1
|
Andonotopo W, Bachnas MA, Dewantiningrum J, Adi Pramono MB, Stanojevic M, Kurjak A. AI and early diagnostics: mapping fetal facial expressions through development, evolution, and 4D ultrasound. J Perinat Med 2025; 53:263-285. [PMID: 39946338 DOI: 10.1515/jpm-2024-0602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 04/16/2025]
Abstract
The development of facial musculature and expressions in the human fetus represents a critical intersection of developmental biology, neurology, and evolutionary anthropology, offering insights into early neurological and social development. Fetal facial expressions, shaped by Cranial Nerve VII, reflect evolutionary adaptations for nonverbal communication and exhibit minimal asymmetry in universal expressions. Advancements in 4D ultrasound imaging and artificial intelligence (AI) have introduced innovative methods for analyzing these movements, revealing their potential as diagnostic tools for neurodevelopmental disorders like Bell's Palsy and Ramsay Hunt Syndrome before birth. These technologies promise early interventions that could significantly improve neonatal outcomes. By integrating imaging, AI, and longitudinal studies, researchers propose a multidisciplinary approach to establish diagnostic criteria for fetal facial movements. However, translating these advancements into clinical practice requires addressing ethical and practical challenges, refining imaging and AI methodologies, and fostering interdisciplinary collaboration. The review highlights the universality of fetal expressions while emphasizing the importance of distinguishing typical variability from pathological markers. In conclusion, these findings suggest transformative potential for maternal-fetal medicine, paving the way for proactive strategies to manage neurodevelopmental risks. Focused research is essential to fully harness these innovations and establish a new frontier in perinatal science.
Collapse
Affiliation(s)
- Wiku Andonotopo
- Fetomaternal Division, Women Health Center, Department of Obstetrics and Gynecology, Eka Hospital BSD City, Serpong, Tangerang, Banten, Indonesia
| | - Muhammad Adrianes Bachnas
- Fetomaternal Division, Department of Obstetrics and Gynecology, Medical Faculty of Sebelas Maret University, Dr. Moewardi Hospital, Solo, Surakarta, Indonesia
| | - Julian Dewantiningrum
- Fetomaternal Division, Department of Obstetrics and Gynecology, Medical Faculty of Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Mochammad Besari Adi Pramono
- Fetomaternal Division, Department of Obstetrics and Gynecology, Medical Faculty of Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Milan Stanojevic
- Department of Neonatology and Rare Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Asim Kurjak
- Department of Obstetrics and Gynecology, Medical School University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Faria MJ, González-Méijome JM, Real Oliveira MECD, Carracedo G, Lúcio M. Recent advances and strategies for nanocarrier-mediated topical therapy and theranostic for posterior eye disease. Adv Drug Deliv Rev 2024; 210:115321. [PMID: 38679293 DOI: 10.1016/j.addr.2024.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Posterior eye disorders, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, have a significant impact on human quality of life and are the primary cause of age-related retinal diseases among adults. There is a pressing need for innovative topical approaches to treat posterior eye disorders, as current methods often rely on invasive procedures with inherent risks. Limited success was attained in the realm of topical ophthalmic delivery through non-invasive means. Additionally, there exists a dearth of literature that delves into the potential of this approach for drug delivery and theranostic purposes, or that offers comprehensive design strategies for nanocarrier developers to surmount the significant physiological ocular barriers. This review offers a thorough and up-to-date state-of-the-art overview of 40 studies on therapeutic loaded nanocarriers and theranostic devices that, to the best of our knowledge, represent all successful works that reached posterior eye segments through a topical non-invasive administration. Most importantly, based on the successful literature studies, this review provides a comprehensive summary of the potential design strategies that can be implemented during nanocarrier development to overcome each ocular barrier.
