1
|
Walsh PT, Martínez-Marchal A, Brieño-Enríquez MA. Culture of the Intact Postnatal Naked Mole-Rat Ovary: From Meiotic Prophase to Single-Cell RNASeq. Methods Mol Biol 2024; 2818:179-194. [PMID: 39126475 DOI: 10.1007/978-1-0716-3906-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recently, we reported that, in the naked mole-rat (Heterocephalus glaber) ovary, there is mitotic expansion of the primordial germ cells (PGCs), and the initiation of the meiotic program occurs postnatally. This is opposite to almost all other mammals, including humans and mice, whose reproductive cycle begins very early in development. In both mouse and human, the ovaries become populated with PGCs in utero; these PGCs will later generate the oogonia. After mitotic proliferation, these cells will trigger the meiotic program and initiate meiotic prophase I. Given that all these processes happen in utero, their analysis has been very challenging; so the ability to study them postnatally and to manipulate them with inhibitors or other substances, in the naked mole-rat, opens new possibilities in the field. In this chapter, we present a comprehensive collection of protocols that permit the culture of whole naked mole-rat ovaries, followed by analysis of germ cells, from PGCs to oocytes, in meiotic prophase I, as well the obtention of single-cell suspension or single-nuclei suspension for RNASeq.
Collapse
Affiliation(s)
- Patrick T Walsh
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Martínez-Marchal
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Miao X, Guo R, Williams A, Lee C, Ma J, Wang PJ, Cui W. Replication Protein A1 is essential for DNA damage repair during mammalian oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547725. [PMID: 37461444 PMCID: PMC10349974 DOI: 10.1101/2023.07.04.547725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Persistence of unrepaired DNA damage in oocytes is detrimental and may cause genetic aberrations, miscarriage, and infertility. RPA, an ssDNA-binding complex, is essential for various DNA-related processes. Here we report that RPA plays a novel role in DNA damage repair during postnatal oocyte development after meiotic recombination. To investigate the role of RPA during oogenesis, we inactivated RPA1 (replication protein A1), the largest subunit of the heterotrimeric RPA complex, specifically in oocytes using two germline-specific Cre drivers (Ddx4-Cre and Zp3-Cre). We find that depletion of RPA1 leads to the disassembly of the RPA complex, as evidenced by the absence of RPA2 and RPA3 in RPA1-deficient oocytes. Strikingly, severe DNA damage occurs in RPA1-deficient GV-stage oocytes. Loss of RPA in oocytes triggered the canonical DNA damage response mechanisms and pathways, such as activation of ATM, ATR, DNA-PK, and p53. In addition, the RPA deficiency causes chromosome misalignment at metaphase I and metaphase II stages of oocytes, which is consistent with altered transcript levels of genes involved in cytoskeleton organization in RPA1-deficient oocytes. Absence of the RPA complex in oocytes severely impairs folliculogenesis and leads to a significant reduction in oocyte number and female infertility. Our results demonstrate that RPA plays an unexpected role in DNA damage repair during mammalian folliculogenesis.
Collapse
Affiliation(s)
- Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rui Guo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Catherine Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Song W, Li A, Sha QQ, Liu SY, Zhou Y, Zhou CY, Zhang X, Li XZ, Jiang JX, Li F, Li C, Schatten H, Ou XH, Sun QY. Maternal exposure to 4-vinylcyclohexene diepoxide during pregnancy induces subfertility and birth defects of offspring in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160431. [PMID: 36423845 DOI: 10.1016/j.scitotenv.2022.160431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
4-vinylcyclohexene diepoxide (VCD), widely used in industry, is a hazardous compound that can cause premature ovarian failure, but whether maternal VCD exposure affects the health and reproduction of offspring is unknown. Here we focused on the effects of VCD on fertility and physical health of F1 and F2 offspring in mice. The pregnant mice were injected intraperitoneally with different dosages of VCD once every day from 6.5 to 18.5 days post-coitus (dpc). We showed that maternal exposure to VCD during pregnancy significantly reduced the litter size and ovarian reserve, while increasing microtia occurrences of F1 mice. The cytospread staining showed a significant inhibition of meiotic prophase I progression from the zygotene stage to the pachytene stage. Mechanistically, the expression level of DNA damage marker (γ-H2AX) and BAX/BCL2 ratios were significantly increased, and RAD51 and DMC1 were extensively recruited to DNA double strand breaks sites in the oocytes of offspring from VCD-exposed mothers. Overall, our results provide solid evidence showing that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on the offspring.
