1
|
Ahmad ST, Li Y, Garcia-Lopez J, Gudenas BL, Hadley J, Paul L, Wu SC, Refaat A, Kojic M, Batts M, Soliman T, Pitre A, Arnskötter F, Zindy F, Jones A, Twarog NR, Mayasundari A, Bianski B, Tinkle C, Shirinifard A, Janke L, Lu M, Lewis SA, Onar-Thomas A, Pfister SM, Gajjar A, Baker SJ, Roussel MF, Rankovic Z, Robinson GW, Orr BA, Wainwright B, Shelat AA, Waszak SM, Kutscher LM, Lin H, Northcott PA. Genetic modeling of ELP1-associated Sonic hedgehog medulloblastoma identifies MDM2 as a selective therapeutic target. Cancer Cell 2025:S1535-6108(25)00173-4. [PMID: 40378836 DOI: 10.1016/j.ccell.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 02/23/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025]
Abstract
Germline loss-of-function (LOF) variants in Elongator acetyltransferase complex subunit 1 (ELP1) are the most prevalent predisposing genetic events in childhood medulloblastoma (MB), accounting for ∼30% of the Sonic hedgehog (SHH) 3 subtype. The mechanism(s) by which germline ELP1 deficiency provokes SHH-MB pathogenesis remain unknown. Genetically engineered mice mimicking heterozygous Elp1 LOF (Elp1HET) seen in affected germline carriers exhibit hallmark features of premalignancy in cerebellar granule neuron progenitors (GNPs), including increased DNA replication stress, genomic instability, accelerated cell cycle, and stalled differentiation. Orthotopic transplantation of Elp1HET GNPs harboring somatic Ptch1 inactivation yields SHH-MB-like tumors with compromised p53 signaling, providing a plausible explanation for the exclusivity of ELP1-associated MBs in the SHH-3 subtype. Preclinical treatment of ELP1-mutant patient-derived xenografts with an FDA-approved MDM2 inhibitor reactivates p53-dependent apoptosis and extends survival. Our findings functionally substantiate the role of ELP1 deficiency in SHH-MB predisposition and nominate therapeutics targeting MDM2 as a rational treatment option.
Collapse
Affiliation(s)
- Shiekh Tanveer Ahmad
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiran Li
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jesus Garcia-Lopez
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian L Gudenas
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Hadley
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leena Paul
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alaa Refaat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marija Kojic
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Melissa Batts
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taha Soliman
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Frederik Arnskötter
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Nathaniel R Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Bianski
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sara A Lewis
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suzanne J Baker
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Wainwright
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sebastian M Waszak
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Lena M Kutscher
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hong Lin
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Jaber N, Billet S. How to use an in vitro approach to characterize the toxicity of airborne compounds. Toxicol In Vitro 2024; 94:105718. [PMID: 37871865 DOI: 10.1016/j.tiv.2023.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
As part of the development of new approach methodologies (NAMs), numerous in vitro methods are being developed to characterize the potential toxicity of inhalable xenobiotics (gases, volatile organic compounds, polycyclic aromatic hydrocarbons, particulate matter, nanoparticles). However, the materials and methods employed are extremely diverse, and no single method is currently in use. Method standardization and validation would raise trust in the results and enable them to be compared. This four-part review lists and compares biological models and exposure methodologies before describing measurable biomarkers of exposure or effect. The first section emphasizes the importance of developing alternative methods to reduce, if not replace, animal testing (3R principle). The biological models presented are mostly to cultures of epithelial cells from the respiratory system, as the lungs are the first organ to come into contact with air pollutants. Monocultures or cocultures of primary cells or cell lines, as well as 3D organotypic cultures such as organoids, spheroids and reconstituted tissues, but also the organ(s) model on a chip are examples. The exposure methods for these biological models applicable to airborne compounds are submerged, intermittent, continuous either static or dynamic. Finally, within the restrictions of these models (i.e. relative tiny quantities, adhering cells), the mechanisms of toxicity and the phenotypic markers most commonly examined in models exposed at the air-liquid interface (ALI) are outlined.
