1
|
Ostapowicz J, Ostrowska K, Golusiński W, Kulcenty K, Suchorska WM. Improving therapeutic strategies for Head and Neck Cancer: Insights from 3D hypoxic cell culture models in treatment response evaluation. Adv Med Sci 2024; 69:368-376. [PMID: 39047970 DOI: 10.1016/j.advms.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Hypoxia in the tumor core negatively affects the outcome of patients with head and neck squamous cell carcinoma (HNSCC). Nevertheless, its role in predicting treatment response requires further exploration. Typically, reduced oxygen levels in the tumor core correlate with diminished efficacy of radiotherapy, chemotherapy, and immunotherapy, which are commonly used for HNSCC patients' treatment. Understanding the mechanistic underpinnings of these varied treatment responses in HNSCC is crucial for enhancing therapeutic outcomes and extending patients' overall survival (OS) rates. Standard monolayer cell culture conditions have major limitations in mimicking tumor physiological features and the complexity of the tumor microenvironment. Three-dimensional (3D) cell cultures enable the recreation of the in vivo tumor attributes, encompassing oxygen and nutrient gradients, cellular morphology, and intracellular connections. It is vital to use the 3D model in treatment response studies to mimic the tumor microenvironment, as evidenced by the decreased sensitivity of 3D structures to anticancer therapy. Accordingly, the aim of the study was to delineate the utility of the 3D models of hypoxic head and neck tumors in drug screening and treatment response studies.
Collapse
Affiliation(s)
- Julia Ostapowicz
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| | - Kamila Ostrowska
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland; Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wiktoria M Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
2
|
Zhang Z, Liu C, Dong J, Zhu A, An C, Wang D, Mi X, Yue S, Tan X, Zhang Y. Self-Referenced Au Nanoparticles-Coated Glass Wafers for In Situ SERS Monitoring of Cell Secretion. ACS Sens 2024; 9:4154-4165. [PMID: 39101767 DOI: 10.1021/acssensors.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for discrimination of bimolecules in complex systems. However, its practical applications face challenges such as complicated manufacturing procedures and limited scalability of SERS substrates, as well as poor reproducibility during detection which compromises the reliability of SERS-based analysis. In this study, we developed a convenient method for simultaneous fabrication of massive SERS substrates with an internal standard to eliminate the substrate-to-substrate differences. We first synthesized Au@CN@Au nanoparticles (NPs) which contain embedded internal standard molecules with a single characteristic peak in the Raman-silent region, and then deposited the NPs on 6 mm glass wafers in a 96-well plate simply by centrifugation for 3 min. The one-time obtained 96 SERS substrates have excellent intrasubstrate uniformity and intersubstrate repeatability for SERS detection by using the internal standard (relative standard deviation = 10.47%), and were able to detect both charged and neutral molecules (crystal violet and triphenylphosphine) at a concentration of 10-9 M. Importantly, cells can be directly cultured on glass wafers in the 96-well plate, enabling real time monitoring of the secretes and metabolism change in response to external stimulation. We found that the release of nucleic acids, amino acids and lipids by MDA-MB-231 cells significantly increased under hypoxic conditions. Overall, our approach enables fast and large-scale production of Au@CN@Au NPs-coated glass wafers as SERS substrates, which are homogeneous and highly sensitive for monitoring trace changes of biomolecules.
