1
|
Kacen A, Javitt A, Kramer MP, Morgenstern D, Tsaban T, Shmueli MD, Teo GC, da Veiga Leprevost F, Barnea E, Yu F, Admon A, Eisenbach L, Samuels Y, Schueler-Furman O, Levin Y, Nesvizhskii AI, Merbl Y. Post-translational modifications reshape the antigenic landscape of the MHC I immunopeptidome in tumors. Nat Biotechnol 2023; 41:239-251. [PMID: 36203013 PMCID: PMC11197725 DOI: 10.1038/s41587-022-01464-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022]
Abstract
Post-translational modification (PTM) of antigens provides an additional source of specificities targeted by immune responses to tumors or pathogens, but identifying antigen PTMs and assessing their role in shaping the immunopeptidome is challenging. Here we describe the Protein Modification Integrated Search Engine (PROMISE), an antigen discovery pipeline that enables the analysis of 29 different PTM combinations from multiple clinical cohorts and cell lines. We expanded the antigen landscape, uncovering human leukocyte antigen class I binding motifs defined by specific PTMs with haplotype-specific binding preferences and revealing disease-specific modified targets, including thousands of new cancer-specific antigens that can be shared between patients and across cancer types. Furthermore, we uncovered a subset of modified peptides that are specific to cancer tissue and driven by post-translational changes that occurred in the tumor proteome. Our findings highlight principles of PTM-driven antigenicity, which may have broad implications for T cell-mediated therapies in cancer and beyond.
Collapse
Affiliation(s)
- Assaf Kacen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Aaron Javitt
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Tsaban
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Eilon Barnea
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Muroski JM, Fu JY, Nguyen HH, Loo RRO, Loo JA. Leveraging Immonium Ions for Targeting Acyl-Lysine Modifications in Proteomic Datasets. Proteomics 2021; 21:e2000111. [PMID: 32896103 PMCID: PMC8742405 DOI: 10.1002/pmic.202000111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/03/2020] [Indexed: 11/08/2022]
Abstract
Acyl modifications vary greatly in terms of elemental composition and site of protein modification. Developing methods to identify acyl modifications more confidently can help to assess the scope of these modifications in large proteomic datasets. The utility of acyl-lysine immonium ions is analyzed for identifying the modifications in proteomic datasets. It is demonstrated that the cyclized immonium ion is a strong indicator of acyl-lysine presence when its rank or relative abundance compared to other ions within a spectrum is considered. Utilizing a stepped collision energy method in a shotgun experiment highlights the immonium ion. By implementing an analysis that accounted for features within each MS2 spectrum, the method clearly identifies peptides with short chain acyl-lysine modifications from complex lysates. Immonium ions can also be used to validate novel acyl modifications; in this study, the first examples of 3-hydroxylpimelyl-lysine modifications are reported and they are validated using immonium ions. Overall these results solidify the use of the immonium ion as a marker for acyl-lysine modifications in complex proteomic datasets.
Collapse
Affiliation(s)
- John M. Muroski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Janine Y. Fu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Hong Hanh Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Rachel R. Ogorzalek Loo
- David Geffen School of Medicine, Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- UCLA-DOE Institute, University of California, Los Angeles, CA, USA
- UCLA Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- David Geffen School of Medicine, Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- UCLA-DOE Institute, University of California, Los Angeles, CA, USA
- UCLA Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Jensen P, Patel B, Smith S, Sabnis R, Kaboord B. Improved Immunoprecipitation to Mass Spectrometry Method for the Enrichment of Low-Abundant Protein Targets. Methods Mol Biol 2021; 2261:229-246. [PMID: 33420993 DOI: 10.1007/978-1-0716-1186-9_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immunoprecipitation (IP) is commonly used upstream of mass spectrometry (MS) as an enrichment tool for low-abundant protein targets. However, several aspects of the classical IP procedure such as nonspecific protein binding to the isolation matrix, detergents or high salt concentrations in wash and elution buffers, and antibody chain contamination in elution fractions render it incompatible with downstream mass spectrometry analysis. Here, we discuss an improved IP-MS workflow that is designed to minimize sample prep time and these contaminants. The method employs biotinylated antibodies to the targets of interest and streptavidin magnetic beads that exhibit low background binding. In addition, alterations in the elution protocol and subsequent MS sample prep were made to reduce time and antibody leaching in the eluent, minimizing potential ion suppression effects and thereby maximizing detection of multiple target antigens and interacting proteins.
