1
|
Smith RA, Beebe ET, Bingman CA, Vander Meulen K, Eugene A, Steiner AJ, Karlen SD, Ralph J, Fox BG. Identification and characterization of a set of monocot BAHD monolignol transferases. PLANT PHYSIOLOGY 2022; 189:37-48. [PMID: 35134228 PMCID: PMC9070852 DOI: 10.1093/plphys/kiac035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plant BAHD acyltransferases perform a wide range of enzymatic tasks in primary and secondary metabolism. Acyl-CoA monolignol transferases, which couple a CoA substrate to a monolignol creating an ester linkage, represent a more recent class of such acyltransferases. The resulting conjugates may be used for plant defense but are also deployed as important "monomers" for lignification, in which they are incorporated into the growing lignin polymer chain. p-Coumaroyl-CoA monolignol transferases (PMTs) increase the production of monolignol p-coumarates, and feruloyl-CoA monolignol transferases (FMTs) catalyze the production of monolignol ferulate conjugates. We identified putative FMT and PMT enzymes in sorghum (Sorghum bicolor) and switchgrass (Panicum virgatum) and have compared their activities to those of known monolignol transferases. The putative FMT enzymes produced both monolignol ferulate and monolignol p-coumarate conjugates, whereas the putative PMT enzymes produced monolignol p-coumarate conjugates. Enzyme activity measurements revealed that the putative FMT enzymes are not as efficient as the rice (Oryza sativa) control OsFMT enzyme under the conditions tested, but the SbPMT enzyme is as active as the control OsPMT enzyme. These putative FMTs and PMTs were transformed into Arabidopsis (Arabidopsis thaliana) to test their activities and abilities to biosynthesize monolignol conjugates for lignification in planta. The presence of ferulates and p-coumarates on the lignin of these transformants indicated that the putative FMTs and PMTs act as functional feruloyl-CoA and p-coumaroyl-CoA monolignol transferases within plants.
Collapse
Affiliation(s)
| | - Emily T Beebe
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Kirk Vander Meulen
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Alexis Eugene
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
| | | | - Steven D Karlen
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
| | - John Ralph
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
2
|
In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography. Acta Pharm Sin B 2022; 12:3682-3693. [PMID: 36176904 PMCID: PMC9513493 DOI: 10.1016/j.apsb.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cell membrane affinity chromatography has been widely applied in membrane protein (MP)-targeted drug screening and interaction analysis. However, in current methods, the MP sources are derived from cell lines or recombinant protein expression, which are time-consuming for cell culture or purification, and also difficult to ensure the purity and consistent orientation of MPs in the chromatographic stationary phase. In this study, a novel in situ synthesis membrane protein affinity chromatography (iSMAC) method was developed utilizing cell-free protein expression (CFE) and covalent immobilized affinity chromatography, which achieved efficient in situ synthesis and unidirectional insertion of MPs into liposomes in the stationary phase. The advantages of iSMAC are: 1) There is no need to culture cells or prepare recombinant proteins; 2) Specific and purified MPs with stable and controllable content can be obtained within 2 h; 3) MPs maintain the transmembrane structure and a consistent orientation in the chromatographic stationary phase; 4) The flexible and personalized construction of cDNAs makes it possible to analyze drug binding sites. iSMAC was successfully applied to screen PDGFRβ inhibitors from Salvia miltiorrhiza and Schisandra chinensis. Micro columns prepared by in-situ synthesis maintain satisfactory analysis activity within 72 h. Two new PDGFRβ inhibitors, salvianolic acid B and gomisin D, were screened out with KD values of 13.44 and 7.39 μmol/L, respectively. In vitro experiments confirmed that the two compounds decreased α-SMA and collagen Ӏ mRNA levels raised by TGF-β in HSC-T6 cells through regulating the phosphorylation of p38, AKT and ERK. In vivo, Sal B could also attenuate CCl4-induced liver fibrosis by downregulating PDGFRβ downstream related protein levels. The iSMAC method can be applied to other general MPs, and provides a practical approach for the rapid preparation of MP-immobilized or other biological solid-phase materials.