Collapse
Affiliation(s)
- Nour Jaber
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France.
| |
Collapse
|
3
|
Akinjiyan FA, Morecroft R, Phillipps J, Adeyelu T, Elliott A, Park SJ, Butt OH, Zhou AY, Ansstas G. Homologous Recombination Deficiency (HRD) in Cutaneous Oncology. Int J Mol Sci 2023; 24:10771. [PMID: 37445949 DOI: 10.3390/ijms241310771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Skin cancers, including basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (SCC), and melanoma, are the most common malignancies in the United States. Loss of DNA repair pathways in the skin plays a significant role in tumorigenesis. In recent years, targeting DNA repair pathways, particularly homologous recombination deficiency (HRD), has emerged as a potential therapeutic approach in cutaneous malignancies. This review provides an overview of DNA damage and repair pathways, with a focus on HRD, and discusses major advances in targeting these pathways in skin cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors have been developed to exploit HRD in cancer cells. PARP inhibitors disrupt DNA repair mechanisms by inhibiting PARP enzymatic activity, leading to the accumulation of DNA damage and cell death. The concept of synthetic lethality has been demonstrated in HR-deficient cells, such as those with BRCA1/2 mutations, which exhibit increased sensitivity to PARP inhibitors. HRD assessment methods, including genomic scars, RAD51 foci formation, functional assays, and BRCA1/2 mutation analysis, are discussed as tools for identifying patients who may benefit from PARP inhibitor therapy. Furthermore, HRD has been implicated in the response to immunotherapy, and the combination of PARP inhibitors with immunotherapy has shown promising results. The frequency of HRD in melanoma ranges from 18% to 57%, and studies investigating the use of PARP inhibitors as monotherapy in melanoma are limited. Further research is warranted to explore the potential of PARP inhibition in melanoma treatment.
Collapse
Affiliation(s)
- Favour A Akinjiyan
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Renee Morecroft
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jordan Phillipps
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | | | | | - Soo J Park
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Omar H Butt
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Alice Y Zhou
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Akbas E, Unal F, Yuzbasioglu D. Genotoxic effects of gadobutrol and gadoversetamide active substances used in magnetic resonance imaging in human peripheral lymphocytes in vitro. Drug Chem Toxicol 2022; 45:2471-2482. [PMID: 35184618 DOI: 10.1080/01480545.2021.1957913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gadobutrol and gadoversetamide are gadolinium-based contrast agents (GBCAs) widely used during magnetic resonance imaging examination. In this study, the genotoxicity of two GBCAs, gadobutrol and gadoversetamide, was investigated by using different endpoints: chromosome aberration (CAs), sister chromatid exchange (SCEs), and micronucleus (MNi). Human peripheral lymphocytes (PBLs) were treated with five concentrations (7 000, 14 000, 28 000, 56 000, and 112 000 μg/mL) of both agents. While a few concentrations of gadobutrol significantly increased abnormal cell frequency and CA/Cell, nearly all the concentrations of gadoversetamide significantly elevated the same aberrations. Similarly, the effect of gadoversetamide on the formation of SCEs was higher than those of gadobutrol. Only one concentration of gadoversetamide significantly increased MN% but no gadobutrol. The comet assay was applied for the only gadobutrol which induced a significant increase in tail intensity at the highest concentration only. On the other hand, significantly decreased mitotic index (MI) was observed following both substances, again gadoversetamide was slightly higher than those of the gadobutrol. The results revealed that both the contrast agents are likely to induce genotoxic risk in PBLs. However, different concentrations and treatment periods should be examined in vitro and specifically in vivo with different test systems for the safer usage of these contrast agents.