Collapse
Affiliation(s)
| | | | | | - Renuka Sabnis
- Nisarga Biotech Pvt. Ltd., Satara, Maharashtra, India
| | | |
Collapse
|
4
|
Schreiber KJ, Lewis JD. Protein Acetylation in Pathogen Virulence and Host Defense: In Vitro Detection of Protein Acetylation by Radiolabeled Acetyl Coenzyme A. Methods Mol Biol 2020; 1991:23-32. [PMID: 31041759 DOI: 10.1007/978-1-4939-9458-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein acetylation has emerged as a common modification that modulates multiple aspects of protein function, including localization, stability, and protein-protein interactions. It is increasingly evident that protein acetylation significantly impacts the outcome of host-microbe interactions. In order to characterize novel putative acetyltransferase enzymes and their substrates, we describe a simple protocol for the detection of acetyltransferase activity in vitro. Purified proteins are incubated with 14C-acetyl CoA and separated electrophoretically, and acetylated proteins are detected by phosphorimaging or autoradiography.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA. .,Plant Gene Expression Center, United States Department of Agriculture, Albany, CA, USA.
| |
Collapse
|
5
|
Kriss CL, Gregory-Lott E, Storey AJ, Tackett AJ, Wahls WP, Stevens SM. In Vivo Metabolic Tracing Demonstrates the Site-Specific Contribution of Hepatic Ethanol Metabolism to Histone Acetylation. Alcohol Clin Exp Res 2018; 42:1909-1923. [PMID: 30030934 PMCID: PMC6208134 DOI: 10.1111/acer.13843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epigenetic dysregulation through ethanol (EtOH)-induced changes in DNA methylation and histone modifications has been implicated in several alcohol-related disorders such as alcoholic liver disease. EtOH metabolism in the liver results in the formation of acetate, a metabolite that can be converted to acetyl-CoA, which can then be used by histone acetyltransferases to acetylate lysine residues. EtOH metabolism in the liver can also indirectly influence lysine acetylation through NAD+ -dependent sirtuin activity that is altered due to increases in NADH. As a proof-of-concept study to determine the direct influence of hepatic EtOH metabolism on histone acetylation changes, we used heavy-labeled EtOH (13 C2 ) and mass spectrometry (MS) to site specifically characterize lysine acetylation on histone proteins. METHODS Eight-week-old male C57BL/6J mice were gavaged using a bolus dose of either 13 C2 -labeled EtOH (5 g/kg) or maltose dextrin. Blood and livers were collected at 0, 4, and 24 hours followed by histone protein enrichment and derivatization using acid extraction and propionylation, respectively. Metabolic tracing and relative quantitation of acetylated histone proteins were performed using a hybrid quadrupole-orbitrap mass spectrometer. Data were analyzed using MaxQuant, Xcalibur Qual Browser, and the Bioconductor package "mzR." The contribution of EtOH to histone acetylation was quantified using the change in relative abundance of stable isotope incorporation in acetylated peptides detected by MS. RESULTS Data show significant incorporation of the EtOH-derived 13 C2 -label into N-terminal lysine acetylation sites on histones H3 and H4 after 4 hours, with rapid turnover of labeled histone acetylation sites and return to endogenous levels at 24 hours postgavage. Moreover, site-specific selectivity was observed in regard to label incorporation into certain lysine acetylation sites as determined by tandem mass spectrometry and comparison to isotope simulations. CONCLUSIONS These data provide the first quantitative evidence of how hepatic EtOH metabolism directly influences histone lysine acetylation in a site-specific manner and may influence EtOH-induced gene expression through these transcriptionally activating chromatin marks.