Collapse
|
3
|
de Vries L, MacKay HA, Smith RA, Mottiar Y, Karlen SD, Unda F, Muirragui E, Bingman C, Vander Meulen K, Beebe ET, Fox BG, Ralph J, Mansfield SD. pHBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. PLANT PHYSIOLOGY 2022; 188:1014-1027. [PMID: 34977949 PMCID: PMC8825253 DOI: 10.1093/plphys/kiab546] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 05/13/2023]
Abstract
Poplar (Populus) lignin is naturally acylated with p-hydroxybenzoate ester moieties. However, the enzyme(s) involved in the biosynthesis of the monolignol-p-hydroxybenzoates have remained largely unknown. Here, we performed an in vitro screen of the Populus trichocarpa BAHD acyltransferase superfamily (116 genes) using a wheatgerm cell-free translation system and found five enzymes capable of producing monolignol-p-hydroxybenzoates. We then compared the transcript abundance of the five corresponding genes with p-hydroxybenzoate concentrations using naturally occurring unrelated genotypes of P. trichocarpa and revealed a positive correlation between the expression of p-hydroxybenzoyl-CoA monolig-nol transferase (pHBMT1, Potri.001G448000) and p-hydroxybenzoate levels. To test whether pHBMT1 is responsible for the biosynthesis of monolignol-p-hydroxybenzoates, we overexpressed pHBMT1 in hybrid poplar (Populus alba × P. grandidentata) (35S::pHBMT1 and C4H::pHBMT1). Using three complementary analytical methods, we showed that there was an increase in soluble monolignol-p-hydroxybenzoates and cell-wall-bound monolignol-p-hydroxybenzoates in the poplar transgenics. As these pendent groups are ester-linked, saponification releases p-hydroxybenzoate, a precursor to parabens that are used in pharmaceuticals and cosmetics. This identified gene could therefore be used to engineer lignocellulosic biomass with increased value for emerging biorefinery strategies.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | - Heather A MacKay
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rebecca A Smith
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yaseen Mottiar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | - Steven D Karlen
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | - Emilia Muirragui
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Craig Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kirk Vander Meulen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Emily T Beebe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John Ralph
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
- Author for communication:
| |
Collapse
|
4
|
Buntru M, Vogel S, Finnern R, Schillberg S. Plant-Based Cell-Free Transcription and Translation of Recombinant Proteins. Methods Mol Biol 2022; 2480:113-124. [PMID: 35616861 DOI: 10.1007/978-1-0716-2241-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant cell-free lysates contain all the cellular components of the protein biosynthesis machinery, providing an alternative to intact plant cells, tissues, and whole plants for the production of recombinant proteins. Cell-free lysates achieve rapid protein production (within hours or days) and allow the synthesis of proteins that are cytotoxic or unstable in living cells. The open nature of cell-free lysates and their homogeneous and reproducible performance is ideal for protein production, especially for screening applications, allowing the direct addition of nucleic acid templates encoding proteins of interest, as well as other components such as enzyme substrates, chaperones, artificial amino acids, or labeling molecules. Here we describe procedures for the production of recombinant proteins in the ALiCE (Almost Living Cell-free Expression) system, a lysate derived from tobacco cell suspension cultures that can be used to manufacture protein products for molecular and biochemical analysis as well as applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Simon Vogel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
- Department of Phytopathology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
5
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
6
|
Lemke RAS, Olson SM, Morse K, Karlen SD, Higbee A, Beebe ET, Ralph J, Coon JJ, Fox BG, Donohue TJ. A bacterial biosynthetic pathway for methylated furan fatty acids. J Biol Chem 2020; 295:9786-9801. [PMID: 32434926 PMCID: PMC7380195 DOI: 10.1074/jbc.ra120.013697] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria. Each of the steps in FuFA biosynthesis occurs on pre-existing phospholipid fatty acid chains, and we identified pathway intermediates and the gene products that catalyze 9M5-FuFA and 9D5-FuFA synthesis in Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas palustris CGA009. One previously unknown pathway intermediate was a methylated diunsaturated fatty acid, (10E,12E)-11-methyloctadeca-10,12-dienoic acid (11Me-10t,12t-18:2), produced from (11E)-methyloctadeca-11-enoic acid (11Me-12t-18:1) by a newly identified fatty acid desaturase, UfaD. We also show that molecular oxygen (O2) is the source of the oxygen atom in the furan ring of 9M5-FuFA, and our findings predict that an O2-derived oxygen atom is incorporated into 9M5-FuFA via a protein, UfaO, that uses the 11Me-10t,12t-18:2 fatty acid phospholipid chain as a substrate. We discovered that R. palustris also contains a SAM-dependent methylase, FufM, that produces 9D5-FuFA from 9M5-FuFA. These results uncover the biochemical sequence of intermediates in a bacterial pathway for 9M5-FuFA and 9D5-FuFA biosynthesis and suggest the existence of homologs of the enzymes identified here that could function in FuFA biosynthesis in other organisms.