Collapse
Affiliation(s)
- Wei Song
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ang Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qian-Qian Sha
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Shao-Yuan Liu
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yong Zhou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Chang-Yin Zhou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xue Zhang
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiao-Zhen Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jia-Xin Jiang
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Chao Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Brieño-Enríquez MA. Characterization of the Postnatal Naked Mole-Rat Ovary: From Primordial Germ Cells to Meiotic Prophase I Oocytes. Methods Mol Biol 2023; 2677:185-201. [PMID: 37464243 DOI: 10.1007/978-1-0716-3259-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The mammalian reproductive cycle, including those of humans and mice, begins very early in development. In utero, the ovaries become populated with primordial germ cells (PGCs) that will generate the oogonia. First, these cells proliferate mitotically, and then they trigger the meiotic program and initiate meiotic prophase I. Since these processes happen during gestation, their study had been very limited and challenging. Recently, we reported that, in the naked mole-rat (Heterocephalus glaber) ovary, there is mitotic expansion of the PGCs, and the initiation of the meiotic program occurs postnatally. In this chapter, we present a comprehensive collection of protocols that permit the analysis of naked mole-rat germ cells, from PGCs to oocytes, in meiotic prophase I, using in vivo and in vitro approaches.
Collapse
Affiliation(s)
- Miguel Angel Brieño-Enríquez
- Magee-Women's Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Mu X, Tu Z, Chen X, Hong Y, Geng Y, Zhang Y, Ji X, Liu T, Wang Y, He J. In utero Exposure to Excessive Estrogen Impairs Homologous Recombination and Oogenesis via Estrogen Receptor 2 in Mice. Front Cell Dev Biol 2021; 9:669732. [PMID: 34150762 PMCID: PMC8212019 DOI: 10.3389/fcell.2021.669732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
The association between the accumulation of synthetic chemicals with estrogenic activity and risks to oogenesis has become a growing concern. This study indicates that in utero estrogen exposure can affect homologous recombination in early oogenesis and influence the reproductive potential and lifespan of female offspring. We conducted this study in developing mouse ovaries using two different models: oral doses administered to the mother, and fetal ovary cultures. Our analyses of meiotic fetal oocytes suggest that 17-β-estradiol induces gross aberrations in prophase I events, including delayed meiotic progression, increased unrepaired DNA damage, and altered homologous recombination levels. These effects were mainly mediated by estrogen receptor 2 (ESR2) activation. Mid-gestation exposure to estrogen also led to delayed primordial folliculogenesis after birth, impaired follicle development after prepuberty, and ultimately reduced the total litter size of the offspring. This raises the concern that maternal exposures to substances activating ESR2 may compromise the fertility of the exposed female fetus.
Collapse
Affiliation(s)
- Xinyi Mu
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Zhihan Tu
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yi Hong
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xingduo Ji
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Taihang Liu
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Qiao H, Rao HBDP, Yun Y, Sandhu S, Fong JH, Sapre M, Nguyen M, Tham A, Van BW, Chng TYH, Lee A, Hunter N. Impeding DNA Break Repair Enables Oocyte Quality Control. Mol Cell 2018; 72:211-221.e3. [PMID: 30270110 DOI: 10.1016/j.molcel.2018.08.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
Oocyte quality control culls eggs with defects in meiosis. In mouse, oocyte death can be triggered by defects in chromosome synapsis and recombination, which involve repair of DNA double-strand breaks (DSBs) between homologous chromosomes. We show that RNF212, a SUMO ligase required for crossing over, also mediates oocyte quality control. Both physiological apoptosis and wholesale oocyte elimination in meiotic mutants require RNF212. RNF212 sensitizes oocytes to DSB-induced apoptosis within a narrow window as chromosomes desynapse and cells transition into quiescence. Analysis of DNA damage during this transition implies that RNF212 impedes DSB repair. Consistently, RNF212 is required for HORMAD1, a negative regulator of inter-sister recombination, to associate with desynapsing chromosomes. We infer that oocytes impede repair of residual DSBs to retain a "memory" of meiotic defects that enables quality-control processes. These results define the logic of oocyte quality control and suggest RNF212 variants may influence transmission of defective genomes.
Collapse
Affiliation(s)
- Huanyu Qiao
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA.