Collapse
Affiliation(s)
- Maria João Faria
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - José M González-Méijome
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CEORLab - Clinical and Experimental Optometry Research Lab, Centre of Physics, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - M Elisabete C D Real Oliveira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, University Complutense of Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain.
| | - Marlene Lúcio
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CBMA - Centre of Molecular and Environmental Biology, Department of Biology, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
3
|
Meng T, Zheng J, Chen M, Zhao Y, Sudarjat H, M.R. AA, Kulkarni V, Oh Y, Xia S, Ding Z, Han H, Anders N, Rudek MA, Chow W, Stark W, Ensign LM, Hanes J, Xu Q. Six-month effective treatment of corneal graft rejection. SCIENCE ADVANCES 2023; 9:eadf4608. [PMID: 36947612 PMCID: PMC10032610 DOI: 10.1126/sciadv.adf4608] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Topical corticosteroid eye drop is the mainstay for preventing and treating corneal graft rejection. While the frequent topical corticosteroid use is associated with risk of intraocular pressure (IOP) elevation and poor patient compliance that leads to graft failure and the requirement for a repeated, high-risk corneal transplantation. Here, we developed dexamethasone sodium phosphate (DSP)-loaded dicarboxyl-terminated poly(lactic acid) nanoparticle (PLA DSP-NP) formulations with relatively high drug loading (8 to 10 weight %) and 6 months of sustained intraocular DSP delivery in rats with a single dosing. PLA DSP-NP successfully reversed early signs of corneal rejection, leading to rat corneal graft survival for at least 6 months. Efficacious PLA DSP-NP doses did not affect IOP and showed no signs of ocular toxicity in rats for up to 6 months. Subconjunctival injection of DSP-NP is a promising approach for safely preventing and treating corneal graft rejection with the potential for improved patient adherence.
Collapse
Affiliation(s)
- Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jinhua Zheng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Min Chen
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266073, China
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Yang Zhao
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hadi Sudarjat
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aji Alex M.R.
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Vineet Kulkarni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yumin Oh
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Shiyu Xia
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Zheng Ding
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Hyounkoo Han
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Nicole Anders
- Department of Medicine, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michelle A. Rudek
- Department of Medicine, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Woon Chow
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Walter Stark
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Laura M. Ensign
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Justin Hanes
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Pharmaceutical Engineering and Institute for Structural Biology, Drug Discovery and Development (ISB3D), Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Booler HS, Lejeune T, Sorden S, Gruebbel MM, Schafer KA, Short B, Farman C, Ramos MF, Bennet B, Yekkala K, Atzpodien EA, Turner OC, Brassard J, Foley G. Scientific and Regulatory Policy Committee Points to Consider: Fixation, Trimming, and Sectioning of Nonrodent Eyes and Ocular Tissues for Examination in Ocular and General Toxicity Studies. Toxicol Pathol 2021; 50:235-251. [PMID: 34693851 DOI: 10.1177/01926233211047562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A Working Group of the Society of Toxicologic Pathology's Scientific and Regulatory Policy Committee conducted a technical and scientific review of current practices relating to the fixation, trimming, and sectioning of the nonrodent eye to identify key points and species-specific anatomical landmarks to consider when preparing and evaluating eyes of rabbits, dogs, minipigs, and nonhuman primates from ocular and general toxicity studies. The topics addressed in this Points to Consider article include determination of situations when more comprehensive evaluation of the globe and/or associated extraocular tissues should be implemented (expanded ocular sampling), and what constitutes expanded ocular sampling. In addition, this manuscript highlights the practical aspects of fixing, trimming, and sectioning the eye to ensure adequate histopathological evaluation of all major ocular structures, including the cone-dense areas (visual streak/macula/fovea) of the retina for rabbits, dogs, minipigs, and nonhuman primates, which is a current regulatory expectation for ocular toxicity studies.[Box: see text].
Collapse
Affiliation(s)
- Helen S Booler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Switzerland
| | | | | | - Margarita M Gruebbel
- Experimental Pathology Laboratories, Inc. (EPL, Inc.), Research Triangle Park, NC, USA
| | | | - Brian Short
- Brian Short Consulting, LLC, Laguna Beach, CA, USA
| | | | | | | | - Krishna Yekkala
- Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Elke-Astrid Atzpodien
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Oliver C Turner
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, NJ, USA
| | | | | |
Collapse
|
5
|
Schuh JCL. Mucosa-Associated Lymphoid Tissue and Tertiary Lymphoid Structures of the Eye and Ear in Laboratory Animals. Toxicol Pathol 2020; 49:472-482. [PMID: 33252012 DOI: 10.1177/0192623320970448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) of special senses is poorly described and can be confused with nonspecific mononuclear cell infiltrates and tertiary lymphoid structures (TLS). In the eye, MALT consists mostly of conjunctiva-associated lymphoid tissue (CALT) and lacrimal drainage-associated lymphoid tissue (LDALT). In humans, CALT and LDALT are important components of the normal eye-associated lymphoid tissue (EALT), but EALT is less frequently described in ocular tissues of animals. The EALT are acquired postnatally in preferential mucosal sites, expand with antigenic exposure, form well-developed lymphoid follicles, and are reported to senesce. Lymphoid follicles that are induced concurrently with chronic inflammation are more appropriately considered TLS but must be differentiated from inflammation in MALT. Less understood is the etiology for formation of lymphoid tissue aggregates in the ciliary body, limbus, or choroid of healthy eyes in animals and humans. In the healthy eustachian tube and middle ear of animals and humans, MALT may be present but is infrequently described. Concurrent with otitis media, lymphoid follicles in the eustachian tube are probably expanded MALT, but lymphoid follicles in the middle ear may be TLS. The purpose of this comparative review is to familiarize toxicologic pathologists with MALT in the special senses and to provide considerations for differentiating and reporting eye and ear MALT from immune or inflammatory cell infiltrates or inflammation in nonclinical studies, and the circumstances for reporting TLS in compartments of the eye and ear.