Collapse
Affiliation(s)
- Rachelle A S Lemke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Stephanie M Olson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Kaitlin Morse
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Steven D Karlen
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Alan Higbee
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily T Beebe
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Joshua J Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Brian G Fox
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA .,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Kontur WS, Olmsted CN, Yusko LM, Niles AV, Walters KA, Beebe ET, Vander Meulen KA, Karlen SD, Gall DL, Noguera DR, Donohue TJ. A heterodimeric glutathione S-transferase that stereospecifically breaks lignin's β( R)-aryl ether bond reveals the diversity of bacterial β-etherases. J Biol Chem 2018; 294:1877-1890. [PMID: 30541921 PMCID: PMC6369299 DOI: 10.1074/jbc.ra118.006548] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/07/2018] [Indexed: 11/12/2022] Open
Abstract
Lignin is a heterogeneous polymer of aromatic subunits that is a major component of lignocellulosic plant biomass. Understanding how microorganisms deconstruct lignin is important for understanding the global carbon cycle and could aid in developing systems for processing plant biomass into valuable commodities. Sphingomonad bacteria use stereospecific glutathione S-transferases (GSTs) called β-etherases to cleave the β-aryl ether (β-O-4) bond, the most common bond between aromatic subunits in lignin. Previously characterized bacterial β-etherases are homodimers that fall into two distinct GST subclasses: LigE homologues, which cleave the β(R) stereoisomer of the bond, and LigF homologues, which cleave the β(S) stereoisomer. Here, we report on a heterodimeric β-etherase (BaeAB) from the sphingomonad Novosphingobium aromaticivorans that stereospecifically cleaves the β(R)-aryl ether bond of the di-aromatic compound β-(2-methoxyphenoxy)-γ-hydroxypropiovanillone (MPHPV). BaeAB's subunits are phylogenetically distinct from each other and from other β-etherases, although they are evolutionarily related to LigF, despite the fact that BaeAB and LigF cleave different β-aryl ether bond stereoisomers. We identify amino acid residues in BaeAB's BaeA subunit important for substrate binding and catalysis, including an asparagine that is proposed to activate the GSH cofactor. We also show that BaeAB homologues from other sphingomonads can cleave β(R)-MPHPV and that they may be as common in bacteria as LigE homologues. Our results suggest that the ability to cleave the β-aryl ether bond arose independently at least twice in GSTs and that BaeAB homologues may be important for cleaving the β(R)-aryl ether bonds of lignin-derived oligomers in nature.
Collapse
Affiliation(s)
- Wayne S Kontur
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Charles N Olmsted
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Larissa M Yusko
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Alyssa V Niles
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Kevin A Walters
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Emily T Beebe
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and.,the Departments of Biochemistry
| | - Kirk A Vander Meulen
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and.,the Departments of Biochemistry
| | - Steven D Karlen
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and.,the Departments of Biochemistry
| | - Daniel L Gall
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Daniel R Noguera
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and.,Civil and Environmental Engineering, and
| | - Timothy J Donohue
- From the Wisconsin Energy Institute, .,the Department of Energy Great Lakes Bioenergy Research Center, and.,Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
8
|
Current Solution NMR Techniques for Structure-Function Studies of Proteins and RNA Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:43-58. [DOI: 10.1007/978-981-13-2200-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Tran K, Gurramkonda C, Cooper MA, Pilli M, Taris JE, Selock N, Han T, Tolosa M, Zuber A, Peñalber‐Johnstone C, Dinkins C, Pezeshk N, Kostov Y, Frey DD, Tolosa L, Wood DW, Rao G. Cell‐free production of a therapeutic protein: Expression, purification, and characterization of recombinant streptokinase using a CHO lysate. Biotechnol Bioeng 2017; 115:92-102. [DOI: 10.1002/bit.26439] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Kevin Tran
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | | | - Merideth A. Cooper
- Department of Chemical and Biomolecular EngineeringOhio State UniversityColumbusOhio
| | - Manohar Pilli
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Joseph E. Taris
- Department of Chemical and Biomolecular EngineeringOhio State UniversityColumbusOhio
| | - Nicholas Selock
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Tzu‐Chiang Han
- Department of Chemical and Biomolecular EngineeringOhio State UniversityColumbusOhio
| | - Michael Tolosa
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Adil Zuber
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | | | - Christina Dinkins
