1
|
Jin J, Voth GA. Understanding dynamics in coarse-grained models. V. Extension of coarse-grained dynamics theory to non-hard sphere systems. J Chem Phys 2025; 162:124114. [PMID: 40145471 DOI: 10.1063/5.0254388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Coarse-grained (CG) modeling has gained significant attention in recent years due to its wide applicability in enhancing the spatiotemporal scales of molecular simulations. While CG simulations, often performed with Hamiltonian mechanics, faithfully recapitulate structural correlations at equilibrium, they lead to ambiguously accelerated dynamics. In Paper I [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034103 (2023)], we proposed the excess entropy scaling relationship to understand the CG dynamics. Then, in Paper II [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034104 (2023)], we developed a theory to map the CG system into a dynamically consistent hard sphere system to analytically derive an expression for fast CG dynamics. However, many chemical and physical systems do not exhibit hard sphere-like behavior, limiting the extensibility of the developed theory. In this paper, we aim to generalize the theory to the non-hard sphere system based on the Weeks-Chandler-Andersen perturbation theory. Since non-hard sphere-like CG interactions affect the excess entropy term as it deviates from the hard sphere description, we explicitly account for the extra entropy to correct the non-hard sphere nature of the system. This approach is demonstrated for two different types of interactions seen in liquids, and we further provide a generalized description for any CG models using the generalized Gaussian CG models using Gaussian basis sets. Altogether, this work allows for extending the range and applicability of the hard sphere CG dynamics theory to a myriad of CG liquids.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Noid WG, Szukalo RJ, Kidder KM, Lesniewski MC. Rigorous Progress in Coarse-Graining. Annu Rev Phys Chem 2024; 75:21-45. [PMID: 38941523 DOI: 10.1146/annurev-physchem-062123-010821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Low-resolution coarse-grained (CG) models provide remarkable computational and conceptual advantages for simulating soft materials. In principle, bottom-up CG models can reproduce all structural and thermodynamic properties of atomically detailed models that can be observed at the resolution of the CG model. This review discusses recent progress in developing theory and computational methods for achieving this promise. We first briefly review variational approaches for parameterizing interaction potentials and their relationship to machine learning methods. We then discuss recent approaches for simultaneously improving both the transferability and thermodynamic properties of bottom-up models by rigorously addressing the density and temperature dependence of these potentials. We also briefly discuss exciting progress in modeling high-resolution observables with low-resolution CG models. More generally, we highlight the essential role of the bottom-up framework not only for fundamentally understanding the limitations of prior CG models but also for developing robust computational methods that resolve these limitations in practice.
Collapse
Affiliation(s)
- W G Noid
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Ryan J Szukalo
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
- Current affiliation: Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Katherine M Kidder
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Maria C Lesniewski
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
3
|
Jin J, Reichman DR. Hierarchical Framework for Predicting Entropies in Bottom-Up Coarse-Grained Models. J Phys Chem B 2024; 128:3182-3199. [PMID: 38507575 DOI: 10.1021/acs.jpcb.3c07624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The thermodynamic entropy of coarse-grained (CG) models stands as one of the most important properties for quantifying the missing information during the CG process and for establishing transferable (or extendible) CG interactions. However, performing additional CG simulations on top of model construction often leads to significant additional computational overhead. In this work, we propose a simple hierarchical framework for predicting the thermodynamic entropies of various molecular CG systems. Our approach employs a decomposition of the CG interactions, enabling the estimation of the CG partition function and thermodynamic properties a priori. Starting from the ideal gas description, we leverage classical perturbation theory to systematically incorporate simple yet essential interactions, ranging from the hard sphere model to the generalized van der Waals model. Additionally, we propose an alternative approach based on multiparticle correlation functions, allowing for systematic improvements through higher-order correlations. Numerical applications to molecular liquids validate the high fidelity of our approach, and our computational protocols demonstrate that a reduced model with simple energetics can reasonably estimate the thermodynamic entropy of CG models without performing any CG simulations. Overall, our findings present a systematic framework for estimating not only the entropy but also other thermodynamic properties of CG models, relying solely on information from the reference system.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
4
|
Lesniewski MC, Noid WG. Insight into the Density-Dependence of Pair Potentials for Predictive Coarse-Grained Models. J Phys Chem B 2024; 128:1298-1316. [PMID: 38271676 DOI: 10.1021/acs.jpcb.3c06890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We investigate the temperature- and density-dependence of effective pair potentials for 1-site coarse-grained (CG) models of two industrial solvents, 1,4-dioxane and tetrahydrofuran. We observe that the calculated pair potentials are much more sensitive to density than to temperature. The generalized-Yvon-Born-Green framework reveals that this striking density-dependence reflects corresponding variations in the many-body correlations that determine the environment-mediated indirect contribution to the pair mean force. Moreover, we demonstrate, perhaps surprisingly, that this density-dependence is not important for accurately modeling the intermolecular structure. Accordingly, we adopt a density-independent interaction potential and transfer the density-dependence of the calculated pair potentials into a configuration-independent volume potential. Furthermore, we develop a single global potential that accurately models the intermolecular structure and pressure-volume equation of state across a very wide range of liquid state points. Consequently, this work provides fundamental insight into the density-dependence of effective pair potentials and also provides a significant step toward developing predictive CG models for efficiently modeling industrial solvents.
Collapse
Affiliation(s)
- Maria C Lesniewski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Kidder KM, Shell MS, Noid WG. Surveying the energy landscape of coarse-grained mappings. J Chem Phys 2024; 160:054105. [PMID: 38310476 DOI: 10.1063/5.0182524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/05/2024] Open
Abstract
Simulations of soft materials often adopt low-resolution coarse-grained (CG) models. However, the CG representation is not unique and its impact upon simulated properties is poorly understood. In this work, we investigate the space of CG representations for ubiquitin, which is a typical globular protein with 72 amino acids. We employ Monte Carlo methods to ergodically sample this space and to characterize its landscape. By adopting the Gaussian network model as an analytically tractable atomistic model for equilibrium fluctuations, we exactly assess the intrinsic quality of each CG representation without introducing any approximations in sampling configurations or in modeling interactions. We focus on two metrics, the spectral quality and the information content, that quantify the extent to which the CG representation preserves low-frequency, large-amplitude motions and configurational information, respectively. The spectral quality and information content are weakly correlated among high-resolution representations but become strongly anticorrelated among low-resolution representations. Representations with maximal spectral quality appear consistent with physical intuition, while low-resolution representations with maximal information content do not. Interestingly, quenching studies indicate that the energy landscape of mapping space is very smooth and highly connected. Moreover, our study suggests a critical resolution below which a "phase transition" qualitatively distinguishes good and bad representations.
