1
|
Hounsell C, Fan Y. Death fuels growth: Emerging players bridging apoptosis and cell proliferation in Drosophila and beyond. Semin Cell Dev Biol 2025; 169:103602. [PMID: 40081300 DOI: 10.1016/j.semcdb.2025.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Tissue homeostasis relies on a delicate balance between cell death and proliferation. Apoptosis plays a key role not only in removing damaged cells but also in promoting tissue recovery through a process known as apoptosis-induced proliferation (AiP). This review highlights how caspases, c-Jun N-terminal Kinase (JNK), and Reactive Oxygen Species (ROS) bridge cell death and proliferation, as revealed through studies using Drosophila as a model organism. We also compare these findings with advances in other model systems and discuss their broader implications for tissue regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Caitlin Hounsell
- University of Birmingham, School of Biosciences, Birmingham, B15 2TT, UK
| | - Yun Fan
- University of Birmingham, School of Biosciences, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
He Y, Li X, Yang Y, Freitas R, Zhu J, Ji G, Zhang Y. Gabapentin impairs visual development in zebrafish via retinal apoptosis and thyroid disruption. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137299. [PMID: 39842123 DOI: 10.1016/j.jhazmat.2025.137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/30/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Gabapentin (GBP), a pharmaceutical widely used for seizures and neuropathic pain, has emerged as a contaminant in global aquatic environments, raising concerns about its ecological impact. This study investigated the effects of environmentally relevant concentrations of GBP (0, 1, 10, 1000 μg/L) on visual development in zebrafish (Danio rerio). Behavioral assays showed that GBP exposure enhanced light sensitivity, as indicated by a significant increase in total travel distance (TTD) in all exposure groups compared to controls. The 1 μg/L and 1000 μg/L exposure groups demonstrated a 41 % and 37 % increase in TTD, respectively (p < 0.05). Apoptosis assays revealed dose-dependent retinal cell death, with fluorescence intensity rising by 15 % at 1000 μg/L (p < 0.05). Visual acuity, measured through optokinetic response (OKR) tests, decreased significantly across all color stimuli. Angular velocity under white light decreased from 4.0 °/s in controls to 1.6 °/s at 1000 μg/L (p < 0.01) in a dose-dependent manner. Retinal histopathology showed a 17 % increase in ganglion cell layer thickness at 1000 μg/L (p < 0.05) in a dose-dependent manner. Thyroid hormone assays indicated significant reductions in T3 and T4 levels (p < 0.001), with a 22 % increase in the T3/T4 ratio at 1000 μg/L. Gene expression analysis revealed dysregulation in apoptosis (casp3a, ifi27), thyroid (tshr, dio1), and retinal development (atoh7, pax6a) pathways. These findings demonstrate that GBP disrupts visual development in zebrafish through retinal apoptosis and thyroid hormone dysregulation, highlighting the ecological risks posed by pharmaceutical pollutants. GBP exposure increased light-driven locomotor activity, indicating heightened light sensitivity due to apoptosis in the retina. Visual acuity was assessed through the optokinetic response (OKR) test, retinal morphology, and thyroid hormone (TH) levels. Even at concentrations as low as 1 µg/L, GBP exposure led to significant reductions in OKR across various colors, likely due to changes in retinal thickness linked to thyroid hormone disruption. These effects were consistent with alterations in gene expression related to apoptosis, the thyroid system, and retinal development. Our findings enhance understanding of how GBP exposure impairs vision in fish and highlight the need to evaluate the ecological risks of pharmaceutical contaminants in aquatic environments.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| | - Xiang Li
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Yan Yang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Rosa Freitas
- Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro 3810193, Portugal
| | - Jiansheng Zhu
- Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| |
Collapse
|
3
|
Arnould S, Benassayag C, Merle T, Monier B, Montemurro M, Suzanne M. Epithelial apoptosis: A back-and-forth mechanical interplay between the dying cell and its surroundings. Semin Cell Dev Biol 2025; 168:1-12. [PMID: 39986249 DOI: 10.1016/j.semcdb.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Apoptosis is an essential cellular process corresponding to a programmed cell suicide. It has long been considered as a cell-autonomous process, supposed to have no particular impact on the surrounding tissue. However, it has become clear in the last 15 years that epithelial apoptotic cells interact mechanically and biochemically with their environment. Here, we explore recent literature on apoptotic mechanics from an individual dying cell to the back-and-forth interplay with the neighboring epithelial tissue. Finally, we discuss how caspases, key regulators of apoptosis, appear to have a dual function as a cytoskeleton regulator favoring either cytoskeleton degradation or dynamics independently of their apoptotic or non-apoptotic role.