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Niloufar Pezeshk
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Yordan Kostov
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Douglas D. Frey
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - Leah Tolosa
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| | - David W. Wood
- Department of Chemical and Biomolecular EngineeringOhio State UniversityColumbusOhio
| | - Govind Rao
- Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore CountyBaltimoreMaryland
| |
Collapse
|
10
|
Markley JL, Westler WM. Biomolecular NMR: Past and future. Arch Biochem Biophys 2017; 628:3-16. [PMID: 28495511 PMCID: PMC5701516 DOI: 10.1016/j.abb.2017.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/28/2022]
Abstract
The editors of this special volume suggested this topic, presumably because of the perspective lent by our combined >90-year association with biomolecular NMR. What follows is our personal experience with the evolution of the field, which we hope will illustrate the trajectory of change over the years. As for the future, one can confidently predict that it will involve unexpected advances. Our narrative is colored by our experience in using the NMR Facility for Biomedical Studies at Carnegie-Mellon University (Pittsburgh) and in developing similar facilities at Purdue (1977-1984) and the University of Wisconsin-Madison (1984-). We have enjoyed developing NMR technology and making it available to collaborators and users of these facilities. Our group's association with the Biological Magnetic Resonance data Bank (BMRB) and with the Worldwide Protein Data Bank (wwPDB) has also been rewarding. Of course, many groups contributed to the early growth and development of biomolecular NMR, and our brief personal account certainly omits many important milestones.
Collapse
Affiliation(s)
- John L Markley
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - William Milo Westler
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Minkoff BB, Makino SI, Haruta M, Beebe ET, Wrobel RL, Fox BG, Sussman MR. A cell-free method for expressing and reconstituting membrane proteins enables functional characterization of the plant receptor-like protein kinase FERONIA. J Biol Chem 2017; 292:5932-5942. [PMID: 28235802 DOI: 10.1074/jbc.m116.761981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/09/2017] [Indexed: 01/17/2023] Open
Abstract
There are more than 600 receptor-like kinases (RLKs) in Arabidopsis, but due to challenges associated with the characterization of membrane proteins, only a few have known biological functions. The plant RLK FERONIA is a peptide receptor and has been implicated in plant growth regulation, but little is known about its molecular mechanism of action. To investigate the properties of this enzyme, we used a cell-free wheat germ-based expression system in which mRNA encoding FERONIA was co-expressed with mRNA encoding the membrane scaffold protein variant MSP1D1. With the addition of the lipid cardiolipin, assembly of these proteins into nanodiscs was initiated. FERONIA protein kinase activity in nanodiscs was higher than that of soluble protein and comparable with other heterologously expressed protein kinases. Truncation experiments revealed that the cytoplasmic juxtamembrane domain is necessary for maximal FERONIA activity, whereas the transmembrane domain is inhibitory. An ATP analogue that reacts with lysine residues inhibited catalytic activity and labeled four lysines; mutagenesis demonstrated that two of these, Lys-565 and Lys-663, coordinate ATP in the active site. Mass spectrometric phosphoproteomic measurements further identified phosphorylation sites that were examined using phosphomimetic mutagenesis. The results of these experiments are consistent with a model in which kinase-mediated phosphorylation within the C-terminal region is inhibitory and regulates catalytic activity. These data represent a step further toward understanding the molecular basis for the protein kinase catalytic activity of FERONIA and show promise for future characterization of eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Benjamin B Minkoff
- From the Department of Biochemistry and.,the Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Miyoshi Haruta
- From the Department of Biochemistry and.,the Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706
| | | | | | | | - Michael R Sussman
- From the Department of Biochemistry and .,the Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
12
|
Thoring L, Wüstenhagen DA, Borowiak M, Stech M, Sonnabend A, Kubick S. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express" Proteins and Future Perspectives. PLoS One 2016; 11:e0163670. [PMID: 27684475 PMCID: PMC5042383 DOI: 10.1371/journal.pone.0163670] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/11/2016] [Indexed: 11/18/2022] Open
Abstract
Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO) cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called “difficult-to-express” proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of “difficult-to-express” proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called “cell-free” protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various “difficult-to-express” proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA.
