1
|
Pei H, Zhai C, Li H, Yan F, Qin J, Yuan H, Zhang R, Wang S, Zhang W, Chang M, Wang Y, Pei X. Connexin 32 and connexin 43 are involved in lineage restriction of hepatic progenitor cells to hepatocytes. Stem Cell Res Ther 2017; 8:252. [PMID: 29116012 PMCID: PMC5678556 DOI: 10.1186/s13287-017-0703-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/06/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bi-potential hepatic progenitor cells can give rise to both hepatocytes and cholangiocytes, which is the last phase and critical juncture in terms of sequentially hepatic lineage restriction from any kind of stem cells. If their differentiation can be controlled, it might access to functional hepatocytes to develop pharmaceutical and biotechnology industries as well as cell therapies for end-stage liver diseases. METHODS In this study, we investigated the influence of Cx32 and Cx43 on hepatocyte differentiation of WB-F344 cells by in vitro gain and loss of function analyses. An inhibitor of Cx32 was also used to make further clarification. To reveal p38 MAPK pathway is closely related to Cxs, rats with 70% partial hepatectomy were injected intraperitoneally with a p38 inhibitor, SB203580. Besides, the effects of p38 MAPK pathway on differentiation of hepatoblasts isolated from fetal rat livers were evaluated by addition of SB203580 in culture medium. RESULTS In vitro gain and loss of function analyses showed overexpression of Connexin 32 and knockdown of Connexin 43 promoted hepatocytes differentiation from hepatic progenitor cells. In addition, in vitro and ex vivo research revealed inhibition of p38 mitogen-activated protein kinase pathway can improve hepatocytes differentiation correlating with upregulation of Connexin 32 expression and downregulation of Connexin 43 expression. CONCLUSIONS Here we demonstrate that Connexins play crucial roles in facilitating differentiation of hepatic progenitors. Our work further implicates that regulators of Connexins and their related pathways might provide new insights to improve lineage restriction of stem cells to mature hepatocytes.
Collapse
Affiliation(s)
- Haiyun Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- South China Institute of Biomedicine, Guangzhou, 510005 China
| | - Chao Zhai
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Huilin Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Fang Yan
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Jinhua Qin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- South China Institute of Biomedicine, Guangzhou, 510005 China
| | - Hongfeng Yuan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Rui Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Shuyong Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- South China Institute of Biomedicine, Guangzhou, 510005 China
| | - Wencheng Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Mingyang Chang
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Yunfang Wang
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850 China
- South China Institute of Biomedicine, Guangzhou, 510005 China
| |
Collapse
|
2
|
Anzai K, Chikada H, Tsuruya K, Ida K, Kagawa T, Inagaki Y, Mine T, Kamiya A. Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture. Sci Rep 2016; 6:28283. [PMID: 27335264 PMCID: PMC4917868 DOI: 10.1038/srep28283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/23/2016] [Indexed: 01/29/2023] Open
Abstract
Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45(-)Ter119(-)Dlk1(+) LPCs derived from murine foetal livers formed ALBUMIN (ALB)(+)CYTOKERATIN (CK)19(-) non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB(-)CK19(+) cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo.
Collapse
Affiliation(s)
- Kazuya Anzai
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kota Tsuruya
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tatehiro Kagawa
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yutaka Inagaki
- Department of Regenerative medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tesuya Mine
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
3
|
Liu WH, Ren LN, Chen T, You N, Liu LY, Wang T, Yan HT, Luo H, Tang LJ. Unbalanced distribution of materials: the art of giving rise to hepatocytes from liver stem/progenitor cells. J Cell Mol Med 2014; 18:1-14. [PMID: 24286303 PMCID: PMC3916112 DOI: 10.1111/jcmm.12183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022] Open
Abstract
Liver stem/progenitor cells (LSPCs) are able to duplicate themselves and differentiate into each type of cells in the liver, including mature hepatocytes and cholangiocytes. Understanding how to accurately control the hepatic differentiation of LSPCs is a challenge in many fields from preclinical to clinical treatments. This review summarizes the recent advances made to control the hepatic differentiation of LSPCs over the last few decades. The hepatic differentiation of LSPCs is a gradual process consisting of three main steps: initiation, progression and accomplishment. The unbalanced distribution of the affecting materials in each step results in the hepatic maturation of LSPCs. As the innovative and creative works for generating hepatocytes with full functions from LSPCs are gradually accumulated, LSPC therapies will soon be a new choice for treating liver diseases.
Collapse
Affiliation(s)
- Wei-Hui Liu
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Li-Na Ren
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Tao Chen
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Nan You
- Department of General Surgery Xinqiao Hospital, Third Military Medical UniversityChongqing, China
| | - Li-Ye Liu
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Tao Wang
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Hong-Tao Yan
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Hao Luo
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Li-Jun Tang
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| |
Collapse
|