Collapse
Affiliation(s)
- Stéphanie Arnould
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Tatiana Merle
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
4
|
Brutscher F, Basler K. Functions of Drosophila Toll/NF-κB signaling in imaginal tissue homeostasis and cancer. Front Cell Dev Biol 2025; 13:1559753. [PMID: 40143968 PMCID: PMC11936955 DOI: 10.3389/fcell.2025.1559753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
The Toll/NF-κB pathway plays a central role in patterning the Drosophila embryo and in orchestrating the innate immune response against microbial infections. Both discoveries were associated with a Nobel Prize award and led to the recognition of the Toll-like receptor pathway in mammals, which has significant implications for diseases. Recent discoveries have revealed that the Toll/NF-κB pathway also maintains epithelial homeostasis of imaginal tissues during development: local Toll/NF-κB signaling activity monitors internal cellular fitness, and precancerous mutant cells can trigger systemic Toll/NF-κB pathway activation. However, this signaling can be exploited in diseases like cancer, in which Toll/NF-κB signaling is often co-opted or subverted. Various models have been proposed to explain how Toll/NF-κB signaling contributes to different types of cancer. Here we provide an overview of the functions of Toll/NF-κB signaling in imaginal tissue homeostasis with a focus on their misuse in pathological contexts, particularly their significance for tumor formation.
Collapse
Affiliation(s)
- Fabienne Brutscher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Huang YT, Hesting LL, Calvi BR. An unscheduled switch to endocycles induces a reversible senescent arrest that impairs growth of the Drosophila wing disc. PLoS Genet 2024; 20:e1011387. [PMID: 39226333 PMCID: PMC11398662 DOI: 10.1371/journal.pgen.1011387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/13/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
A programmed developmental switch to G / S endocycles results in tissue growth through an increase in cell size. Unscheduled, induced endocycling cells (iECs) promote wound healing but also contribute to cancer. Much remains unknown, however, about how these iECs affect tissue growth. Using the D. melanogaster wing disc as model, we find that populations of iECs initially increase in size but then subsequently undergo a heterogenous arrest that causes severe tissue undergrowth. iECs acquired DNA damage and activated a Jun N-terminal kinase (JNK) pathway, but, unlike other stressed cells, were apoptosis-resistant and not eliminated from the epithelium. Instead, iECs entered a JNK-dependent and reversible senescent-like arrest. Senescent iECs promoted division of diploid neighbors, but this compensatory proliferation did not rescue tissue growth. Our study has uncovered unique attributes of iECs and their effects on tissue growth that have important implications for understanding their roles in wound healing and cancer.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| | - Lauren L Hesting
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| | - Brian R Calvi
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
6
|
Butt DQ, Harun MH, Che Jalil NA, Shamsuddin SH, Jaafar S, Ahmad B. Protumorigenic Interferon-Stimulated Genes in Cancer: A Comprehensive Review. Cureus 2024; 16:e63216. [PMID: 39070493 PMCID: PMC11279184 DOI: 10.7759/cureus.63216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Interferon-stimulated genes (ISGs), whose production is triggered by interferons, are known to defend the host from pathogenic and cancer-specific antigens, one of which is by inducing apoptosis in infected or mutated cells. It has been reported recently that specific ISGs aid cancer cells in evading immunosurveillance and inflammatory cells by inhibiting the apoptosis process. This report reviewed four apoptosis-regulating ISG proteins: interferon-stimulated gene 15 (ISG15), interferon alpha-inducible protein 27 (IFI27), interferon alpha-inducible protein 6 (IFI6), and radical S-adenosyl methionine domain containing 2 (RSAD2), demonstrating anti-apoptosis function, and considered them protumorigenic.