Collapse
Affiliation(s)
- Ece Akbas
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06560, Ankara, Turkey
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06560, Ankara, Turkey
| | - Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06560, Ankara, Turkey
| |
Collapse
|
5
|
Balbo Pogliano C, Ceppi I, Giovannini S, Petroulaki V, Palmer N, Uliana F, Gatti M, Kasaciunaite K, Freire R, Seidel R, Altmeyer M, Cejka P, Matos J. The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells. SCIENCE ADVANCES 2022; 8:eabk0221. [PMID: 35119917 PMCID: PMC8816346 DOI: 10.1126/sciadv.abk0221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bloom's syndrome is caused by inactivation of the BLM helicase, which functions with TOP3A and RMI1-2 (BTR complex) to dissolve recombination intermediates and avoid somatic crossing-over. We show here that crossover avoidance by BTR further requires the activity of cyclin-dependent kinase-1 (CDK1), Polo-like kinase-1 (PLK1), and the DDR mediator protein TOPBP1, which act in the same pathway. Mechanistically, CDK1 phosphorylates BLM and TOPBP1 and promotes the interaction of both proteins with PLK1. This is amplified by the ability of TOPBP1 to facilitate phosphorylation of BLM at sites that stimulate both BLM-PLK1 and BLM-TOPBP1 binding, creating a positive feedback loop that drives rapid BLM phosphorylation at the G2-M transition. In vitro, BLM phosphorylation by CDK/PLK1/TOPBP1 stimulates the dissolution of topologically linked DNA intermediates by BLM-TOP3A. Thus, we propose that the CDK1-TOPBP1-PLK1 axis enhances BTR-mediated dissolution of recombination intermediates late in the cell cycle to suppress crossover recombination and curtail genomic instability.
Collapse
Affiliation(s)
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Sara Giovannini
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Vasiliki Petroulaki
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Nathan Palmer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Federico Uliana
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias–FIISC, Ofra s/n, 38320 La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
- Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Petr Cejka
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Joao Matos
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
6
|
Song JHT, Grant RL, Behrens VC, Kučka M, Roberts Kingman GA, Soltys V, Chan YF, Kingsley DM. Genetic studies of human-chimpanzee divergence using stem cell fusions. Proc Natl Acad Sci U S A 2021; 118:e2117557118. [PMID: 34921118 PMCID: PMC8713981 DOI: 10.1073/pnas.2117557118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Complete genome sequencing has identified millions of DNA changes that differ between humans and chimpanzees. Although a subset of these changes likely underlies important phenotypic differences between humans and chimpanzees, it is currently difficult to distinguish causal from incidental changes and to map specific phenotypes to particular genome locations. To facilitate further genetic study of human-chimpanzee divergence, we have generated human and chimpanzee autotetraploids and allotetraploids by fusing induced pluripotent stem cells (iPSCs) of each species. The resulting tetraploid iPSCs can be stably maintained and retain the ability to differentiate along ectoderm, mesoderm, and endoderm lineages. RNA sequencing identifies thousands of genes whose expression differs between humans and chimpanzees when assessed in single-species diploid or autotetraploid iPSCs. Analysis of gene expression patterns in interspecific allotetraploid iPSCs shows that human-chimpanzee expression differences arise from substantial contributions of both cis-acting changes linked to the genes themselves and trans-acting changes elsewhere in the genome. To enable further genetic mapping of species differences, we tested chemical treatments for stimulating genome-wide mitotic recombination between human and chimpanzee chromosomes, and CRISPR methods for inducing species-specific changes on particular chromosomes in allotetraploid cells. We successfully generated derivative cells with nested deletions or interspecific recombination on the X chromosome. These studies confirm an important role for the X chromosome in trans regulation of expression differences between species and illustrate the potential of this system for more detailed cis and trans mapping of the molecular basis of human and chimpanzee evolution.
Collapse
Affiliation(s)
- Janet H T Song
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Rachel L Grant
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Veronica C Behrens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Marek Kučka
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | | | - Volker Soltys
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
7
|
Bailey LJ, Teague R, Kolesar P, Bainbridge LJ, Lindsay HD, Doherty AJ. PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle. SCIENCE ADVANCES 2021; 7:eabh1004. [PMID: 34860556 PMCID: PMC8641930 DOI: 10.1126/sciadv.abh1004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/14/2021] [Indexed: 05/14/2023]
Abstract
Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.