Collapse
Affiliation(s)
- Katherine M Kidder
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Airas J, Ding X, Zhang B. Transferable Implicit Solvation via Contrastive Learning of Graph Neural Networks. ACS CENTRAL SCIENCE 2023; 9:2286-2297. [PMID: 38161379 PMCID: PMC10755853 DOI: 10.1021/acscentsci.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024]
Abstract
Implicit solvent models are essential for molecular dynamics simulations of biomolecules, striking a balance between computational efficiency and biological realism. Efforts are underway to develop accurate and transferable implicit solvent models and coarse-grained (CG) force fields in general, guided by a bottom-up approach that matches the CG energy function with the potential of mean force (PMF) defined by the finer system. However, practical challenges arise due to the lack of analytical expressions for the PMF and algorithmic limitations in parameterizing CG force fields. To address these challenges, a machine learning-based approach is proposed, utilizing graph neural networks (GNNs) to represent the solvation free energy and potential contrasting for parameter optimization. We demonstrate the effectiveness of the approach by deriving a transferable GNN implicit solvent model using 600,000 atomistic configurations of six proteins obtained from explicit solvent simulations. The GNN model provides solvation free energy estimations much more accurately than state-of-the-art implicit solvent models, reproducing configurational distributions of explicit solvent simulations. We also demonstrate the reasonable transferability of the GNN model outside of the training data. Our study offers valuable insights for deriving systematically improvable implicit solvent models and CG force fields from a bottom-up perspective.
Collapse
Affiliation(s)
- Justin Airas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United
States
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United
States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United
States
| |
Collapse
|
7
|
Jin J, Hwang J, Voth GA. Gaussian representation of coarse-grained interactions of liquids: Theory, parametrization, and transferability. J Chem Phys 2023; 159:184105. [PMID: 37942867 DOI: 10.1063/5.0160567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system's characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Jisung Hwang
- Department of Statistics, The University of Chicago, 5747 S. Ellis Ave., Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
Airas J, Ding X, Zhang B. Transferable Coarse Graining via Contrastive Learning of Graph Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556923. [PMID: 37745447 PMCID: PMC10515757 DOI: 10.1101/2023.09.08.556923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Coarse-grained (CG) force fields are essential for molecular dynamics simulations of biomolecules, striking a balance between computational efficiency and biological realism. These simulations employ simplified models grouping atoms into interaction sites, enabling the study of complex biomolecular systems over biologically relevant timescales. Efforts are underway to develop accurate and transferable CG force fields, guided by a bottom-up approach that matches the CG energy function with the potential of mean force (PMF) defined by the finer system. However, practical challenges arise due to many-body effects, lack of analytical expressions for the PMF, and limitations in parameterizing CG force fields. To address these challenges, a machine learning-based approach is proposed, utilizing graph neural networks (GNNs) to represent CG force fields and potential contrasting for parameterization from atomistic simulation data. We demonstrate the effectiveness of the approach by deriving a transferable GNN implicit solvent model using 600,000 atomistic configurations of six proteins obtained from explicit solvent simulations. The GNN model provides solvation free energy estimations much more accurately than state-of-the-art implicit solvent models, reproducing configurational distributions of explicit solvent simulations. We also demonstrate the reasonable transferability of the GNN model outside the training data. Our study offers valuable insights for building accurate coarse-grained models bottom-up.
Collapse
Affiliation(s)
- Justin Airas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Jin J, Voth GA. Statistical Mechanical Design Principles for Coarse-Grained Interactions across Different Conformational Free Energy Surfaces. J Phys Chem Lett 2023; 14:1354-1362. [PMID: 36728761 PMCID: PMC9940719 DOI: 10.1021/acs.jpclett.2c03844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Systematic bottom-up coarse-graining (CG) of molecular systems provides a means to explore different coupled length and time scales while treating the molecular-scale physics at a reduced level. However, the configuration dependence of CG interactions often results in CG models with limited applicability for exploring the parametrized configurations. We propose a statistical mechanical theory to design CG interactions across different configurations and conditions. In order to span wide ranges of conformational space, distinct classical CG free energy surfaces for characteristic configurations are identified using molecular collective variables. The coupling interaction between different CG free energy surfaces can then be systematically determined by analogy to quantum mechanical approaches describing coupled states. The present theory can accurately capture the underlying many-body potentials of mean force in the CG variables for various order parameters applied to liquids, interfaces, and in principle proteins, uncovering the complex nature underlying the coupling interaction and imparting a new protocol for the design of predictive multiscale models.
Collapse
Affiliation(s)
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023; 2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Artificial Neural Networks (NN) are already heavily involved in methods and applications for frequent tasks in the field of computational chemistry such as representation of potential energy surfaces (PES) and spectroscopic predictions. This perspective provides an overview of the foundations of neural network-based full-dimensional potential energy surfaces, their architectures, underlying concepts, their representation and applications to chemical systems. Methods for data generation and training procedures for PES construction are discussed and means for error assessment and refinement through transfer learning are presented. A selection of recent results illustrates the latest improvements regarding accuracy of PES representations and system size limitations in dynamics simulations, but also NN application enabling direct prediction of physical results without dynamics simulations. The aim is to provide an overview for the current state-of-the-art NN approaches in computational chemistry and also to point out the current challenges in enhancing reliability and applicability of NN methods on a larger scale.