Collapse
Affiliation(s)
- Lena Thoring
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Doreen A. Wüstenhagen
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Maria Borowiak
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Marlitt Stech
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Andrei Sonnabend
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Stefan Kubick
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|
13
|
Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function. Mol Cell 2016; 63:621-632. [PMID: 27499296 DOI: 10.1016/j.molcel.2016.06.033] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 03/25/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022]
Abstract
Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function.
Collapse
|
14
|
Li B, Makino SI, Beebe ET, Urano D, Aceti DJ, Misenheimer TM, Peters J, Fox BG, Jones AM. Cell-free translation and purification of Arabidopsis thaliana regulator of G signaling 1 protein. Protein Expr Purif 2016; 126:33-41. [PMID: 27164033 DOI: 10.1016/j.pep.2016.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 01/21/2023]
Abstract
Arabidopsis thaliana Regulator of G protein Signalling 1 (AtRGS1) is a protein with a predicted N-terminal 7-transmembrane (7TM) domain and a C-terminal cytosolic RGS1 box domain. The RGS1 box domain exerts GTPase activation (GAP) activity on Gα (AtGPA1), a component of heterotrimeric G protein signaling in plants. AtRGS1 may perceive an exogenous agonist to regulate the steady-state levels of the active form of AtGPA1. It is uncertain if the full-length AtRGS1 protein exerts any atypical effects on Gα, nor has it been established exactly how AtRGS1 contributes to perception of an extracellular signal and transmits this response to a G-protein dependent signaling cascade. Further studies on full-length AtRGS1 have been inhibited due to the extreme low abundance of the endogenous AtRGS1 protein in plants and lack of a suitable heterologous system to express AtRGS1. Here, we describe methods to produce full-length AtRGS1 by cell-free synthesis into unilamellar liposomes and nanodiscs. The cell-free synthesized AtRGS1 exhibits GTPase activating activity on Gα and can be purified to a level suitable for biochemical analyses.
Collapse
Affiliation(s)
- Bo Li
- Department of Biology, University of North Carolina at Chapel Hill, United States
| | - Shin-Ichi Makino
- Transmembrane Protein Center, University of Wisconsin-Madison, United States
| | - Emily T Beebe
- Transmembrane Protein Center, University of Wisconsin-Madison, United States
| | - Daisuke Urano
- Department of Biology, University of North Carolina at Chapel Hill, United States
| | - David J Aceti
- Transmembrane Protein Center, University of Wisconsin-Madison, United States
| | - Tina M Misenheimer
- Transmembrane Protein Center, University of Wisconsin-Madison, United States
| | - Jonathan Peters
- Department of Biology, University of North Carolina at Chapel Hill, United States
| | - Brian G Fox
- Transmembrane Protein Center, University of Wisconsin-Madison, United States
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
15
|
Deng K, Takasuka TE, Bianchetti CM, Bergeman LF, Adams PD, Northen TR, Fox BG. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases. Front Bioeng Biotechnol 2015; 3:165. [PMID: 26579511 PMCID: PMC4621489 DOI: 10.3389/fbioe.2015.00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022] Open
Abstract
Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.
Collapse
Affiliation(s)
- Kai Deng
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Sandia National Laboratories , Livermore, CA , USA
| | - Taichi E Takasuka
- US Department of Energy Great Lakes Bioenergy Research Center , Madison, WI , USA
| | - Christopher M Bianchetti
- US Department of Energy Great Lakes Bioenergy Research Center , Madison, WI , USA ; Department of Chemistry, University of Wisconsin-Oshkosh , Oshkosh, WI , USA
| | - Lai F Bergeman
- US Department of Energy Great Lakes Bioenergy Research Center , Madison, WI , USA
| | - Paul D Adams
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA ; Department of Bioengineering, University of California Berkeley , Berkeley, CA , USA
| | - Trent R Northen
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| | - Brian G Fox
- US Department of Energy Great Lakes Bioenergy Research Center , Madison, WI , USA ; Department of Biochemistry, University of Wisconsin-Madison , Madison, WI , USA
| |
Collapse
|
16
|
Li J, Lawton TJ, Kostecki JS, Nisthal A, Fang J, Mayo SL, Rosenzweig AC, Jewett MC. Cell‐free protein synthesis enables high yielding synthesis of an active multicopper oxidase. Biotechnol J 2015; 11:212-8. [DOI: 10.1002/biot.201500030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/26/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Jian Li
- Department of Chemical and Biological Engineering Northwestern University Evanston IL USA
- Chemistry of Life Processes Institute Northwestern University Evanston IL USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago IL USA
- Simpson Querrey Institute for BioNanotechnology in Medicine Northwestern University Chicago IL USA
| | - Thomas J. Lawton