Collapse
|
6
|
Andaya R, Booler H, Nagata DDA, Lawson C, Vogt J, Schuetz C, Chang DP, Bantseev V. Intravitreal Administration of Acetyl Triethyl Citrate and Benzyl Benzoate Is Retinotoxic in Rabbits but Not in Cynomolgus Monkeys. Toxicol Pathol 2020; 49:621-633. [PMID: 33252011 DOI: 10.1177/0192623320971571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sustained drug delivery formulations are developed to reduce dose frequency while maintaining efficacy of intravitreal (ITV) administered therapeutics. Available safety data for components novel to the eye's posterior segment may be limited, requiring preclinical assessments to identify potential toxicities. We evaluated the in vivo and in vitro safety of two solvents, acetyl triethyl citrate (ATEC) and benzyl benzoate (BB), as novel sustained delivery formulations for ITV administration. In vivo tolerability was assessed following ITV administration of ATEC and BB to rabbits and cynomolgus monkeys. In rabbits, ITV solvent administration resulted in moderate to severe retinal toxicity characterized by focal retinal necrosis and/or degeneration, sometimes accompanied by inflammation, with a clear association between the physical presence of the solvent and areas of retinal damage. In contrast, solvent administration in monkeys appeared well tolerated, producing no histologic abnormalities. Toxicity in primary human retinal pigment epithelial cells, characterized by cellular toxicity and mitochondrial injury, corroborated the retinal toxicity in rabbits. In conclusion, ITV solvent depots of ATEC or BB result in chemical and focal retinal toxicity in rabbits, but not monkeys. Additional investigation is needed to demonstrate a sufficient margin of safety prior to use of ATEC or BB in ITV drug products.
Collapse
Affiliation(s)
- Roxanne Andaya
- Department of Safety Assessment, 7412Genentech Inc, South San Francisco, CA, USA
| | - Helen Booler
- Department of Safety Assessment, 7412Genentech Inc, South San Francisco, CA, USA
| | | | - Chris Lawson
- Department of Safety Assessment, 7412Genentech Inc, South San Francisco, CA, USA
| | - Jennifer Vogt
- Department of Safety Assessment, 7412Genentech Inc, South San Francisco, CA, USA
| | - Chris Schuetz
- Department of Safety Assessment, 7412Genentech Inc, South San Francisco, CA, USA
| | - Debby P Chang
- Department of Drug Delivery, 7412Genentech Inc, South San Francisco, CA, USA
| | - Vladimir Bantseev
- Department of Safety Assessment, 7412Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
7
|
Yamagiwa Y, Kurata M, Satoh H. Histological Features of Postnatal Development of the Eye in White Rabbits. Toxicol Pathol 2020; 49:419-437. [PMID: 32323615 DOI: 10.1177/0192623320915460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rabbits are frequently used in studies assessing the toxicity of ophthalmic drugs; however, the postnatal histological changes that occur in the rabbit eye have not been fully described. To characterize postnatal ocular development in white rabbits, a histological investigation of the eyes and eyelids was sequentially performed between postnatal days (PNDs) 1 and 42. The eyes opened during PNDs10 to 12. Significant changes prior to eyelid opening included the proliferation of uveal and optic nerve cells, regression of the lenticular vasculature, and thinning of the retina with a decreasing number of retinal cells. After eyelid opening, several significant changes occurred in the anterior segment, including thickening of the cornea and the development of lacrimation-related tissues in the eyelid and conjunctiva. Additionally, the differentiation of retinal layer-derived cells and optic nerve thickening occurred. The lens size continued to increase throughout the postnatal period. The histological structure of the eyes and eyelids was nearly mature by PNDs28 to 42. This study characterizes the postnatal changes in the histological features of the eyes in juvenile white rabbits, providing fundamental knowledge on the appropriate design of histological studies of the eyes in juvenile rabbits, particularly ophthalmic drug evaluations.