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| |
Collapse
|
11
|
Jin J, Schweizer KS, Voth GA. Understanding dynamics in coarse-grained models. II. Coarse-grained diffusion modeled using hard sphere theory. J Chem Phys 2023; 158:034104. [PMID: 36681632 DOI: 10.1063/5.0116300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The first paper of this series [J. Chem. Phys. 158, 034103 (2023)] demonstrated that excess entropy scaling holds for both fine-grained and corresponding coarse-grained (CG) systems. Despite its universality, a more exact determination of the scaling relationship was not possible due to the semi-empirical nature. In this second paper, an analytical excess entropy scaling relation is derived for bottom-up CG systems. At the single-site CG resolution, effective hard sphere systems are constructed that yield near-identical dynamical properties as the target CG systems by taking advantage of how hard sphere dynamics and excess entropy can be analytically expressed in terms of the liquid packing fraction. Inspired by classical equilibrium perturbation theories and recent advances in constructing hard sphere models for predicting activated dynamics of supercooled liquids, we propose a new approach for understanding the diffusion of molecular liquids in the normal regime using hard sphere reference fluids. The proposed "fluctuation matching" is designed to have the same amplitude of long wavelength density fluctuations (dimensionless compressibility) as the CG system. Utilizing the Enskog theory to derive an expression for hard sphere diffusion coefficients, a bridge between the CG dynamics and excess entropy is then established. The CG diffusion coefficient can be roughly estimated using various equations of the state, and an accurate prediction of accelerated CG dynamics at different temperatures is also possible in advance of running any CG simulation. By introducing another layer of coarsening, these findings provide a more rigorous method to assess excess entropy scaling and understand the accelerated CG dynamics of molecular fluids.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kenneth S Schweizer
- Department of Material Science, Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
12
|
Jin J, Schweizer KS, Voth GA. Understanding dynamics in coarse-grained models. I. Universal excess entropy scaling relationship. J Chem Phys 2023; 158:034103. [PMID: 36681649 DOI: 10.1063/5.0116299] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coarse-grained (CG) models facilitate an efficient exploration of complex systems by reducing the unnecessary degrees of freedom of the fine-grained (FG) system while recapitulating major structural correlations. Unlike structural properties, assessing dynamic properties in CG modeling is often unfeasible due to the accelerated dynamics of the CG models, which allows for more efficient structural sampling. Therefore, the ultimate goal of the present series of articles is to establish a better correspondence between the FG and CG dynamics. To assess and compare dynamical properties in the FG and the corresponding CG models, we utilize the excess entropy scaling relationship. For Paper I of this series, we provide evidence that the FG and the corresponding CG counterpart follow the same universal scaling relationship. By carefully reviewing and examining the literature, we develop a new theory to calculate excess entropies for the FG and CG systems while accounting for entropy representability. We demonstrate that the excess entropy scaling idea can be readily applied to liquid water and methanol systems at both the FG and CG resolutions. For both liquids, we reveal that the scaling exponents remain unchanged from the coarse-graining process, indicating that the scaling behavior is universal for the same underlying molecular systems. Combining this finding with the concept of mapping entropy in CG models, we show that the missing entropy plays an important role in accelerating the CG dynamics.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kenneth S Schweizer
- Department of Material Science, Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Abstract
Coarse-grained models have proven helpful for simulating complex systems over long time scales to provide molecular insights into various processes. Methodologies for systematic parametrization of the underlying energy function or force field that describes the interactions among different components of the system are of great interest for ensuring simulation accuracy. We present a new method, potential contrasting, to enable efficient learning of force fields that can accurately reproduce the conformational distribution produced with all-atom simulations. Potential contrasting generalizes the noise contrastive estimation method with umbrella sampling to better learn the complex energy landscape of molecular systems. When applied to the Trp-cage protein, we found that the technique produces force fields that thoroughly capture the thermodynamics of the folding process despite the use of only α-carbons in the coarse-grained model. We further showed that potential contrasting could be applied over large data sets that combine the conformational ensembles of many proteins to improve force field transferability. We anticipate potential contrasting as a powerful tool for building general-purpose coarse-grained force fields.
Collapse
Affiliation(s)
- Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
DeLyser MR, Noid WG. Coarse-grained models for local density gradients. J Chem Phys 2022; 156:034106. [DOI: 10.1063/5.0075291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Michael R. DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
15
|
Sherck N, Shen K, Nguyen M, Yoo B, Köhler S, Speros JC, Delaney KT, Shell MS, Fredrickson GH. Molecularly Informed Field Theories from Bottom-up Coarse-Graining. ACS Macro Lett 2021; 10:576-583. [PMID: 35570772 DOI: 10.1021/acsmacrolett.1c00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer formulations possessing mesostructures or phase coexistence are challenging to simulate using atomistic particle-explicit approaches due to the disparate time and length scales, while the predictive capability of field-based simulations is hampered by the need to specify interactions at a coarser scale (e.g., χ-parameters). To overcome the weaknesses of both, we introduce a bottom-up coarse-graining methodology that leverages all-atom molecular dynamics to molecularly inform coarser field-theoretic models. Specifically, we use relative-entropy coarse-graining to parametrize particle models that are directly and analytically transformable into statistical field theories. We demonstrate the predictive capability of this approach by reproducing experimental aqueous poly(ethylene oxide) (PEO) cloud-point curves with no parameters fit to experimental data. This synergistic approach to multiscale polymer simulations opens the door to de novo exploration of phase behavior across a wide variety of polymer solutions and melt formulations.
Collapse
Affiliation(s)
- Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, United States
| | | | - Joshua C. Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
16
|
Errica F, Giulini M, Bacciu D, Menichetti R, Micheli A, Potestio R. A Deep Graph Network-Enhanced Sampling Approach to Efficiently Explore the Space of Reduced Representations of Proteins. Front Mol Biosci 2021; 8:637396. [PMID: 33996896 PMCID: PMC8116519 DOI: 10.3389/fmolb.2021.637396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The limits of molecular dynamics (MD) simulations of macromolecules are steadily pushed forward by the relentless development of computer architectures and algorithms. The consequent explosion in the number and extent of MD trajectories induces the need for automated methods to rationalize the raw data and make quantitative sense of them. Recently, an algorithmic approach was introduced by some of us to identify the subset of a protein's atoms, or mapping, that enables the most informative description of the system. This method relies on the computation, for a given reduced representation, of the associated mapping entropy, that is, a measure of the information loss due to such simplification; albeit relatively straightforward, this calculation can be time-consuming. Here, we describe the implementation of a deep learning approach aimed at accelerating the calculation of the mapping entropy. We rely on Deep Graph Networks, which provide extreme flexibility in handling structured input data and whose predictions prove to be accurate and-remarkably efficient. The trained network produces a speedup factor as large as 105 with respect to the algorithmic computation of the mapping entropy, enabling the reconstruction of its landscape by means of the Wang-Landau sampling scheme. Applications of this method reach much further than this, as the proposed pipeline is easily transferable to the computation of arbitrary properties of a molecular structure.
Collapse
Affiliation(s)
- Federico Errica
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Marco Giulini
- Physics Department, University of Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Davide Bacciu
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Alessio Micheli
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
17
|
Szukalo RJ, Noid WG. Investigating the energetic and entropic components of effective potentials across a glass transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:154004. [PMID: 33498016 DOI: 10.1088/1361-648x/abdff8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
By eliminating unnecessary details, coarse-grained (CG) models provide the necessary efficiency for simulating scales that are inaccessible to higher resolution models. However, because they average over atomic details, the effective potentials governing CG degrees of freedom necessarily incorporate significant entropic contributions, which limit their transferability and complicate the treatment of thermodynamic properties. This work employs a dual-potential approach to consider the energetic and entropic contributions to effective interaction potentials for CG models. Specifically, we consider one- and three-site CG models for ortho-terphenyl (OTP) both above and below its glass transition. We employ the multiscale coarse-graining (MS-CG) variational principle to determine interaction potentials that accurately reproduce the structural properties of an all-atom (AA) model for OTP at each state point. We employ an energy-matching variational principle to determine an energy operator that accurately reproduces the intra- and inter-molecular energy of the AA model. While the MS-CG pair potentials are almost purely repulsive, the corresponding pair energy functions feature a pronounced minima that corresponds to contacting benzene rings. These energetic functions then determine an estimate for the entropic component of the MS-CG interaction potentials. These entropic functions accurately predict the MS-CG pair potentials across a wide range of liquid state points at constant density. Moreover, the entropic functions also predict pair potentials that quite accurately model the AA pair structure below the glass transition. Thus, the dual-potential approach appears a promising approach for modeling AA energetics, as well as for predicting the temperature-dependence of CG effective potentials.