Collapse
Affiliation(s)
- Laura J. Bailey
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Rebecca Teague
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Peter Kolesar
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Lewis J. Bainbridge
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Howard D. Lindsay
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
8
|
Kapeleka JA, Sauli E, Ndakidemi PA. Pesticide exposure and genotoxic effects as measured by DNA damage and human monitoring biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:805-822. [PMID: 31736325 DOI: 10.1080/09603123.2019.1690132] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Occupational pesticides exposure rises health concern due to genotoxicity and accumulation of pesticides in human biological matrices. Continuous and sublethal exposure to pesticides had been associated with oxidative stress, mutagenic and cell death. Exposure to pesticides exhibits increased level of DNA damage even if no detectable amounts of pesticides are seen in biological matrices by binding specific areas in the DNA. This interferes normal body systems and mutation in gene encoding specific activities which may lead to a wide range of cancer. Presence of pesticides compounds in human biological matrices had been evident from various studies. However, detection methods are complex and inconsistent, making it difficult to compare and generalize findings. This article provides insight into genotoxic effects, presence of pesticides and their metabolites in human biological matrices and the resultant health effects as measured by DNA damage, acetylcholinesterase (AChE) activity inhibition and other biomarkers of pesticides exposure.
Collapse
Affiliation(s)
- Jones A Kapeleka
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Tropical Pesticides Research Institute (TPRI)
| | - Elingarami Sauli
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Patrick A Ndakidemi
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
9
|
Altered replication stress response due to CARD14 mutations promotes recombination-induced revertant mosaicism. Am J Hum Genet 2021; 108:1026-1039. [PMID: 34004138 DOI: 10.1016/j.ajhg.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/22/2021] [Indexed: 01/07/2023] Open
Abstract
Revertant mosaicism, or "natural gene therapy," refers to the spontaneous in vivo reversion of an inherited mutation in a somatic cell. Only approximately 50 human genetic disorders exhibit revertant mosaicism, implicating a distinctive role played by mutant proteins in somatic correction of a pathogenic germline mutation. However, the process by which mutant proteins induce somatic genetic reversion in these diseases remains unknown. Here we show that heterozygous pathogenic CARD14 mutations causing autoinflammatory skin diseases, including psoriasis and pityriasis rubra pilaris, are repaired mainly via homologous recombination. Rather than altering the DNA damage response to exogenous stimuli, such as X-irradiation or etoposide treatment, mutant CARD14 increased DNA double-strand breaks under conditions of replication stress. Furthermore, mutant CARD14 suppressed new origin firings without promoting crossover events in the replication stress state. Together, these results suggest that mutant CARD14 alters the replication stress response and preferentially drives break-induced replication (BIR), which is generally suppressed in eukaryotes. Our results highlight the involvement of BIR in reversion events, thus revealing a previously undescribed role of BIR that could potentially be exploited to develop therapeutics for currently intractable genetic diseases.