Collapse
Affiliation(s)
- Danial Qasim Butt
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Masitah Hayati Harun
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Nur Asyilla Che Jalil
- Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | | | - Saidi Jaafar
- Basic Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Basaruddin Ahmad
- Biostatistics Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
7
|
Sun Z, Liu L, Liang H, Zhang L. Nicotinamide mononucleotide induces autophagy and ferroptosis via AMPK/mTOR pathway in hepatocellular carcinoma. Mol Carcinog 2024; 63:577-588. [PMID: 38197493 DOI: 10.1002/mc.23673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Herein, we investigated the role of nicotinamide mononucleotide (NMN) in HCC progression. HCC cells were treated with NMN (125, 250, and 500 μM), and then nicotinamide adenine dinucleotide (NAD+ ) and NADH levels in HCC cells were measured to calculate NAD+ /NADH ratio. Cell proliferation, apoptosis, autophagy and ferroptosis were determined. AMPK was knocked down to confirm the involvement of AMPK/mTOR signaling. Furthermore, tumor-inhibitory effect of NMN was investigated in xenograft models. Exposure to NMN dose-dependently increased NAD+ level and NAD+ /NADH ratio in HCC cells. After NMN treatment, cell proliferation was inhibited, whereas apoptosis was enhanced in both cell lines. Additionally, NMN dose-dependently enhanced autophagy/ferroptosis and activated AMPK/mTOR pathway in HCC cells. AMPK knockdown partially rescued the effects of NMN in vitro. Furthermore, NMN treatment restrained tumor growth in nude mice, activated autophagy/ferroptosis, and promoted apoptosis and necrosis in tumor tissues. The results indicate that NMN inhibits HCC progression by inducing autophagy and ferroptosis via AMPK/mTOR signaling. NMN may serve as a promising agent for HCC treatment.
Collapse
Affiliation(s)
- Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixian Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Huang YT, Hesting LL, Calvi BR. An unscheduled switch to endocycles induces a reversible senescent arrest that impairs growth of the Drosophila wing disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585098. [PMID: 38559130 PMCID: PMC10980049 DOI: 10.1101/2024.03.14.585098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A programmed developmental switch to G / S endocycles results in tissue growth through an increase in cell size. Unscheduled, induced endocycling cells (iECs) promote wound healing but also contribute to cancer. Much remains unknown, however, about how these iECs affect tissue growth. Using the D. melanogasterwing disc as model, we find that populations of iECs initially increase in size but then subsequently undergo a heterogenous arrest that causes severe tissue undergrowth. iECs acquired DNA damage and activated a Jun N-terminal kinase (JNK) pathway, but, unlike other stressed cells, were apoptosis-resistant and not eliminated from the epithelium. Instead, iECs entered a JNK-dependent and reversible senescent-like arrest. Senescent iECs promoted division of diploid neighbors, but this compensatory proliferation did not rescue tissue growth. Our study has uncovered unique attributes of iECs and their effects on tissue growth that have important implications for understanding their roles in wound healing and cancer.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, IN 47405
| | - Lauren L. Hesting
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, IN 47405
| | - Brian R. Calvi
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, IN 47405
| |
Collapse
|
9
|
Levayer R. Staying away from the breaking point: Probing the limits of epithelial cell elimination. Curr Opin Cell Biol 2024; 86:102316. [PMID: 38199024 DOI: 10.1016/j.ceb.2023.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Epithelial tissues are dramatically remodelled during embryogenesis and tissue homeostasis and yet need to maintain their sealing properties to sustain their barrier functions at any time. Part of these remodellings involve the elimination of a large proportion of cells through apoptosis. Cell extrusion, the remodelling steps leading to seamless dying cell expulsion, helps to maintain tissue cohesion. However, there is an intrinsic limit in the system that can only accommodate a certain proportion/rate of cell elimination as well as certain spatiotemporal distributions. What are then the critical conditions leading to epithelial rupture/tear/sealing defects upon cell elimination and which mechanisms ensure that such limits are never reached? In this short review, I document the conditions in which epithelial rupture has been observed, including in the contexts of epithelial cell death, and the mechanical parameters influencing tissue rupture, and review feedback mechanisms which help to keep the epithelia away from the breaking point.