Collapse
Affiliation(s)
- Ryan J Szukalo
- Department of Chemistry, Penn State University, University Park, PA 16802 United States of America
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, PA 16802 United States of America
| |
Collapse
|
18
|
Effectiveness of coarse graining degree and speedup on the dynamic properties of homopolymer. J Mol Model 2021; 27:55. [PMID: 33511476 DOI: 10.1007/s00894-020-04661-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Evaluation of effective coarse graining (CG) degree and reasonable speedup relative to all-atomistic (AA) model was conducted to provide a basis for building appropriate larger-scale model. The reproducibility of atomistic conformation and temperature transferability both act as the analysis criteria to resolve the maximum acceptable CG degree. Taking short- and long time spans into account simultaneously in the estimation of computational speedup, a dynamic scaling factor is accessible in fitting mean squared displacement ratio of CG to AA as an exponential function. Computing loss in parallel running is an indispensable component in acceleration, which was also added in the evaluation. Subsequently, a quantified prediction of CG speedup arises as a multiplication of dynamic scaling factor, computing loss, time step, and the square of reduction in the number of degrees of freedom. Polyethylene oxide was adopted as a reference system to execute the direct Boltzmann inversion and iterative Boltzmann inversion. Bonded and non-bonded potentials were calculated in CG models with 1~4 monomers per bead. The effective CG degree was determined as two at the most with a speedup of four orders magnitude over AA in this study. Determination of effectiveness CG degree and the corresponding speedup prediction provide available tools in larger spatiotemporal-scale calculations.
Collapse
|
19
|
Jin J, Pak AJ, Han Y, Voth GA. A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). II. Temperature transferability and structural properties at low temperature. J Chem Phys 2021; 154:044105. [PMID: 33514078 PMCID: PMC7826166 DOI: 10.1063/5.0026652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 11/14/2022] Open
Abstract
A number of studies have constructed coarse-grained (CG) models of water to understand its anomalous properties. Most of these properties emerge at low temperatures, and an accurate CG model needs to be applicable to these low-temperature ranges. However, direct use of CG models parameterized from other temperatures, e.g., room temperature, encounters a problem known as transferability, as the CG potential essentially follows the form of the many-body CG free energy function. Therefore, temperature-dependent changes to CG interactions must be accounted for. The collective behavior of water at low temperature is generally a many-body process, which often motivates the use of expensive many-body terms in the CG interactions. To surmount the aforementioned problems, we apply the Bottom-Up Many-Body Projected Water (BUMPer) CG model constructed from Paper I to study the low-temperature behavior of water. We report for the first time that the embedded three-body interaction enables BUMPer, despite its pairwise form, to capture the growth of ice at the ice/water interface with corroborating many-body correlations during the crystal growth. Furthermore, we propose temperature transferable BUMPer models that are indirectly constructed from the free energy decomposition scheme. Changes in CG interactions and corresponding structures are faithfully recapitulated by this framework. We further extend BUMPer to examine its ability to predict the structure, density, and diffusion anomalies by employing an alternative analysis based on structural correlations and pairwise potential forms to predict such anomalies. The presented analysis highlights the existence of these anomalies in the low-temperature regime and overcomes potential transferability problems.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander J. Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yining Han
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
20
|
DeLyser M, Noid WG. Bottom-up coarse-grained models for external fields and interfaces. J Chem Phys 2020; 153:224103. [PMID: 33317310 DOI: 10.1063/5.0030103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bottom-up coarse-grained (CG) models accurately describe the structure of homogeneous systems but sometimes provide limited transferability and a poor description of thermodynamic properties. Consequently, inhomogeneous systems present a severe challenge for bottom-up models. In this work, we examine bottom-up CG models for interfaces and inhomogeneous systems. We first analyze the effect of external fields upon the many-body potential of mean force. We also demonstrate that the multiscale CG (MS-CG) variational principle for modeling the external field corresponds to a generalization of the first Yvon-Born-Green equation. This provides an important connection with liquid state theory, as well as physical insight into the structure of interfaces and the resulting MS-CG models. We then develop and assess MS-CG models for a film of liquid methanol that is adsorbed on an attractive wall and in coexistence with its vapor phase. While pair-additive potentials provide unsatisfactory accuracy and transferability, the inclusion of local-density (LD) potentials dramatically improves the accuracy and transferability of the MS-CG model. The MS-CG model with LD potentials quite accurately describes the wall-liquid interface, the bulk liquid density, and the liquid-vapor interface while simultaneously providing a much improved description of the vapor phase. This model also provides an excellent description of the pair structure and pressure-density equation of state for the bulk liquid. Thus, LD potentials hold considerable promise for transferable bottom-up models that accurately describe the structure and thermodynamic properties of both bulk and interfacial systems.
Collapse
Affiliation(s)
- Michael DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
21
|
Giulini M, Menichetti R, Shell MS, Potestio R. An Information-Theory-Based Approach for Optimal Model Reduction of Biomolecules. J Chem Theory Comput 2020; 16:6795-6813. [PMID: 33108737 PMCID: PMC7659038 DOI: 10.1021/acs.jctc.0c00676] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/06/2023]
Abstract
In theoretical modeling of a physical system, a crucial step consists of the identification of those degrees of freedom that enable a synthetic yet informative representation of it. While in some cases this selection can be carried out on the basis of intuition and experience, straightforward discrimination of the important features from the negligible ones is difficult for many complex systems, most notably heteropolymers and large biomolecules. We here present a thermodynamics-based theoretical framework to gauge the effectiveness of a given simplified representation by measuring its information content. We employ this method to identify those reduced descriptions of proteins, in terms of a subset of their atoms, that retain the largest amount of information from the original model; we show that these highly informative representations share common features that are intrinsically related to the biological properties of the proteins under examination, thereby establishing a bridge between protein structure, energetics, and function.