Collapse
Affiliation(s)
- Zedong Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianguo Dong
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Aonan Zhu
- Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunyan An
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xue Mi
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shijiing Yue
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuying Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Ostapowicz J, Ostrowska K, Rawłuszko-Wieczorek AA, Wojtera B, Koczot S, Golusiński W, Suchorska WM. Understanding Hypoxia-Driven Tumorigenesis: The Interplay of HIF1A, DNA Methylation, and Prolyl Hydroxylases in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:6495. [PMID: 38928200 PMCID: PMC11203966 DOI: 10.3390/ijms25126495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of EGLN1-3, HIF1A, CA9, VEGF, and GLUT1 at the mRNA level and EGLN1 protein levels. Methylation levels of EGLNs and HIF1A were assessed through high-resolution melting analysis. Bioinformatics tools were employed to characterize associations between EGLN1-3 and HIF1A expression and methylation. We found significantly higher mRNA levels of EGLN3, HIF1A, GLUT1, VEGF, and CA9 (p = 0.021; p < 0.0001; p < 0.0001; p = 0.004, and p < 0.0001, respectively) genes in tumor tissues compared to normal ones and downregulation of the EGLN1 mRNA level in tumor tissues (p = 0.0013). In HNSCC patients with hypermethylation of HIF1A in normal tissue, we noted a reduction in HIF1A mRNA levels compared to tumor tissue (p = 0.04). In conclusion, the differential expression of EGLN and HIF1A genes in HNSCC tumors compared to normal tissues influences patients' overall survival, highlighting their role in tumor development. Moreover, DNA methylation could be responsible for HIF1A suppression in the normal tissues of HNSCC patients.
Collapse
Affiliation(s)
- Julia Ostapowicz
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kamila Ostrowska
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | | | - Bartosz Wojtera
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Sabina Koczot
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
4
|
Fang H, Fu K, Shi P, Zhao Z, Yang F, Liu Y. Forkhead box F2/ Lysyl oxidase like 1 contribute to epithelial-mesenchymal transition and angiogenesis in thyroid cancer. Cell Signal 2024; 113:110956. [PMID: 37918464 DOI: 10.1016/j.cellsig.2023.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Bioinformatics analysis suggests an association between lysyl oxidase like 1 (LOXL1) and forkhead box F2 (FOXF2), both of which are found to be dysregulated in thyroid cancer. This study aims to elucidate their specific roles in thyroid cancer. METHODS The correlation of LOXL1 expression with thyroid cancer staging and the overall survival was analyzed. LOXL1 levels were determined in several thyroid cancer cells, and its effects on poorly differentiated BCPAP cell proliferation, colony formation, malignant phenotypes, epithelial-mesenchymal transition (EMT) progression, and angiogenesis were evaluated. The relationship between LOXL1 and FOXF2 was confirmed using Luciferase reporter and ChIP assays. The impacts of FOXF2 on LOXL1 regulation along with the Wnt/β-catenin signaling were assessed, followed by the verification of transplanted tumor in nude mice. RESULTS Elevated LOXL1 expression was associated with advanced clinical staging and poorer overall survival. Reduced LOXL1 suppressed cell proliferation, colony formation, migration, invasion, EMT, and angiogenesis. FOXF2 was found to be down-regulated in thyroid cancer, acting as a transcription factor that recognizes the LOXL1 promoter and modulates its transcriptional expression. Moreover, the regulatory outcome of LOXL1 knockdown was partially reversed upon FOXF2 knockdown, including the modulation of the Wnt/β-catenin signaling and tumor growth in vivo. CONCLUSION Our findings indicate that LOXL1 is transcriptionally regulated by FOXF2 and activates the Wnt/β-catenin to promote malignant phenotypes, EMT progression, and angiogenesis in BCPAP cells.
Collapse
Affiliation(s)
- Hao Fang
- Hepatobiliary Surgery Department, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Kai Fu
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Ping Shi
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Zhen Zhao
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Fei Yang
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Yan Liu
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
5
|
Zelanis A, Barcick U, Racorti NDV, Salardani M. Heterotypic communication as the promoter of phenotypic plasticity of cancer cells: The role of cancer secretomes. Proteomics 2023; 23:e2200243. [PMID: 37474490 DOI: 10.1002/pmic.202200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Cellular communication relies on signaling circuits whose statuses are mainly modulated by soluble biomolecules such as carbohydrates, lipids, proteins, and metabolites as well as extracellular vesicles (EVs). Therefore, the active secretion of such biomolecules is critical for both cell homeostasis and proper pathophysiological responses in a timely fashion. In this context, proteins are among the main modulators of such biological responses. Hence, profiling cell line secretomes may be an opportunity for the identification of "signatures" of specific cell types (i.e., stromal or metastatic cells) with important prognostic/therapeutic value. This review will focus on the biological implications of cell secretomes in the context of cancer, as well as their functional roles in shaping the tumoral microenvironment (TME) and communication status of participating cells.