Collapse
Affiliation(s)
- Yoshinori Yamagiwa
- Central Research Laboratories, Research and Development Division, 38332Senju Pharmaceutical Co, Ltd, Hyogo, Japan.,Veterinary Pharmacology and Toxicology Laboratory, Graduate School of Veterinary Sciences, 12836Iwate University, Iwate, Japan
| | - Masaaki Kurata
- Central Research Laboratories, Research and Development Division, 38332Senju Pharmaceutical Co, Ltd, Hyogo, Japan
| | - Hiroshi Satoh
- Veterinary Pharmacology and Toxicology Laboratory, Graduate School of Veterinary Sciences, 12836Iwate University, Iwate, Japan
| |
Collapse
|
8
|
Pascual-Pasto G, Bazan-Peregrino M, Olaciregui NG, Restrepo-Perdomo CA, Mato-Berciano A, Ottaviani D, Weber K, Correa G, Paco S, Vila-Ubach M, Cuadrado-Vilanova M, Castillo-Ecija H, Botteri G, Garcia-Gerique L, Moreno-Gilabert H, Gimenez-Alejandre M, Alonso-Lopez P, Farrera-Sal M, Torres-Manjon S, Ramos-Lozano D, Moreno R, Aerts I, Doz F, Cassoux N, Chapeaublanc E, Torrebadell M, Roldan M, König A, Suñol M, Claverol J, Lavarino C, Carmen de T, Fu L, Radvanyi F, Munier FL, Catalá-Mora J, Mora J, Alemany R, Cascalló M, Chantada GL, Carcaboso AM. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci Transl Med 2020; 11:11/476/eaat9321. [PMID: 30674657 DOI: 10.1126/scitranslmed.aat9321] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022]
Abstract
Retinoblastoma is a pediatric solid tumor of the retina activated upon homozygous inactivation of the tumor suppressor RB1 VCN-01 is an oncolytic adenovirus designed to replicate selectively in tumor cells with high abundance of free E2F-1, a consequence of a dysfunctional RB1 pathway. Thus, we reasoned that VCN-01 could provide targeted therapeutic activity against even chemoresistant retinoblastoma. In vitro, VCN-01 effectively killed patient-derived retinoblastoma models. In mice, intravitreous administration of VCN-01 in retinoblastoma xenografts induced tumor necrosis, improved ocular survival compared with standard-of-care chemotherapy, and prevented micrometastatic dissemination into the brain. In juvenile immunocompetent rabbits, VCN-01 did not replicate in retinas, induced minor local side effects, and only leaked slightly and for a short time into the blood. Initial phase 1 data in patients showed the feasibility of the administration of intravitreous VCN-01 and resulted in antitumor activity in retinoblastoma vitreous seeds and evidence of viral replication markers in tumor cells. The treatment caused local vitreous inflammation but no systemic complications. Thus, oncolytic adenoviruses targeting RB1 might provide a tumor-selective and chemotherapy-independent treatment option for retinoblastoma.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | | | - Nagore G Olaciregui
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | | | | | - Daniela Ottaviani
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | - Klaus Weber
- AnaPath GmbH, Oberbuchsiten 4625, Switzerland
| | - Genoveva Correa
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Sonia Paco
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Monica Vila-Ubach
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Maria Cuadrado-Vilanova
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Helena Castillo-Ecija
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Gaia Botteri
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Laura Garcia-Gerique
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Helena Moreno-Gilabert
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | | | | | | | - Silvia Torres-Manjon
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Dolores Ramos-Lozano
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Moreno
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabelle Aerts
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | - François Doz
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Paris Descartes University, 75006 Paris, France
| | - Nathalie Cassoux
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Paris Descartes University, 75006 Paris, France.,Institut Curie, Ophthalmic Oncology, 75248 Paris, France
| | - Elodie Chapeaublanc
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | - Montserrat Torrebadell
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Monica Roldan
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pathology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Andrés König
- Vivotecnia Research S.L., Tres Cantos, Madrid 28760, Spain
| | - Mariona Suñol
- Pathology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Joana Claverol
