Zhao YY, Zhao LM, Cui J, Gupta P, Wong AJ, Han SY. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. J Hematol Oncol 2013; 6:33. [PMID: 23656794 PMCID: PMC3658918 DOI: 10.1186/1756-8722-6-33] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/04/2013] [Indexed: 01/18/2023] Open
Abstract
Background Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells appears to be a promising immunotherapeutic strategy. CAR combines the specificity of antibody and cytotoxicity of cytotoxic T lymphocytes, enhancing T cells’ ability to specifically target antigens and to effectively kill cancer cells. Recent efforts have been made to integrate the costimulatory signals in the CAR to improve the antitumor efficacy. Epidermal growth factor receptor variant III (EGFRvIII) is an attractive therapeutic target as it frequently expresses in glioma and many other types of cancers. Our current study aimed to investigate the specific and efficient antitumor effect of T cells modified with CAR containing inducible costimulator (ICOS) signaling domain. Methods A second generation of EGFRvIII/CAR was generated and it contained the EGFRvIII single chain variable fragment, ICOS signaling domain and CD3ζ chain. Lentiviral EGFRvIII/CAR was prepared and human CD3+ T cells were infected by lentivirus encoding EGFRvIII/CAR. The expression of EGFRvIII/CAR on CD3+ T cells was confirmed by flow cytometry and Western blot. The functions of EGFRvIII/CAR+ T cells were evaluated using in vitro and in vivo methods including cytotoxicity assay, cytokine release assay and xenograft tumor mouse model. Results Chimeric EGFRvIIIscFv-ICOS-CD3ζ (EGFRvIII/CAR) was constructed and lentiviral EGFRvIII/CAR were made to titer of 106 TU/ml. The transduction efficiency of lentiviral EGFRvIII/CAR on T cells reached around 70% and expression of EGFRvIII/CAR protein was verified by immunoblotting as a band of about 57 kDa. Four hour 51Cr release assays demonstrated specific and efficient cytotoxicity of EGFRvIII/CAR+ T cells against EGFRvIII expressing U87 cells. A robust increase in the IFN-γ secretion was detected in the co-culture supernatant of the EGFRvIII/CAR+ T cells and the EGFRvIII expressing U87 cells. Intravenous and intratumor injection of EGFRvIII/CAR+ T cells inhibited the in vivo growth of the EGFRvIII expressing glioma cells. Conclusions Our study demonstrates that the EGFRvIII/CAR-modified T cells can destroy glioma cells efficiently in an EGFRvIII specific manner and release IFN-γ in an antigen dependent manner. The specific recognition and effective killing activity of the EGFRvIII-directed T cells with ICOS signaling domain lays a foundation for us to employ such approach in future cancer treatment.
Collapse
Affiliation(s)
- Chan-Juan Shen
- Translational Research Center, Zhengzhou University People's Hospital, #7 Weiwu Road, Zhengzhou, Henan 450003, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|