Collapse
Affiliation(s)
- André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Uilla Barcick
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Nathália de Vasconcellos Racorti
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Murilo Salardani
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
6
|
Yin L, Zhuang X, Li JL. The value of magnetic resonance blood oxygen level-dependent imaging in evaluating the efficacy of advanced cervical cancer combined with radiotherapy and chemotherapy. Acta Radiol 2022; 64:1668-1675. [PMID: 36464651 DOI: 10.1177/02841851221130302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) is an imaging method used to analyze oxygenation status of the tumor. Purpose To investigate the feasibility of BOLD-MRI in evaluating the efficacy of advanced cervical cancer combined with radiotherapy and chemotherapy. Material and Methods This prospective study included 85 patients with advanced cervical cancer who received BOLD-MRI examination before and after concurrent chemoradiotherapy from October 2020 to December 2021. To investigate the changes of baseline R2* values and △R2* values of cervical cancers before and after treatment. Results 29 cases were complete response, 34 cases were partial response, and 22 cases showed progression. The baseline R2* values of the tumors were lower than that of the normal cervical muscle ( P < 0.0001). After oxygen stimulation, the baseline R2* values of the tumors decreased ( P = 0.012). After treatment, the baseline R2* values of the tumors increased ( P = 0.007), and the dynamic △R2* values of the tumors decreased ( P = 0.025). The baseline R2* value of the complete response was the highest ( P = 0.000), the dynamic △R2* value of the complete response was the lowest ( P = 0.017). Conclusion BOLD-MRI can evaluate the efficacy of concurrent chemoradiotherapy for advanced cervical cancer.
Collapse
Affiliation(s)
- Liang Yin
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Xin Zhuang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Jian-lin Li
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| |
Collapse
|
7
|
Luo Y, Li T, Zhao H, Chen A. A novel 7‑hypoxia‑related long non‑coding RNA signature associated with prognosis and proliferation in melanoma. Mol Med Rep 2022; 26:255. [PMID: 35703357 PMCID: PMC9218734 DOI: 10.3892/mmr.2022.12771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022] Open
Abstract
Hypoxia‑related long non‑coding RNAs (lncRNAs) are important indicators of the poor prognosis of cancers. The present study aimed to explore the potential relationship between melanoma and hypoxia‑related lncRNAs. The transcriptome and clinical data of patients with melanoma were downloaded from The Cancer Genome Atlas database. The prognostic hypoxia‑related lncRNAs were screened out using Pearson's correlation test and univariate Cox analysis. As a result, a hypoxia‑related‑lncRNA signature based on the expression of 7 lncRNAs was constructed, with one unfavourable [MIR205 host gene (MIR205HG)] and six favourable (T cell receptor β variable 11‑2, HLA‑DQB1 antisense RNA 1, AL365361.1, AC004847.1, ubiquitin specific peptidase 30 antisense RNA 1 and AC022706.1) lncRNAs as prognostic factors for melanoma. Patients with melanoma were divided into high‑ and low‑risk groups based on the risk score obtained. Survival analyses were performed to assess the prognostic value of the present risk model. Potential tumour‑associated biological pathways associated with the present signature were explored using gene set enrichment analysis. The CIBERSORT algorithm demonstrated the important role of the hypoxia‑related lncRNAs in regulating tumour‑infiltrating immune cells. Clinical samples collected from our center partly confirmed our findings. Cell Counting Kit‑8 and flow cytometry assays indicated the suppression of proliferation of melanoma cells following inhibition of MIR205HG expression. Indicators of the canonical Wnt/β‑catenin signalling pathway were detected by western blotting. The present study demonstrated that MIR205HG could promote melanoma cell proliferation partly via the canonical Wnt/β‑catenin signalling pathway. These findings indicated a 7‑hypoxia‑related‑lncRNA signature that can serve as a novel predictor of melanoma prognosis.