Collapse
Affiliation(s)
- Marco Giulini
- Physics
Department, University of Trento, via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento
Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| | - Roberto Menichetti
- Physics
Department, University of Trento, via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento
Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| | - M. Scott Shell
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Raffaello Potestio
- Physics
Department, University of Trento, via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento
Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| |
Collapse
|
22
|
Jin J, Yu A, Voth GA. Temperature and Phase Transferable Bottom-up Coarse-Grained Models. J Chem Theory Comput 2020; 16:6823-6842. [PMID: 32975948 DOI: 10.1021/acs.jctc.0c00832] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the high fidelity of bottom-up coarse-grained (CG) approaches to recapitulate the structural correlations in atomistic simulations, the general use of bottom-up CG methods is limited because of the nontransferable nature of these CG models under different thermodynamic conditions. Because bottom-up CG potentials usually correspond to configuration-dependent free energies of the system, recent studies have focused on adjusting enthalpic or entropic contributions to account for issues with transferability. However, these approaches can require a manual adjustment of the CG interaction a priori and are usually limited to constant volume ensembles. To overcome these limitations, we construct temperature and phase transferable CG models under constant pressure by developing the ultra-coarse-graining (UCG) methodology in the mean-field limit. In the mean-field ansatz, an embedded semi-global order parameter recapitulates global changes to the system by automatically adjusting the effective CG interactions, thus bridging free energy decompositions with UCG theory. The method presented is designed to faithfully capture structural correlations under different thermodynamic conditions, using a single UCG model. Specifically, we test the applicability of the developed theory in three distinct cases: (1) different temperatures at constant pressure in liquids, (2) different temperatures across thermodynamic phases, and (3) liquid/vapor interfaces. We demonstrate that the systematic construction of both temperature and phase transferable bottom-up CG models is possible using this generalized UCG theory. Based on our findings, this approach significantly extends the transferability and applicability of the bottom-up CG theory and method.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Alvin Yu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
Wörner SJ, Bereau T, Kremer K, Rudzinski JF. Direct route to reproducing pair distribution functions with coarse-grained models via transformed atomistic cross correlations. J Chem Phys 2020; 151:244110. [PMID: 31893905 DOI: 10.1063/1.5131105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coarse-grained (CG) models are often parameterized to reproduce one-dimensional structural correlation functions of an atomically detailed model along the degrees of freedom governing each interaction potential. While cross correlations between these degrees of freedom inform the optimal set of interaction parameters, the correlations generated from the higher-resolution simulations are often too complex to act as an accurate proxy for the CG correlations. Instead, the most popular methods determine the interaction parameters iteratively while assuming that individual interactions are uncorrelated. While these iterative methods have been validated for a wide range of systems, they also have disadvantages when parameterizing models for multicomponent systems or when refining previously established models to better reproduce particular structural features. In this work, we propose two distinct approaches for the direct (i.e., noniterative) parameterization of a CG model by adjusting the high-resolution cross correlations of an atomistic model in order to more accurately reflect correlations that will be generated by the resulting CG model. The derived models more accurately describe the low-order structural features of the underlying AA model while necessarily generating inherently distinct cross correlations compared with the atomically detailed reference model. We demonstrate the proposed methods for a one-site-per-molecule representation of liquid water, where pairwise interactions are incapable of reproducing the true tetrahedral solvation structure. We then investigate the precise role that distinct cross-correlation features play in determining the correct pair correlation functions, evaluating the importance of the placement of correlation features as well as the balance between features appearing in different solvation shells.
Collapse
Affiliation(s)
- Svenja J Wörner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|
24
|
Abstract
Low resolution coarse-grained (CG) models are widely adopted for investigating phenomena that cannot be effectively simulated with all-atom (AA) models. Since the development of the many-body dissipative particle dynamics method, CG models have increasingly supplemented conventional pair potentials with one-body potentials of the local density (LD) around each site. These LD potentials appear to significantly extend the transferability of CG models, while also enabling more accurate descriptions of thermodynamic properties, interfacial phenomena, and many-body correlations. In this work, we systematically examine the properties of LD potentials. We first derive and numerically demonstrate a nontrivial transformation of pair and LD potentials that leaves the total forces and equilibrium distribution invariant. Consequently, the pair and LD potentials determined via bottom-up methods are not unique. We then investigate the sensitivity of CG models for glycerol to the weighting function employed for defining the local density. We employ the multiscale coarse-graining (MS-CG) method to simultaneously parameterize both pair and LD potentials. When employing a short-ranged Lucy function that defines the local density from the first solvation shell, the MS-CG model accurately reproduces the pair structure, pressure-density equation of state, and liquid-vapor interfacial profile of the AA model. The accuracy of the model generally decreases as the range of the Lucy function increases further. The MS-CG model provides similar accuracy when a smoothed Heaviside function is employed to define the local density from the first solvation shell. However, the model performs less well when this function acts on either longer or shorter length scales.
Collapse
Affiliation(s)
- Michael R DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
25
|
Lebold KM, Noid WG. Dual-potential approach for coarse-grained implicit solvent models with accurate, internally consistent energetics and predictive transferability. J Chem Phys 2019; 151:164113. [PMID: 31675902 DOI: 10.1063/1.5125246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The dual-potential approach promises coarse-grained (CG) models that accurately reproduce both structural and energetic properties, while simultaneously providing predictive estimates for the temperature-dependence of the effective CG potentials. In this work, we examine the dual-potential approach for implicit solvent CG models that reflect large entropic effects from the eliminated solvent. Specifically, we construct implicit solvent models at various resolutions, R, by retaining a fraction 0.10 ≤ R ≤ 0.95 of the molecules from a simple fluid of Lennard-Jones spheres. We consider the dual-potential approach in both the constant volume and constant pressure ensembles across a relatively wide range of temperatures. We approximate the many-body potential of mean force for the remaining solutes with pair and volume potentials, which we determine via multiscale coarse-graining and self-consistent pressure-matching, respectively. Interestingly, with increasing temperature, the pair potentials appear increasingly attractive, while the volume potentials become increasingly repulsive. The dual-potential approach not only reproduces the atomic energetics but also quite accurately predicts this temperature-dependence. We also derive an exact relationship between the thermodynamic specific heat of an atomic model and the energetic fluctuations that are observable at the CG resolution. With this generalized fluctuation relationship, the approximate CG models quite accurately reproduce the thermodynamic specific heat of the underlying atomic model.