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Clinical Trials Unit, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Cinzia Lavarino
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Torres Carmen de
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Ligia Fu
- Pediatric Hematology-Oncology, Hospital Escuela Universitario, Tegucigalpa, Honduras
| | - François Radvanyi
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | | | | | - Jaume Mora
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Ramón Alemany
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manel Cascalló
- VCN Biosciences, Sant Cugat del Valles, Barcelona 08174, Spain
| | - Guillermo L Chantada
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain.,Hospital de Pediatria JP Garrahan, Buenos Aires 1245, Argentina.,CONICET, Buenos Aires 1245, Argentina
| | - Angel M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain. .,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| |
Collapse
|
9
|
Transscleral cyclophotocoagulation and its histological effects on the conjunctiva. Sci Rep 2019; 9:18703. [PMID: 31822709 PMCID: PMC6904490 DOI: 10.1038/s41598-019-55102-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Micropulse transscleral cyclophotocoagulation (MP-TCP) is increasingly being used as an initial procedure prior to conjunctival filtration surgeries. However, it is uncertain whether MP-TCP may cause inflammation and scarring of the bulbar conjunctiva. Thus, we aimed to study the histological effects of MP-TCP (compared to controls and continuous wave [CW]-TCP) on the conjunctiva. Our study included 10 Dutch Belted Rabbits that underwent TCP in their right eyes (n = 5, MP-TCP; n = 5, CW-TCP), while their left eyes served as controls. The rabbits were euthanised at 4 weeks, and their dissected globes underwent histopathological and immunohistochemical examination. We observed greater conjunctival inflammation in MP-TCP or CW-TCP-treated eyes compared to controls, but not between each other. The majority of the lymphocytic infiltrates were CD4 T-cells. Increased conjunctival fibrosis was evident in MP-TCP or CW-TCP-treated eyes, to similar extents, compared to controls. However, the increased staining for myofibroblasts was not statistically significant in TCP-treated eyes. We concluded that MP-TCP causes significantly greater overall conjunctival inflammation and scarring compared to controls, similar to CW-TCP. As these are risk-factors for fibrosis and failure of the conjunctival bleb, further studies are required to explore the effect, if any, of post-TCP conjunctival changes on future bleb morphology and survival.
Collapse
|
10
|
Liu CN, Peng Q, Yates DW, Huang W, Devantier H, Aguirre SA. Ocular safety assessment of sodium iodate in cynomolgus monkeys. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317696370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although sodium iodate (NaIO3)-induced retinal injury model has been widely used in rodents, its application in large animal species has encountered variation in retinal toxicity. NaIO3 induced retinal degeneration and functional changes in sheep, but not in swine. In monkeys, administration of NaIO3 via a carotid artery affected only the cell function of ipsilateral retinal pigment epithelium. The aim of the present study was to identify the dosage and route of NaIO3 administration resulting in morphologic and functional retinal changes in cynomolgus monkeys. Separate groups of animals received NaIO3 intravenously in three different dosing paradigms. Vehicle control animals received phosphate-buffered saline. At selected time points following dosing, flash electroretinograms (ERGs) were recorded followed by necropsy. The eyes were examined microscopically post-necropsy and the levels of circulating microRNA-183 cluster were evaluated in the blood samples collected on days 1, 4, and 5 postdose. A statistically significant reduction in both scotopic a-wave and scotopic and photopic b-wave signals ( p < 0.05) were observed between the ERG signals acquired from NaIO3-treated and vehicle control animals, coupled with time-dependent elevations in plasma miR-183 cluster. Mild to moderate retinal degeneration was observed in the outer layer of the retina, which correlated well with the functional and clinical observations. There were no statistically significant differences in scotopic oscillatory potentials. These findings suggest that intravenous injection of sublethal NaIO3 markedly damaged the cone and rod photoreceptors both functionally and morphologically, and plasma miR-183 reflected the retinal toxicity in those animals with moderate retinal damage.