Collapse
Affiliation(s)
- Yi Luo
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hengguang Zhao
- Department of Dermatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
8
|
Ma P, Chen J, Qu H, Li Y, Li X, Tang X, Song Z, Xin H, Zhang J, Nai J, Li Z, Wang Z. Hypoxic targeting and activating TH-302 loaded transcatheter arterial embolization microsphere. Drug Deliv 2020; 27:1412-1424. [PMID: 33096947 PMCID: PMC7594845 DOI: 10.1080/10717544.2020.1831102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor-derived and transcatheter arterial chemoembolization (TACE) induced hypoxia microenvironment is closely related to the poor prognosis of hepatocellular carcinoma (HCC). In this study, hypoxia-activated prodrug TH-302 loaded poly(lactic-co-glycolic acid) (PLGA)-based TACE microspheres were prepared to treat HCC through localized and sustained drug delivery. TH-302 microspheres with three different sizes were fabricated by an oil-in-water emulsion solvent evaporation method and characterized by scanning electron microscopy (SEM), infrared spectra (IR), X-ray diffractometer (XRD), and drug release profiles. The in vitro antitumor potential was firstly evaluated in an HepG2 cell model under normoxic and hypoxic conditions. Then, a VX-2 tumor-bearing rabbit model was established and performed TACE to investigate the in vivo drug tissue distribution and antitumor efficiency of TH-302 microspheres. Blood routine examination and histopathological examinations were also conducted to evaluate the safety of TH-302 microspheres. TH-302 microspheres with particle size 75-100 μm, 100-200 μm, and 200-300 μm were prepared and characterized by sphere morphology and sustained drug release up to 360 h. Compared with TH-302, the microspheres exhibited higher cytotoxicity, cell apoptosis, and cell cycle S phase retardation in HepG2 cells under hypoxic conditions. The microspheres also displayed continuous drug release in the liver tissue and better anti-tumor efficiency compared with TH-302 injection and lipiodol. Meanwhile, no serious toxicity appeared in the duration of treatment. Therefore, TH-302 microspheres showed to be feasible and effective for TACE and hold promise in the clinical for HCC chemoembolization therapy.
Collapse
Affiliation(s)
- Pengkai Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianhua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haixian Qu
- Department of Interventional Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Li
- Department of Interventional Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaohui Li
- Department of Interventional Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuemei Tang
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhigang Song
- Department of Pathology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hainan Xin
- Department of Interventional Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jinbang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jingxue Nai
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhijun Wang
- Department of Interventional Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Guo J, Lan Z. PHD2 acts as an oncogene through activation of Ras/Raf/MEK/ERK and JAK1/STAT3 pathways in human hepatocellular carcinoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:37-45. [PMID: 31852247 DOI: 10.1080/21691401.2019.1699806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Prolyl hydroxylase domain proteins (PHD2) is an oxygen sensor that is able to induce hypoxia-inducible factor-α (HIF-α) degradation under normoxic condition. The present paper designed to reveal the function of PHD2 in hepatocellular carcinoma (HCC) cells proliferation, migration and invasion.Methods: qRT-PCR and Western blot were carried out to see the expression of PHD2 in HCC tissues and cell lines. PHD2 expression in Huh7 and HepG3B cells was overexpressed or suppressed by transfection and then the changes of cell proliferation, migration and invasion were detected by CCK-8 assay, transwell assay and Western blot.Results: PHD2 was highly expressed in HCC tissues and cell lines (Huh7, Hep3B, SK-HEP-1, HCCLM3 and MHCC97) as relative to para-cancerous non-tumour tissues and a normal hepatocyte line MIHA. PHD2 overexpression promoted Huh7 and Hep3B cells viability, migration and invasion. Meanwhile, CyclinD1, c-Myc, MMP-2, MMP-9 and Vimentin were up-regulated, while p53 was down-regulated by PHD2 overexpression. PHD2 silence led to a contrary impact. Further, PHD2 overexpression up-regulated Ras and Raf expression and induced phosphorylation of MEK, ERK, JAK1 and STAT3.Conclusion: PHD2 exhibited pro-tumour functions in HCC cells. PHD2 promoted HCC possibly through Ras/Raf/MEK/ERK and JAK1/STAT3 pathways.HighlightsPHD2 is highly expressed in HCC tissue and cell lines;PHD2 promotes the proliferation of Huh7 and HepG3B cells;PHD2 enhances Huh7 and HepG3B cells migration and invasion;PHD2 activates Ras/Raf/MEK/ERK and JAK1/STAT3 signalling.