Collapse
Affiliation(s)
- Kathryn M Lebold
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
26
|
Ryazantsev MN, Nikolaev DM, Struts AV, Brown MF. Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins. J Membr Biol 2019; 252:425-449. [PMID: 31570961 DOI: 10.1007/s00232-019-00095-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Computational chemistry provides versatile methods for studying the properties and functioning of biological systems at different levels of precision and at different time scales. The aim of this article is to review the computational methodologies that are applicable to rhodopsins as archetypes for photoactive membrane proteins that are of great importance both in nature and in modern technologies. For each class of computational techniques, from methods that use quantum mechanics for simulating rhodopsin photophysics to less-accurate coarse-grained methodologies used for long-scale protein dynamics, we consider possible applications and the main directions for improvement.
Collapse
Affiliation(s)
- Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg, Russia, 198504
| | - Dmitrii M Nikolaev
- Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, Saint Petersburg, Russia, 194021
| | - Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Laboratory of Biomolecular NMR, Saint Petersburg State University, Saint Petersburg, Russia, 199034
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
27
|
Oprzeska-Zingrebe EA, Smiatek J. Some Notes on the Thermodynamic Accuracy of Coarse-Grained Models. Front Mol Biosci 2019; 6:87. [PMID: 31552269 PMCID: PMC6746972 DOI: 10.3389/fmolb.2019.00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/27/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ewa Anna Oprzeska-Zingrebe
- Institute for Computational Physics, Theoretical Chemical Physics, University of Stuttgart, Stuttgart, Germany
| | - Jens Smiatek
- Institute for Computational Physics, Theoretical Chemical Physics, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
28
|
Jin J, Pak AJ, Voth GA. Understanding Missing Entropy in Coarse-Grained Systems: Addressing Issues of Representability and Transferability. J Phys Chem Lett 2019; 10:4549-4557. [PMID: 31319036 PMCID: PMC6782054 DOI: 10.1021/acs.jpclett.9b01228] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Coarse-grained (CG) models facilitate efficient simulation of complex systems by integrating out the atomic, or fine-grained (FG), degrees of freedom. Systematically derived CG models from FG simulations often attempt to approximate the CG potential of mean force (PMF), an inherently multidimensional and many-body quantity, using additive pairwise contributions. However, they currently lack fundamental principles that enable their extensible use across different thermodynamic state points, i.e., transferability. In this work, we investigate the explicit energy-entropy decomposition of the CG PMF as a means to construct transferable CG models. In particular, despite its high-dimensional nature, we find for liquid systems that the entropic component to the CG PMF can similarly be represented using additive pairwise contributions, which we show is highly coupled to the CG configurational entropy. This approach formally connects the missing entropy that is lost due to the CG representation, i.e., translational, rotational, and vibrational modes associated with the missing degrees of freedom, to the CG entropy. By design, the present framework imparts transferable CG interactions across different temperatures due to the explicit definition of an additive entropic contribution. Furthermore, we demonstrate that transferability across composition state points, such as between bulk liquids and their mixtures, is also achieved by designing combining rules to approximate cross-interactions from bulk CG PMFs. Using the predicted CG model for liquid mixtures, structural correlations of the fitted CG model were found to corroborate a high-fidelity combining rule. Our findings elucidate the physical nature and compact representation of CG entropy and suggest a new approach for overcoming the transferability problem. We expect that this approach will further extend the current view of CG modeling into predictive multiscale modeling.
Collapse
|
29
|
Lebold KM, Noid WG. Dual approach for effective potentials that accurately model structure and energetics. J Chem Phys 2019; 150:234107. [PMID: 31228924 DOI: 10.1063/1.5094330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Because they eliminate unnecessary degrees of freedom, coarse-grained (CG) models enable studies of phenomena that are intractable with more detailed models. For the same reason, the effective potentials that govern CG degrees of freedom incorporate entropic contributions from the eliminated degrees of freedom. Consequently, these effective potentials demonstrate limited transferability and provide a poor estimate of atomic energetics. Here, we propose a simple dual-potential approach that combines "structure-based" and "energy-based" variational principles to determine effective potentials that model free energies and potential energies, respectively, as a function of the CG configuration. We demonstrate this approach for 1-site CG models of water and methanol. We accurately sample configuration space by performing simulations with the structure-based potential. We accurately estimate average atomic energies by postprocessing the sampled configurations with the energy-based potential. Finally, the difference between the two potentials predicts a qualitatively accurate estimate for the temperature dependence of the structure-based potential.
Collapse
Affiliation(s)
- Kathryn M Lebold
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
30
|
Riccardi E, Pantano S, Potestio R. Envisioning data sharing for the biocomputing community. Interface Focus 2019; 9:20190005. [PMID: 31065349 DOI: 10.1098/rsfs.2019.0005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022] Open
Abstract
The scientific community is facing a revolution in several aspects of its modus operandi, ranging from the way science is done-data production, collection, analysis-to the way it is communicated and made available to the public, be that an academic audience or a general one. These changes have been largely determined by two key players: the big data revolution or, less triumphantly, the impressive increase in computational power and data storage capacity; and the accelerating paradigm switch in science publication, with people and policies increasingly pushing towards open access frameworks. All these factors prompt the undertaking of initiatives oriented to maximize the effectiveness of the computational efforts carried out worldwide. Taking the moves from these observations, we here propose a coordinated initiative, focusing on the computational biophysics and biochemistry community but general and flexible in its defining characteristics, which aims at addressing the growing necessity of collecting, rationalizing, sharing and exploiting the data produced in this scientific environment.
Collapse
Affiliation(s)
- Enrico Riccardi
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Raffaello Potestio
- Department of Physics, University of Trento, via Sommarive 14, 38123 Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, 38123 Trento, Italy
| |
Collapse
|
31
|
Giulini M, Potestio R. A deep learning approach to the structural analysis of proteins. Interface Focus 2019; 9:20190003. [PMID: 31065348 PMCID: PMC6501347 DOI: 10.1098/rsfs.2019.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Deep learning (DL) algorithms hold great promise for applications in the field of computational biophysics. In fact, the vast amount of available molecular structures, as well as their notable complexity, constitutes an ideal context in which DL-based approaches can be profitably employed. To express the full potential of these techniques, though, it is a prerequisite to express the information contained in a molecule’s atomic positions and distances in a set of input quantities that the network can process. Many of the molecular descriptors devised so far are effective and manageable for relatively small structures, but become complex and cumbersome for larger ones. Furthermore, most of them are defined locally, a feature that could represent a limit for those applications where global properties are of interest. Here, we build a DL architecture capable of predicting non-trivial and intrinsically global quantities, that is, the eigenvalues of a protein’s lowest-energy fluctuation modes. This application represents a first, relatively simple test bed for the development of a neural network approach to the quantitative analysis of protein structures, and demonstrates unexpected use in the identification of mechanically relevant regions of the molecule.