Collapse
|
10
|
Hao X, Parmar JJ, Lelandais B, Aristov A, Ouyang W, Weber C, Zimmer C. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures. Genome Biol 2021; 22:150. [PMID: 33975635 PMCID: PMC8111965 DOI: 10.1186/s13059-021-02343-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 3D organization of the chromatin fiber in cell nuclei plays a key role in the regulation of gene expression. Genome-wide techniques to score DNA-DNA contacts, such as Hi-C, reveal the partitioning of chromosomes into epigenetically defined active and repressed compartments and smaller "topologically associated" domains. These domains are often associated with chromatin loops, which largely disappear upon removal of cohesin. Because most Hi-C implementations average contact frequencies over millions of cells and do not provide direct spatial information, it remains unclear whether and how frequently chromatin domains and loops exist in single cells. RESULTS We combine 3D single-molecule localization microscopy with a low-cost fluorescence labeling strategy that does not denature the DNA, to visualize large portions of single human chromosomes in situ at high resolution. In parallel, we develop multi-scale, whole nucleus polymer simulations, that predict chromatin structures at scales ranging from 5 kb up to entire chromosomes. We image chromosomes in G1 and M phase and examine the effect of cohesin on interphase chromatin structure. Depletion of cohesin leads to increased prevalence of loose chromatin stretches, increased gyration radii, and reduced smoothness of imaged chromatin regions. By comparison to model predictions, we estimate that 6-25 or more purely cohesin-dependent chromatin loops coexist per megabase of DNA in single cells, suggesting that the vast majority of the genome is enclosed in loops. CONCLUSION Our results provide new constraints on chromatin structure and showcase an affordable non-invasive approach to study genome organization in single cells.
Collapse
Affiliation(s)
- Xian Hao
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, China
| | - Jyotsana J Parmar
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
- Simons Center for the Study of Living Machines, National Center for Biological Sciences (TIFR), Bangalore, Karnataka, 560065, India
| | - Benoît Lelandais
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
| | - Andrey Aristov
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
| | - Wei Ouyang
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
- Université de Paris, F-75013, Paris, France
| | - Christian Weber
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
| | - Christophe Zimmer
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France.
| |
Collapse
|
11
|
Bailey LJ, Bianchi J, Doherty AJ. PrimPol is required for the maintenance of efficient nuclear and mitochondrial DNA replication in human cells. Nucleic Acids Res 2019; 47:4026-4038. [PMID: 30715459 PMCID: PMC6486543 DOI: 10.1093/nar/gkz056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic Primase-Polymerase (PrimPol) is an enzyme that maintains efficient DNA duplication by repriming replication restart downstream of replicase stalling lesions and structures. To elucidate the cellular requirements for PrimPol in human cells, we generated PrimPol-deleted cell lines and show that it plays key roles in maintaining active replication in both the nucleus and mitochondrion, even in the absence of exogenous damage. Human cells lacking PrimPol exhibit delayed recovery after UV-C damage and increased mutation frequency, micronuclei and sister chromatin exchanges but are not sensitive to genotoxins. PrimPol is also required during mitochondrial replication, with PrimPol-deficient cells having increased mtDNA copy number but displaying a significant decrease in replication. Deletion of PrimPol in XPV cells, lacking functional polymerase Eta, causes an increase in DNA damage sensitivity and pronounced fork stalling after UV-C treatment. We show that, unlike canonical TLS polymerases, PrimPol is important for allowing active replication to proceed, even in the absence of exogenous damage, thus preventing the accumulation of excessive fork stalling and genetic mutations. Together, these findings highlight the importance of PrimPol for maintaining efficient DNA replication in unperturbed cells and its complementary roles, with Pol Eta, in damage tolerance in human cells.
Collapse
Affiliation(s)
- Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Julie Bianchi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
12
|
Trosko JE. What Can Chemical Carcinogenesis Shed Light on the LNT Hypothesis in Radiation Carcinogenesis? Dose Response 2019; 17:1559325819876799. [PMID: 31565039 PMCID: PMC6755642 DOI: 10.1177/1559325819876799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
To protect the public’s health from exposure to physical, chemical, and microbiological
agents, it is important that any policy be based on rigorous scientifically based
research. The concept of “linear no-threshold” (LNT) has been implemented to provide
guideline exposures to these agents. The practical limitation to testing this hypothesis
is to provide sufficient samples for experimental or epidemiological studies. While there
is no universally accepted understanding of most human diseases, there seems to be better
understanding of cancer that might help resolve the “LNT” model. The public’s concern,
after being exposed to radiation, is the potential of producing cancer. The most rigorous
hypothesis of human carcinogenesis is the “multistage, multimechanism” chemical
carcinogenesis model. The radiation carcinogenesis LNT model, rarely, if ever, built it
into their support. It will be argued that this multistage, multimechanism model of
carcinogenesis, involving the “initiation” of a single cell by a mutagen event, followed
by chronic exposure to threshold levels of epigenetic agents or conditions that stimulate
the clonal expansion of the “initiated” cell, can convert these benign cells to become
invasive and metastatic. This “promotion” process can be interrupted, thereby preventing
these initiated cells from transitioning to the “progression” process of invasion and
metastasis.