Collapse
Affiliation(s)
- Crystina L. Kriss
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA
| | - Emily Gregory-Lott
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, Arkansas, 72205
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, Arkansas, 72205
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, Arkansas, 72205
| | - Stanley M. Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA
| |
Collapse
|
6
|
Greer SM, Sidoli S, Coradin M, Schack Jespersen M, Schwämmle V, Jensen ON, Garcia BA, Brodbelt JS. Extensive Characterization of Heavily Modified Histone Tails by 193 nm Ultraviolet Photodissociation Mass Spectrometry via a Middle-Down Strategy. Anal Chem 2018; 90:10425-10433. [PMID: 30063333 PMCID: PMC6383154 DOI: 10.1021/acs.analchem.8b02320] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability to map combinatorial patterns of post-translational modifications (PTMs) of proteins remains challenging for traditional bottom-up mass spectrometry workflows. There are also hurdles associated with top-down approaches related to limited data analysis options for heavily modified proteoforms. These shortcomings have accelerated interest in middle-down MS methods that focus on analysis of large peptides generated by specific proteases in conjunction with validated bioinformatics strategies to allow quantification of isomeric histoforms. Mapping multiple PTMs simultaneously requires the ability to obtain high sequence coverage to allow confident localization of the modifications, and 193 nm ultraviolet photodissociation (UVPD) has been shown to cause extensive fragmentation for large peptides and proteins. Histones are an ideal system to test the ability of UVPD to characterize multiple modifications, as the combinations of PTMs are the underpinning of the biological significance of histones and at the same time create an imposing challenge for characterization. The present study focuses on applying 193 nm UVPD to the identification and localization of PTMs on histones by UVPD and comparison to a popular alternative, electron-transfer dissociation (ETD), via a high-throughput middle-down LC/MS/MS strategy. Histone Coder and IsoScale, bioinformatics tools for verification of PTM assignments and quantification of histone peptides, were adapted for UVPD data and applied in the present study. In total, over 300 modified forms were identified, and the distributions of PTMs were quantified between UVPD and ETD. Significant differences in patterns of PTMs were found for histones from HeLa cells prior to and after treatment with a deacetylase inhibitor. Additional fragment ion types generated by UVPD proved essential for extensive characterization of the most heavily modified forms (>5 PTMs).
Collapse
Affiliation(s)
- Sylvester M Greer
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Malena Schack Jespersen
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense , Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense , Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense , Denmark
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
7
|
Greer SM, Bern M, Becker C, Brodbelt JS. Extending Proteome Coverage by Combining MS/MS Methods and a Modified Bioinformatics Platform Adapted for Database Searching of Positive and Negative Polarity 193 nm Ultraviolet Photodissociation Mass Spectra. J Proteome Res 2018; 17:1340-1347. [DOI: 10.1021/acs.jproteome.7b00673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sylvester M. Greer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Marshall Bern
- Protein
Metrics,
Inc., San Carlos, California 94070, United States
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Greer SM, Brodbelt JS. Top-Down Characterization of Heavily Modified Histones Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. J Proteome Res 2018; 17:1138-1145. [DOI: 10.1021/acs.jproteome.7b00801] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sylvester M. Greer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Díez P, González-Muñoz M, González-González M, Dégano RM, Jara-Acevedo R, Sánchez-Paradinas S, Piñol R, Murillo JL, Lou G, Palacio F, Almendral MJ, Millán Á, Rodríguez-Fernández E, Criado JJ, Ibarrola N, Fuentes M. Functional insights into the cellular response triggered by a bile-acid platinum compound conjugated to biocompatible ferric nanoparticles using quantitative proteomic approaches. NANOSCALE 2017; 9:9960-9972. [PMID: 28681874 DOI: 10.1039/c7nr02196h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
At present, bioferrofluids are employed as powerful multifunctional tools for biomedical applications such as drug delivery, among others. The present study explores the cellular response evoked when bile-acid platinum derivatives are conjugated with bioferrofluids by testing the biological activity in osteosarcoma (MG-63) and T-cell leukemia (Jurkat) cells. The aim of this work is to evaluate the biocompatibility of a bile-acid platinum derivative conjugated with multi-functional polymer coated bioferrofluids by observing the effects on the protein expression profiles and in intracellular pathways of nanoparticle-stimulated cells. To this end, a mass spectrometry-based approach termed SILAC has been applied to determine in a high-throughput manner the key proteins involved in the cellular response process (including specific quantitatively identified proteins related to the vesicular transport, cellular structure, cell cycle, biosynthetic process, apoptosis and regulation of the cell cycle). Finally, biocompatibility was evaluated and validated by conventional strategies also (such as flow cytometry, MTT, etc.).