Collapse
Affiliation(s)
- Chang-Ning Liu
- Department of Investigative Toxicology, Drug Safety Research & Development, Pfizer Worldwide R&D, Groton, CT, USA
| | - Qinghai Peng
- Drug Safety Research & Development, Pfizer Worldwide R&D, La Jolla, CA, USA
| | - David W Yates
- Worldwide Comparative Medicine, Pfizer Worldwide R&D, Pearl River, NY, USA
| | - Wenhu Huang
- Drug Safety Research & Development, Pfizer Worldwide R&D, La Jolla, CA, USA
| | - Heather Devantier
- Worldwide Comparative Medicine, Pfizer Worldwide R&D, Pearl River, NY, USA
| | - Shirley A Aguirre
- Drug Safety Research & Development, Pfizer Worldwide R&D, La Jolla, CA, USA
| |
Collapse
|
11
|
Onodera H, Sasaki S, Otake S, Tomohiro M, Shibuya K, Nomura M. General considerations in ocular toxicity risk assessment from the toxicologists' viewpoints. J Toxicol Sci 2016; 40:295-307. [PMID: 25972191 DOI: 10.2131/jts.40.295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Humans commonly obtain approximately 80% of external information from vision. Since loss of vision markedly decreases quality of life, risk assessments for visual toxicity of new drugs are extremely important. However, the ICH S4 guideline for nonclinical toxicity study of new drugs only indicates a brief instruction for ophthalmologic examinations, and submitted data for drug approval according only to this guideline are not always considered sufficient in light of ocular toxicity risk assessments. The eye is an assembly of many specialized sub-organs which have specific functions, and its integral maintenance of homeostasis plays an important role of visual function. When only a part of integrity of functions is lost, overall function of the eye might be commonly disturbed. Therefore, understanding of anatomy and physiology of these sub-organs may help know mechanisms of observed ocular changes. In ophthalmologic examinations in nonclinical toxicity studies, it is vital to understand the principles and features of each examination. Comparisons of findings between pre and post drug treatment as well as considerations of species differences, strain differences, age differences, and location/degree of abnormalities are essential. In addition, many kinds of spontaneous ocular findings are well known in experimental animals. To differentiate treatment-related changes from spontaneous findings, mastering basic skills for ophthalmologic examinations and taking advantage of collection of background data are necessary. For ocular toxicity risk assessments, while an evaluation of "sight-threatening" effects is most critical matter, "quality of vision" related findings also should be considered. To extrapolate animal data to human, clinical significances of ocular toxicity findings should be evaluated based on considerations for "species differences", "safety margins", "reversibility", and "risk-benefit balance". In addition, a detailed recording of features of lesions is also important for an appropriate judgment of clinical significance of ocular findings. For preparation of histopathological specimens, careful sampling of organs and suitable selection of fixatives are important. To accurately orient ocular lesions in the specimen for histopathological examinations, securing close communications prior to necropsy among ophthalmologists, gross necropsy pathologists and histopathology technicians should be effective and helpful. It is impossible to detect all ocular changes in histopathological examinations; that is, there is a limitation in histopathological examinations. Therefore, for ocular toxicity risk assessments, comprehensive evaluation with pathological findings as well as other results of various examinations in toxicity studies should be considered. In conclusion, for ocular toxicity risk assessments, integrated judgments from all examination data in nonclinical toxicity studies are required. To achieve appropriate risk assessments which can be extrapolated to human, close communications and sharing of data regarding the eye are most important among toxicologists, clinical sign investigators, histopathology technicians and pathologists.
Collapse
|
12
|
Kurata M, Atsumi I, Yamagiwa Y, Sakaki H. Ocular instillation toxicity study: current status and points to consider on study design and evaluation. ACTA ACUST UNITED AC 2016. [DOI: 10.2131/fts.3.217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Masaaki Kurata
- Pharmacokinetics & Toxicology Research Laboratories, Senju Pharmaceutical Co., Ltd
| | - Ikuyo Atsumi
- Pharmacokinetics & Toxicology Research Laboratories, Senju Pharmaceutical Co., Ltd
| | - Yoshinori Yamagiwa
- Pharmacokinetics & Toxicology Research Laboratories, Senju Pharmaceutical Co., Ltd
| | - Hideyuki Sakaki
- Pharmacokinetics & Toxicology Research Laboratories, Senju Pharmaceutical Co., Ltd
| |
Collapse
|