Collapse
Affiliation(s)
- James E Trosko
- Department Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Wójcik E, Szostek M. Assessment of genome stability in various breeds of cattle. PLoS One 2019; 14:e0217799. [PMID: 31163060 PMCID: PMC6548367 DOI: 10.1371/journal.pone.0217799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chromosomal instability is a type of genome instability involving changes in genetic information at the chromosomal level. The basic tests used to identify this form of instability are sister chromatid exchange (SCE) tests and identification of fragile sites (FS). SCE is the process by which sister chromatids become fragmented as a result of DNA strand breakage and reassembly, followed by exchange of these fragments. FS can be observed in the form of breaks, gaps or constrictions on chromosomes, which often result from multiple nucleotide repeats in DNA that are difficult to replicate. The research material was the peripheral blood of ten breeds of cattle raised in Poland, including four native breeds covered by a genetic resources conservation programme, i.e. Polish Red, Polish Red-and-White, White-Backed, and Polish Black-and-White, as well as Polish Holstein-Friesian, Simmental, Montbéliarde, Jersey, Limousine and Danish Red. Two tests were performed on chromosomes obtained from in vitro cultures: SCE and FS. The average frequency of SCE was 5.08 ± 1.31, while the incidence of FS was 3.45 ± 0.94. Differences in the incidence of SCE and FS were observed between breeds. The least damage was observed in the Polish Red and White-Backed breeds, and the most in Polish Holstein-Friesians. The most damage was observed in the interstitial part of the chromosomes. Age was shown to significantly affect the incidence of SCE and FS. Younger cows showed less damage than older ones (SCE: 4.84 ± 1.25; 5.34 ± 1.24; FS: 3.10 ± 0.88, 3.80 ± 0.92).
Collapse
Affiliation(s)
- Ewa Wójcik
- Institute of Bioengineering and Animal Breeding, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Małgorzata Szostek
- Institute of Bioengineering and Animal Breeding, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
14
|
Long-term treatment with the PARP inhibitor niraparib does not increase the mutation load in cell line models and tumour xenografts. Br J Cancer 2018; 119:1392-1400. [PMID: 30425352 PMCID: PMC6265254 DOI: 10.1038/s41416-018-0312-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
Background Poly-ADP ribose polymerase (PARP) inhibitor-based cancer therapy selectively targets cells with deficient homologous recombination repair. Considering their long-term use in maintenance treatment, any potential mutagenic effect of PARP inhibitor treatment could accelerate the development of resistance or harm non-malignant somatic cells. Methods We tested the mutagenicity of long-term treatment with the PARP inhibitor niraparib using whole-genome sequencing of cultured cell clones and whole-exome sequencing of patient-derived breast cancer xenografts. Results We observed no significant increase in the number and alteration in the spectrum of base substitutions, short insertions and deletions and genomic rearrangements upon niraparib treatment of human DLD-1 colon adenocarcinoma cells, wild-type and BRCA1 mutant chicken DT40 lymphoblastoma cells and BRCA1-defective SUM149PT breast carcinoma cells, except for a minor increase in specific deletion classes. We also did not detect any contribution of in vivo niraparib treatment to subclonal mutations arising in breast cancer-derived xenografts. Conclusions The results suggest that long-term inhibition of DNA repair with PARP inhibitors has no or only limited mutagenic effect. Mutagenesis due to prolonged use of PARP inhibitors in cancer treatment is therefore not expected to contribute to the genetic evolution of resistance, generate significant immunogenic neoepitopes or induce secondary malignancies.