Collapse
Affiliation(s)
- Marco Giulini
- Physics Department, University of Trento, via Sommarive 14, 38123, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, 38123 Trento, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, via Sommarive 14, 38123, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, 38123 Trento, Italy
| |
Collapse
|
32
|
Lebold KM, Noid WG. Systematic study of temperature and density variations in effective potentials for coarse-grained models of molecular liquids. J Chem Phys 2019; 150:014104. [DOI: 10.1063/1.5050509] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Kathryn M. Lebold
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
33
|
Diggins P, Liu C, Deserno M, Potestio R. Optimal Coarse-Grained Site Selection in Elastic Network Models of Biomolecules. J Chem Theory Comput 2018; 15:648-664. [PMID: 30514085 PMCID: PMC6391041 DOI: 10.1021/acs.jctc.8b00654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elastic network models, simple structure-based representations of biomolecules where atoms interact via short-range harmonic potentials, provide great insight into a molecule's internal dynamics and mechanical properties at extremely low computational cost. Their efficiency and effectiveness have made them a pivotal instrument in the computer-aided study of proteins and, since a few years, also of nucleic acids. In general, the coarse-grained sites, i.e. those effective force centers onto which the all-atom structure is mapped, are constructed based on intuitive rules: a typical choice for proteins is to retain only the C α atoms of each amino acid. However, a mapping strategy relying only on the atom type and not the local properties of its embedding can be suboptimal compared to a more careful selection. Here, we present a strategy in which the subset of atoms, each of which is mapped onto a unique coarse-grained site of the model, is selected in a stochastic search aimed at optimizing a cost function. The latter is taken to be a simple measure of the consistency between the harmonic approximation of an elastic network model and the harmonic model obtained through exact integration of the discarded degrees of freedom. The method is applied to two representatives of structurally very different types of biomolecules: the protein adenylate kinase and the RNA molecule adenine riboswitch. Our analysis quantifies the substantial impact that an algorithm-driven selection of coarse-grained sites can have on a model's properties.
Collapse
Affiliation(s)
- Patrick Diggins
- Department of Physics , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Changjiang Liu
- Department of Physics , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Markus Deserno
- Department of Physics , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Raffaello Potestio
- Physics Department , University of Trento , via Sommarive, 14 I-38123 Trento , Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications , I-38123 Trento , Italy
| |
Collapse
|
34
|
Ferguson AL. Machine learning and data science in soft materials engineering. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:043002. [PMID: 29111979 DOI: 10.1088/1361-648x/aa98bd] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
Collapse
Affiliation(s)
- Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, United States of America. Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, United States of America. Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, United States of America. Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
35
|
Dunn NJH, Lebold KM, DeLyser MR, Rudzinski JF, Noid W. BOCS: Bottom-up Open-source Coarse-graining Software. J Phys Chem B 2017; 122:3363-3377. [DOI: 10.1021/acs.jpcb.7b09993] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicholas J. H. Dunn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kathryn M. Lebold
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael R. DeLyser
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph F. Rudzinski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - W.G. Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
36
|
D'Adamo G, Pelissetto A. Polymer models with optimal good-solvent behavior. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:435104. [PMID: 28737167 DOI: 10.1088/1361-648x/aa8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We consider three different continuum polymer models, which all depend on a tunable parameter r that determines the strength of the excluded-volume interactions. In the first model, chains are obtained by concatenating hard spherocylinders of height b and diameter rb (we call them thick self-avoiding chains). The other two models are generalizations of the tangent hard-sphere and of the Kremer-Grest models. We show that for a specific value [Formula: see text], all models show optimal behavior: asymptotic long-chain behavior is observed for relatively short chains. For [Formula: see text], instead, the behavior can be parametrized by using the two-parameter model, which also describes the thermal crossover close to the θ point. The bonds of the thick self-avoiding chains cannot cross each other, and therefore the model is suited for the investigation of topological properties and for dynamical studies. Such a model also provides a coarse-grained description of double-stranded DNA, so that we can use our results to discuss under which conditions DNA can be considered as a model good-solvent polymer.
Collapse
|
37
|
Rudzinski JF, Lu K, Milner ST, Maranas JK, Noid WG. Extended Ensemble Approach to Transferable Potentials for Low-Resolution Coarse-Grained Models of Ionomers. J Chem Theory Comput 2017; 13:2185-2201. [DOI: 10.1021/acs.jctc.6b01160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph F. Rudzinski
- Department
of Chemistry and ‡Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Keran Lu
- Department
of Chemistry and ‡Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott T. Milner
- Department
of Chemistry and ‡Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Janna K. Maranas
- Department
of Chemistry and ‡Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - William G. Noid
- Department
of Chemistry and ‡Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Abstract
More than 20 coarse-grained (CG) DNA models have been developed for simulating the behavior of this molecule under various conditions, including those required for nanotechnology. However, none of these models reproduces the DNA polymorphism associated with conformational changes in the ribose rings of the DNA backbone. These changes make an essential contribution to the DNA local deformability and provide the possibility of the transition of the DNA double helix from the B-form to the A-form during interactions with biological molecules. We propose a CG representation of the ribose conformational flexibility. We substantiate the choice of the CG sites (six per nucleotide) needed for the "sugar" GC DNA model, and obtain the potentials of the CG interactions between the sites by the "bottom-up" approach using the all-atom AMBER force field. We show that the representation of the ribose flexibility requires one non-harmonic and one three-particle potential, the forms of both the potentials being different from the ones generally used. The model also includes (i) explicit representation of ions (in an implicit solvent) and (ii) sequence dependence. With these features, the sugar CG DNA model reproduces (with the same parameters) both the B- and A- stable forms under corresponding conditions and demonstrates both the A to B and the B to A phase transitions. Graphical Abstract The proposed coarse-grained DNA model allows to reproduce both the B- and A- DNA forms and the transitions between them under corresponding conditions.