- Department of Molecular Biosciences Northwestern University Evanston IL USA
| | - Jan S. Kostecki
- Division of Biological Sciences California Institute of Technology Pasadena CA USA
| | - Alex Nisthal
- Division of Biological Sciences California Institute of Technology Pasadena CA USA
| | - Jia Fang
- Department of Molecular Biosciences Northwestern University Evanston IL USA
| | - Stephen L. Mayo
- Division of Biological Sciences California Institute of Technology Pasadena CA USA
| | - Amy C. Rosenzweig
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago IL USA
- Department of Molecular Biosciences Northwestern University Evanston IL USA
- Department of Chemistry Northwestern University Evanston IL USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering Northwestern University Evanston IL USA
- Chemistry of Life Processes Institute Northwestern University Evanston IL USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago IL USA
- Simpson Querrey Institute for BioNanotechnology in Medicine Northwestern University Chicago IL USA
| |
Collapse
|
17
|
Fogeron ML, Badillo A, Jirasko V, Gouttenoire J, Paul D, Lancien L, Moradpour D, Bartenschlager R, Meier BH, Penin F, Böckmann A. Wheat germ cell-free expression: Two detergents with a low critical micelle concentration allow for production of soluble HCV membrane proteins. Protein Expr Purif 2014; 105:39-46. [PMID: 25306874 DOI: 10.1016/j.pep.2014.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 01/08/2023]
Abstract
Membrane proteins are notoriously difficult to express in a soluble form. Here, we use wheat germ cell-free expression in the presence of various detergents to produce the non-structural membrane proteins 2, 4B and 5A of the hepatitis C virus (HCV). We show that lauryl maltose neopentyl glycol (MNG-3) and dodecyl octaethylene glycol ether (C12E8) detergents can yield essentially soluble membrane proteins at detergent concentrations that do not inhibit the cell-free reaction. This finding can be explained by the low critical micelle concentration (CMC) of these detergents, which keeps the monomer concentrations low while at the same time providing the necessary excess of detergent concentration above CMC required for full target protein solubilization. We estimate that a tenfold excess of detergent micelles with respect to the protein concentration is sufficient for solubilization, a number that we propose as a guideline for detergent screening assays.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France; RD-Biotech, Recombinant Protein Unit, 3 rue Henri Baigue, 25000 Besançon, France
| | - Vlastimil Jirasko
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Loick Lancien
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France.
| |
Collapse
|
18
|
Harbers M. Wheat germ systems for cell-free protein expression. FEBS Lett 2014; 588:2762-73. [PMID: 24931374 DOI: 10.1016/j.febslet.2014.05.061] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Cell-free protein expression plays an important role in biochemical research. However, only recent developments led to new methods to rapidly synthesize preparative amounts of protein that make cell-free protein expression an attractive alternative to cell-based methods. In particular the wheat germ system provides the highest translation efficiency among eukaryotic cell-free protein expression approaches and has a very high success rate for the expression of soluble proteins of good quality. As an open in vitro method, the wheat germ system is a preferable choice for many applications in protein research including options for protein labeling and the expression of difficult-to-express proteins like membrane proteins and multiple protein complexes. Here I describe wheat germ cell-free protein expression systems and give examples how they have been used in genome-wide expression studies, preparation of labeled proteins for structural genomics and protein mass spectroscopy, automated protein synthesis, and screening of enzymatic activities. Future directions for the use of cell-free expression methods are discussed.
Collapse
Affiliation(s)
- Matthias Harbers
- RIKEN Center for Life Science Technologies, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan; CellFree Sciences Co., Ltd., 75-1, Ono-cho, Leading Venture Plaza 201, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan.
| |
Collapse
|
19
|
Beebe ET, Makino SI, Markley JL, Fox BG. Automated cell-free protein production methods for structural studies. Methods Mol Biol 2014; 1140:117-135. [PMID: 24590713 DOI: 10.1007/978-1-4939-0354-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In contrast to cell-based protein expression, cell-free production is highly consistent, scalable, and amenable to automation. Robots can handle many samples and perform repetitive procedures that are otherwise prone to human error. Here is described commercially available robotics for a wheat germ cell-free system with emphasis on practical applications for structural and functional studies. In addition, described is a cell-free method for preparing protein complexes.
Collapse
Affiliation(s)
- Emily T Beebe
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|