Collapse
Affiliation(s)
- Junqiang Guo
- Department of Trauma Emergency, Huaihe Hospital, Henan University, Kaifeng, China
| | - Zhi Lan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Walbrecq G, Lecha O, Gaigneaux A, Fougeras MR, Philippidou D, Margue C, Tetsi Nomigni M, Bernardin F, Dittmar G, Behrmann I, Kreis S. Hypoxia-Induced Adaptations of miRNomes and Proteomes in Melanoma Cells and Their Secreted Extracellular Vesicles. Cancers (Basel) 2020; 12:cancers12030692. [PMID: 32183388 PMCID: PMC7140034 DOI: 10.3390/cancers12030692] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial–mesenchymal transition, metastasis and resistance to therapy, all favouring cancer progression. Small extracellular vesicles (EV) shuttle various cargos (proteins, miRNAs, DNA and others). Tumour-derived EVs can be taken up by neighbouring or distant cells in the tumour microenvironment, thus facilitating intercellular communication. The quantity of extracellular vesicle secretion and their composition can vary with changing microenvironmental conditions and disease states. Here, we investigated in melanoma cells the influence of hypoxia on the content and number of secreted EVs. Whole miRNome and proteome profiling revealed distinct expression patterns in normoxic or hypoxic growth conditions. Apart from the well-known miR-210, we identified miR-1290 as a novel hypoxia-associated microRNA, which was highly abundant in hypoxic EVs. On the other hand, miR-23a-5p and -23b-5p were consistently downregulated in hypoxic conditions, while the protein levels of the miR-23a/b-5p-predicted target IPO11 were concomitantly upregulated. Furthermore, hypoxic melanoma EVs exhibit a signature consisting of six proteins (AKR7A2, DDX39B, EIF3C, FARSA, PRMT5, VARS), which were significantly associated with a poor prognosis for melanoma patients, indicating that proteins and/or miRNAs secreted by cancer cells may be exploited as biomarkers.
Collapse
Affiliation(s)
- Geoffroy Walbrecq
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Odile Lecha
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Miriam R. Fougeras
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
- Doctoral School in Science and Engineering (DSSE), Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Milène Tetsi Nomigni
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - François Bernardin
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
| | - Gunnar Dittmar
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
| | - Iris Behrmann
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
- Correspondence:
| |
Collapse
|
11
|
Clinical Implications of Extracellular HMGA1 in Breast Cancer. Int J Mol Sci 2019; 20:ijms20235950. [PMID: 31779212 PMCID: PMC6928815 DOI: 10.3390/ijms20235950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The unconventional secretion of proteins is generally caused by cellular stress. During the tumorigenesis, tumor cells experience high levels of stress, and the secretion of some theoretically intracellular proteins is activated. Once in the extracellular space, these proteins play different paracrine and autocrine roles and could represent a vulnerability of cancer. One of these proteins is the high mobility group A1 (HMGA1), which is frequently overexpressed in tumors and presents a low expression in normal adult tissues. We have recently described that HMGA1 establishes an autocrine loop in invasive triple-negative breast cancer (TNBC) cells. The secretion of HMGA1 and its binding to the receptor for advanced glycation end products (RAGE) mediates the migration, invasion, and metastasis of TNBC cells and predicts the onset of metastasis in these patients. In this review, we summarized different strategies to exploit the novel tumorigenic phenotype mediated by extracellular HMGA1. We envisioned future clinical applications where the association between its change in subcellular localization and breast cancer progression could be used to predict tumor aggressiveness and guide treatment decisions. Furthermore, we proposed that targeting extracellular HMGA1 as monotherapy using monoclonal antibodies, or in combination with chemotherapy and other targeted therapies, could bring new therapeutic options for TNBC patients.
Collapse
|