Collapse
|
15
|
Cristóbal-Luna JM, Paniagua-Castro N, Escalona-Cardoso GN, Pérez-Gutiérrez MS, Álvarez-González I, Madrigal-Bujaidar E, Chamorro-Cevallos G. Evaluation of teratogenicity and genotoxicity induced by kramecyne (KACY). Saudi Pharm J 2018; 26:829-838. [PMID: 30202224 PMCID: PMC6128725 DOI: 10.1016/j.jsps.2018.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/27/2018] [Indexed: 11/29/2022] Open
Abstract
Kramecyne (KACY), a polymer isolated from Krameria cytisoides Cav, has anti-inflammatory, anti-nociceptive, anti-arthritic and anti-ulcerogenic properties. As a part of standard preclinical safety tests, the present study sought to determine potential developmental toxicity (in female rats) and genotoxicity (in male mice) of KACY. Pregnant female rats were divided into six groups: the negative control (vehicle), the positive control (250 mg/kg of acetylsalicylic acid (ASA)), and four experimental groups (50, 250, 500 and 1000 mg/kg of KACY). To evaluate genotoxicity by in vivo micronuclei (MN) and sister chromatid exchange (SCE) tests, male mice were divided into five groups: the negative control (vehicle), the positive control (1.5 and 2.5 mg/kg of doxorubicin for MN and SCE, respectively), and three experimental groups (50, 500 and 1000 mg/kg of KACY). All treatments were administered by oral gavage. A slight maternal toxicity was evidenced by lower weight gain for rats receiving 500 and 1000 mg/kg of KACY, but no fetal malformations were found. However, there were less live fetuses/litter and greater post-implantation loss/litter at these two doses. Manifestations of developmental toxicity were limited to a higher rate of skeletal alterations. The MN tests did not evidence genotoxicity or cytotoxicity. KACY caused a slightly but significantly increased frequency of SCE. Although KACY-treated rats had skeletal alterations, these apparently were not caused by a mechanism of genotoxicity. Furthermore, the same administration in adult male mice did not produce genotoxicity. Hence, KACY herein proved to be safe for rats during the period of organogenesis.
Collapse
Affiliation(s)
- J M Cristóbal-Luna
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad A. López Mateos. Zacatenco, C.P. 0738, Cd. de México, Mexico
| | - N Paniagua-Castro
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n., Unidad A. López Mateos. Zacatenco, C.P. 0738, Cd. de México, Mexico
| | - G N Escalona-Cardoso
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n., Unidad A. López Mateos. Zacatenco, C.P. 0738, Cd. de México, Mexico
| | - M S Pérez-Gutiérrez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Coyoacán, C.P. 04960, Cd. de México, Mexico
| | - I Álvarez-González
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n., Unidad A. López Mateos. Zacatenco, C.P. 0738, Cd. de México, Mexico
| | - E Madrigal-Bujaidar
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n., Unidad A. López Mateos. Zacatenco, C.P. 0738, Cd. de México, Mexico
| | - G Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad A. López Mateos. Zacatenco, C.P. 0738, Cd. de México, Mexico
| |
Collapse
|
16
|
Nikitaki Z, Holá M, Donà M, Pavlopoulou A, Michalopoulos I, Angelis KJ, Georgakilas AG, Macovei A, Balestrazzi A. Integrating plant and animal biology for the search of novel DNA damage biomarkers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:21-38. [DOI: 10.1016/j.mrrev.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
|
17
|
Trafalis DT, Polonifi A, Dalezis P, Nikoleousakos N, Katsamakas S, Sarli V. Targeting on poly(ADP-ribose) polymerase activity with DNA-damaging hybrid lactam-steroid alkylators in wild-type and BRCA1-mutated ovarian cancer cells. Chem Biol Drug Des 2017; 90:854-866. [PMID: 28432813 DOI: 10.1111/cbdd.13006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/25/2017] [Accepted: 04/05/2017] [Indexed: 12/28/2022]
Abstract