Collapse
Affiliation(s)
- Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xu Q, Patel D, Zhang X, Veenstra RD. Changes in cardiac Nav1.5 expression, function, and acetylation by pan-histone deacetylase inhibitors. Am J Physiol Heart Circ Physiol 2016; 311:H1139-H1149. [PMID: 27638876 DOI: 10.1152/ajpheart.00156.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are small molecule anticancer therapeutics that exhibit limiting cardiotoxicities including QT interval prolongation and life-threatening cardiac arrhythmias. Because the molecular mechanisms for HDAC inhibitor-induced cardiotoxicity are poorly understood, we performed whole cell patch voltage-clamp experiments to measure cardiac sodium currents (INa) from wild-type neonatal mouse ventricular or human-induced pluripotent stem cell-derived cardiomyocytes treated with trichostatin A (TSA), vorinostat (VOR), or romidepsin (FK228). All three pan-HDAC inhibitors dose dependently decreased peak INa density and shifted the voltage activation curve 3- to 8-mV positive. Increases in late INa were not observed despite a moderate slowing of the inactivation rate at low activating potentials (<-40 mV). Scn5a mRNA levels were not significantly altered but NaV1.5 protein levels were significantly reduced. Immunoprecipitation with anti-NaV1.5 and Western blotting with anti-acetyl-lysine antibodies indicated that NaV1.5 acetylation is increased in vivo after HDAC inhibition. FK228 inhibited total cardiac HDAC activity with two apparent IC50s of 5 nM and 1.75 μM, consistent with previous findings with TSA and VOR. FK228 also decreased ventricular gap junction conductance (gj), again consistent with previous findings. We conclude that pan-HDAC inhibition reduces cardiac INa density and NaV1.5 protein levels without affecting late INa amplitude and, thus, probably does not contribute to the reported QT interval prolongation and arrhythmias associated with pan-HDAC inhibitor therapies. Conversely, reductions in gj may enhance the occurrence of triggered activity by limiting electrotonic inhibition and, combined with reduced INa, slow myocardial conduction and increase vulnerability to reentrant arrhythmias.
Collapse
Affiliation(s)
- Qin Xu
- Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York; and
| | - Dakshesh Patel
- Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York; and
| | - Xian Zhang
- Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York; and
| | - Richard D Veenstra
- Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York; and .,Department of Cell and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
11
|
Kaboord B, Smith S, Patel B, Meier S. Enrichment of low-abundant protein targets by immunoprecipitation upstream of mass spectrometry. Methods Mol Biol 2015; 1295:135-151. [PMID: 25820720 DOI: 10.1007/978-1-4939-2550-6_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Immunoprecipitation (IP) is commonly used upstream of mass spectrometry (MS) as an enrichment tool for low-abundant protein targets. However, several aspects of the classical IP procedure such as nonspecific protein binding to the isolation matrix, detergents or high salt concentrations in wash and elution buffers, and antibody chain contamination in elution fractions render it incompatible with downstream mass spectrometry analysis. Here, we discuss two IP workflows that are designed to minimize or eliminate these contaminants: the first employs biotinylated antibodies and streptavidin magnetic beads while the second method utilizes a traditional antibody that is oriented and cross-linked to Protein AG magnetic beads. Both modified magnetic supports have low background binding and both antibody immobilization strategies significantly reduce or eliminate antibody heavy and light chain contamination in the eluent, minimizing potential ion suppression effects and thereby maximizing detection of target antigens and interacting proteins.
Collapse
Affiliation(s)
- Barbara Kaboord
- Research & Development, Thermo Fisher Scientific, 3747 N. Meridian Rd., Rockford, IL, 61101, USA,
| | | | | | | |
Collapse
|