| | - H B D Prasada Rao
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Yan Yun
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Sumit Sandhu
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Jared H Fong
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Manali Sapre
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Michael Nguyen
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Addy Tham
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Benjamin W Van
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Tiffany Y H Chng
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Amy Lee
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA; Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA, USA; Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Hwang GH, Hopkins JL, Jordan PW. Chromatin Spread Preparations for the Analysis of Mouse Oocyte Progression from Prophase to Metaphase II. J Vis Exp 2018. [PMID: 29553540 DOI: 10.3791/56736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Chromatin spread techniques have been widely used to assess the dynamic localization of various proteins during gametogenesis, particularly for spermatogenesis. These techniques allow for visualization of protein and DNA localization patterns during meiotic events such as homologous chromosome pairing, synapsis and DNA repair. While a few protocols have been described in the literature, general chromatin spread techniques using mammalian prophase oocytes are limited and difficult due to the timing of meiosis initiation in fetal ovaries. In comparison, prophase spermatocytes can be collected from juvenile male mice with higher yields without the need for microdissection. However, it is difficult to obtain a pure synchronized population of cells at specific stages due to the heterogeneity of meiotic and post-meiotic germ cell populations in the juvenile and adult testis. For later stages of meiosis, it is advantageous to assess oocytes undergoing meiosis I (MI) or meiosis II (MII), because groups of mature oocytes can be collected from adult female mice and stimulated to resume meiosis in culture. Here, methods for meiotic chromatin spread preparations using oocytes dissected from fetal, neonatal and adult ovaries are described with accompanying video demonstrations. Chromosome missegregation events in mammalian oocytes are frequent, particularly during MI. These techniques can be used to assess and characterize the effects of different mutations or environmental exposures during various stages of oogenesis. As there are distinct differences between oogenesis and spermatogenesis, the techniques described within are invaluable to increase our understanding of mammalian oogenesis and the sexually dimorphic features of chromosome and protein dynamics during meiosis.
Collapse
Affiliation(s)
- Grace H Hwang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health
| | - Jessica L Hopkins
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health;
| |
Collapse
|
8
|
Brieño-Enríquez MA, Moak SL, Holloway JK, Cohen PE. NIMA-related kinase 1 (NEK1) regulates meiosis I spindle assembly by altering the balance between α-Adducin and Myosin X. PLoS One 2017; 12:e0185780. [PMID: 28982183 PMCID: PMC5628868 DOI: 10.1371/journal.pone.0185780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
NIMA-related kinase 1 (NEK1) is a serine/threonine and tyrosine kinase that is highly expressed in mammalian germ cells. Mutations in Nek1 induce anemia, polycystic kidney and infertility. In this study we evaluated the role of NEK1 in meiotic spindle formation in both male and female gametes. Our results show that the lack of NEK1 provokes an abnormal organization of the meiosis I spindle characterized by elongated and/or multipolar spindles, and abnormal chromosome congression. The aberrant spindle structure is concomitant with the disruption in localization and protein levels of myosin X (MYO10) and α-adducin (ADD1), both of which are implicated in the regulation of spindle formation during mitosis. Interaction of ADD1 with MYO10 is dependent on phosphorylation, whereby phosphorylation of ADD1 enables its binding to MYO10 on mitotic spindles. Reduction in ADD1 protein in NEK1 mutant mice is associated with hyperphosphorylation of ADD1, thereby preventing the interaction with MYO10 during meiotic spindle formation. Our results reveal a novel regulatory role for NEK1 in the regulation of spindle architecture and function during meiosis.
Collapse
Affiliation(s)
- Miguel A. Brieño-Enríquez
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Stefannie L. Moak
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
| | - J. Kim Holloway
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Rao HBDP, Qiao H, Bhatt SK, Bailey LRJ, Tran HD, Bourne SL, Qiu W, Deshpande A, Sharma AN, Beebout CJ, Pezza RJ, Hunter N. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 2017; 355:403-407. [PMID: 28059716 PMCID: PMC5569317 DOI: 10.1126/science.aaf6407] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/12/2016] [Accepted: 12/14/2016] [Indexed: 01/12/2023]
Abstract
Meiosis produces haploid gametes through a succession of chromosomal events, including pairing, synapsis, and recombination. Mechanisms that orchestrate these events remain poorly understood. We found that the SUMO (small ubiquitin-like modifier)-modification and ubiquitin-proteasome systems regulate the major events of meiotic prophase in mouse. Interdependent localization of SUMO, ubiquitin, and proteasomes along chromosome axes was mediated largely by RNF212 and HEI10, two E3 ligases that are also essential for crossover recombination. RNF212-dependent SUMO conjugation effected a checkpointlike process that stalls recombination by rendering the turnover of a subset of recombination factors dependent on HEI10-mediated ubiquitylation. We propose that SUMO conjugation establishes a precondition for designating crossover sites via selective protein stabilization. Thus, meiotic chromosome axes are hubs for regulated proteolysis via SUMO-dependent control of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- H B D Prasada Rao
- Howard Hughes Medical Institute, University of California, Davis, CA 95616, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Huanyu Qiao
- Howard Hughes Medical Institute, University of California, Davis, CA 95616, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Shubhang K Bhatt
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Logan R J Bailey
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Hung D Tran
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Sarah L Bourne
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Wendy Qiu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Anusha Deshpande
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Ajay N Sharma
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Connor J Beebout
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Roberto J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, CA 95616, USA.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| |
Collapse
|