Conjugated lactam-steroid alkylators (LSA) have been shown to exhibit superior activity at controlling cancer models and overlap drug resistance to conventional chemjournalapy. Hybrid LSA combine two active compounds in a single molecule and incorporate modified steroids bearing lactam moiety in one or more steroid rings functioning as vectors for cytotoxic agents. We first describe a novel class of LSA that generate excellent anticancer activity against UWB1.289 and UWB1.289 + BRCA1 human ovarian cancer cell lines. Both UWB1.289 and UWB1.289 + BRCA1 cells carry mutations in the tumor suppressor gene TP53 while UWB1.289 cell line carries a germline BRCA1 mutation. In vitro, in vivo, and in silico, experimental methods were utilized to determine the poly(ADP-ribose) polymerases (PARPs) activity and mRNA transcription, DNA damage, cytostatic and cytotoxic effects, and virtual molecular interactions, in order to study the molecular mechanisms of activity of the tested LSA. LSA produce anticancer activity through dual action by combining the direct induction of cellular DNA damage with the inhibition of PARP activity and consecutive DNA repair activity. BRCA1-mutated UWB1.289 ovarian cancer cells with defective PARP-oriented repair mechanism show significantly higher sensitivity to these agents. Combined drug effect on DNA damage and repair is a novel approach in cancer therapeutics.
Collapse
Affiliation(s)
- Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Polonifi
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nikoleousakos
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Katsamakas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Sisdelli L, Vidi AC, Moysés-Oliveira M, Di Battista A, Bortolai A, Moretti-Ferreira D, da Silva MRD, Melaragno MI, Carvalheira G. Incorporation of 5-ethynyl-2'-deoxyuridine (EdU) as a novel strategy for identification of the skewed X inactivation pattern in balanced and unbalanced X-rearrangements. Hum Genet 2015; 135:185-92. [PMID: 26670424 DOI: 10.1007/s00439-015-1622-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/28/2015] [Indexed: 12/12/2022]
Abstract
X-chromosome inactivation occurs randomly in normal female cells. However, the inactivation can be skewed in patients with alterations in X-chromosome. In balanced X-autosome translocations, normal X is preferentially inactivated, while in unbalanced X alterations, the aberrant X is usually inactivated. Here, we present a novel strategy to verify the skewed X inactivation pattern through the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into cells, in 11 patients: five carriers of balanced X-autosome translocations and six of unbalanced X-chromosome alterations. Since EdU is a labeled nucleoside analog of thymidine, its incorporation during DNA synthesis can reveal late replication regions and the inactive X-chromosome. All EdU findings were validated by the human androgen receptor gene (HUMARA) assay. The late replication regions were easily and quickly visualized in all cells, where inactive Xs are marked with strong green fluorescence. It was observed that the normal X-chromosome was preferentially inactivated in patients with balanced X-autosome translocations; while the aberrant X-chromosome was inactivated in most cells from patients with unbalanced alterations. By performing the fluorescence-based EdU assay, the differences between the active and inactive X-chromosomes are more easily recognizable than by classic cytogenetic methods. Furthermore, EdU incorporation allows the observation of the late replication regions in autosomal segments present in X derivatives from X-autosome translocations. Therefore, EdU assay permits an accurate and efficient cytogenetic evaluation of the X inactivation pattern with a low-cost, easy to perform and highly reproducible technique.
Collapse
Affiliation(s)
- Luiza Sisdelli
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
| | - Angela Cristina Vidi
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Moysés-Oliveira
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
| | - Adriana Di Battista
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
| | - Adriana Bortolai
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
| | - Danilo Moretti-Ferreira
- Department of Genetics, Instituto de Biociências de Botucatu, São Paulo State University, São Paulo, 18618-970, Brazil
| | - Magnus R Dias da Silva
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
| | - Gianna Carvalheira
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil.
| |
Collapse
|
19
|
Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum Reprod Update 2014; 21:209-27. [DOI: 10.1093/humupd/dmu063] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|