Collapse
|
39
|
Cao F, Deetz JD, Sun H. Free Energy-Based Coarse-Grained Force Field for Binary Mixtures of Hydrocarbons, Nitrogen, Oxygen, and Carbon Dioxide. J Chem Inf Model 2017; 57:50-59. [DOI: 10.1021/acs.jcim.6b00685] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fenglei Cao
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Joshua D. Deetz
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huai Sun
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
40
|
Dunn NJH, Foley TT, Noid WG. Van der Waals Perspective on Coarse-Graining: Progress toward Solving Representability and Transferability Problems. Acc Chem Res 2016; 49:2832-2840. [PMID: 27993007 DOI: 10.1021/acs.accounts.6b00498] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Low-resolution coarse-grained (CG) models provide the necessary efficiency for simulating phenomena that are inaccessible to more detailed models. However, in order to realize their considerable promise, CG models must accurately describe the relevant physical forces and provide useful predictions. By formally integrating out the unnecessary details from an all-atom (AA) model, "bottom-up" approaches can, at least in principle, quantitatively reproduce the structural and thermodynamic properties of the AA model that are observable at the CG resolution. In practice, though, bottom-up approaches only approximate this "exact coarse-graining" procedure. The resulting models typically reproduce the intermolecular structure of AA models at a single thermodynamic state point but often describe other state points less accurately and, moreover, tend to provide a poor description of thermodynamic properties. These two limitations have been coined the "transferability" and "representability" problems, respectively. Perhaps, the simplest and most commonly discussed manifestation of the representability problem regards the tendency of structure-based CG models to dramatically overestimate the pressure. Furthermore, when these models are adjusted to reproduce the pressure, they provide a poor description of the compressibility. More generally, it is sometimes suggested that CG models are fundamentally incapable of reproducing both structural and thermodynamic properties. After all, there is no such thing as a "free lunch"; any significant gain in computational efficiency should come at the cost of significant model limitations. At least in the case of structural and thermodynamic properties, though, we optimistically propose that this may be a false dichotomy. Accordingly, we have recently re-examined the "exact coarse-graining" procedure and investigated the intrinsic consequences of representing an AA model in reduced resolution. These studies clarify the origin and inter-relationship of representability and transferability problems. Both arise as consequences of transferring thermodynamic information from the high resolution configuration space and encoding this information into the many-body potential of mean force (PMF), that is, the potential that emerges from an exact coarse-graining procedure. At least in principle, both representability and transferability problems can be resolved by properly addressing this thermodynamic information. In particular, we have demonstrated that "pressure-matching" provides a practical and rigorous means for addressing the density dependence of the PMF. The resulting bottom-up models accurately reproduce the structure, equilibrium density, compressibility, and pressure equation of state for AA models of molecular liquids. Additionally, we have extended this approach to develop transferable potentials that provide similar accuracy for heptane-toluene mixtures. Moreover, these potentials provide predictive accuracy for modeling concentrations that were not considered in their parametrization. More generally, this work suggests a "van der Waals" perspective on coarse-graining, in which conventional structure-based methods accurately describe the configuration dependence of the PMF, while independent variational principles infer the thermodynamic information that is necessary to resolve representability and transferability problems.
Collapse
Affiliation(s)
- Nicholas J. H. Dunn
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas T. Foley
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - William G. Noid
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
41
|
D’Adamo G, Pelissetto A, Pierleoni C. Phase Diagram and Structure of Mixtures of Large Colloids and Linear Polymers under Good-Solvent Conditions. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Andrea Pelissetto
- Dipartimento di Fisica, Sapienza Università di Roma and INFN, Sezione di Roma I, P.le Aldo Moro
2, I-00185 Rome, Italy
| | - Carlo Pierleoni
- Dipartimento di Scienze Fisiche
e Chimiche, Università dell’Aquila, V. Vetoio 10, Loc. Coppito, I-67100 L’Aquila, Italy
| |
Collapse
|
42
|
Dunn NJH, Noid WG. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures. J Chem Phys 2016; 144:204124. [DOI: 10.1063/1.4952422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nicholas J. H. Dunn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
43
|
Foley TT, Shell MS, Noid WG. The impact of resolution upon entropy and information in coarse-grained models. J Chem Phys 2016; 143:243104. [PMID: 26723589 DOI: 10.1063/1.4929836] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By eliminating unnecessary degrees of freedom, coarse-grained (CG) models tremendously facilitate numerical calculations and theoretical analyses of complex phenomena. However, their success critically depends upon the representation of the system and the effective potential that governs the CG degrees of freedom. This work investigates the relationship between the CG representation and the many-body potential of mean force (PMF), W, which is the appropriate effective potential for a CG model that exactly preserves the structural and thermodynamic properties of a given high resolution model. In particular, we investigate the entropic component of the PMF and its dependence upon the CG resolution. This entropic component, SW, is a configuration-dependent relative entropy that determines the temperature dependence of W. As a direct consequence of eliminating high resolution details from the CG model, the coarsening process transfers configurational entropy and information from the configuration space into SW. In order to further investigate these general results, we consider the popular Gaussian Network Model (GNM) for protein conformational fluctuations. We analytically derive the exact PMF for the GNM as a function of the CG representation. In the case of the GNM, -TSW is a positive, configuration-independent term that depends upon the temperature, the complexity of the protein interaction network, and the details of the CG representation. This entropic term demonstrates similar behavior for seven model proteins and also suggests, in each case, that certain resolutions provide a more efficient description of protein fluctuations. These results may provide general insight into the role of resolution for determining the information content, thermodynamic properties, and transferability of CG models. Ultimately, they may lead to a rigorous and systematic framework for optimizing the representation of CG models.
Collapse
Affiliation(s)
- Thomas T Foley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
44
|
Coarse-grained modeling of RNA 3D structure. Methods 2016; 103:138-56. [PMID: 27125734 DOI: 10.1016/j.ymeth.2016.04.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result.
Collapse
|
45
|
Oyarzún Rivera B, van Westen T, Vlugt TJH. Liquid-crystal phase equilibria of Lennard-Jones chains. Mol Phys 2016. [DOI: 10.1080/00268976.2015.1134824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Thijs van Westen
- Process and Energy Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Process and Energy Laboratory, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
46
|
Dunn NJH, Noid WG. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids. J Chem Phys 2015; 143:243148. [DOI: 10.1063/1.4937383] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Nicholas J. H. Dunn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
47
|
Cao F, Sun H. Transferability and Nonbond Functional Form of Coarse Grained Force Field – Tested on Linear Alkanes. J Chem Theory Comput 2015; 11:4760-9. [DOI: 10.1021/acs.jctc.5b00573] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fenglei Cao
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huai Sun
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
48
|
Affiliation(s)
- Fangqiang Zhu
- Department
of Physics, Indiana University - Purdue University, Indianapolis, Indiana 46202, United States
| | - Bo Chen
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
49
|
Rudzinski JF, Noid WG. Bottom-Up Coarse-Graining of Peptide Ensembles and Helix–Coil Transitions. J Chem Theory Comput 2015; 11:1278-91. [DOI: 10.1021/ct5009922] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph F. Rudzinski
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - William G. Noid
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
50
|
D’Adamo G, Pelissetto A, Pierleoni C. Accurate coarse-grained models for mixtures of colloids and linear polymers under good-solvent conditions. J Chem Phys 2014; 141:244905. [DOI: 10.1063/1.4904392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|