Collapse
Affiliation(s)
- Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
10
|
Baena-Lopez LA, Wang L, Wendler F. Cellular stress management by caspases. Curr Opin Cell Biol 2024; 86:102314. [PMID: 38215516 DOI: 10.1016/j.ceb.2023.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cellular stress plays a pivotal role in the onset of numerous human diseases. Consequently, the removal of dysfunctional cells, which undergo excessive stress-induced damage via various cell death pathways, including apoptosis, is essential for maintaining organ integrity and function. The evolutionarily conserved family of cysteine-aspartic-proteases, known as caspases, has been a key player in orchestrating apoptosis. However, recent research has unveiled the capability of these enzymes to govern fundamental cellular processes without triggering cell death. Remarkably, some of these non-lethal functions of caspases may contribute to restoring cellular equilibrium in stressed cells. This manuscript discusses how caspases can function as cellular stress managers and their potential impact on human health and disease. Additionally, it sheds light on the limitations of caspase-based therapies, given our still incomplete understanding of the biology of these enzymes, particularly in non-apoptotic contexts.
Collapse
Affiliation(s)
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK
| | - Franz Wendler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK. https://twitter.com/wendlerfranz
| |
Collapse
|
11
|
Matamoro-Vidal A, Cumming T, Davidović A, Levillayer F, Levayer R. Patterned apoptosis has an instructive role for local growth and tissue shape regulation in a fast-growing epithelium. Curr Biol 2024; 34:376-388.e7. [PMID: 38215743 PMCID: PMC10808510 DOI: 10.1016/j.cub.2023.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
What regulates organ size and shape remains one fundamental mystery of modern biology. Research in this area has primarily focused on deciphering the regulation in time and space of growth and cell division, while the contribution of cell death has been overall neglected. This includes studies of the Drosophila wing, one of the best-characterized systems for the study of growth and patterning, undergoing massive growth during larval stage and important morphogenetic remodeling during pupal stage. So far, it has been assumed that cell death was relatively neglectable in this tissue both during larval stage and pupal stage, and as a result, the pattern of growth was usually attributed to the distribution of cell division. Here, using systematic mapping and registration combined with quantitative assessment of clone size and disappearance as well as live imaging, we outline a persistent pattern of cell death and clone elimination emerging in the larval wing disc and persisting during pupal wing morphogenesis. Local variation of cell death is associated with local variation of clone size, pointing to an impact of cell death on local growth that is not fully compensated by proliferation. Using morphometric analyses of adult wing shape and genetic perturbations, we provide evidence that patterned death locally and globally affects adult wing shape and size. This study describes a roadmap for precise assessment of the contribution of cell death to tissue shape and outlines an important instructive role of cell death in modulating quantitatively local growth and morphogenesis of a fast-growing tissue.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Tom Cumming
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France; PPU program Institut Pasteur, Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Anđela Davidović
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France.
| |
Collapse
|
12
|
Sollazzo M, Paglia S, Di Giacomo S, Grifoni D. Apoptosis inhibition restrains primary malignant traits in different Drosophila cancer models. Front Cell Dev Biol 2023; 10:1043630. [PMID: 36704198 PMCID: PMC9871239 DOI: 10.3389/fcell.2022.1043630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tumor cells exploit multiple mechanisms to evade apoptosis, hence the strategies aimed at reactivating cell death in cancer. However, recent studies are revealing that dying cells play remarkable pro-oncogenic roles. Among the mechanisms promoting cell death, cell competition, elicited by disparities in MYC activity in confronting cells, plays the primary role of assuring tissue robustness during development from Drosophila to mammals: cells with high MYC levels (winners) overproliferate while killing suboptimal neighbors (losers), whose death is essential to process completion. This mechanism is coopted by tumor cells in cancer initiation, where host cells succumb to high-MYC-expressing precancerous neighbors. Also in this case, inhibition of cell death restrains aberrant cell competition and rescues tissue structure. Inhibition of apoptosis may thus emerge as a good strategy to counteract cancer progression in competitive contexts; of note, we recently found a positive correlation between cell death amount at the tumor/stroma interface and MYC levels in human cancers. Here we used Drosophila to investigate the functional role of competition-dependent apoptosis in advanced cancers, observing dramatic changes in mass dimensions and composition following a boost in cell competition, rescued by apoptosis inhibition. This suggests the role of competition-dependent apoptosis be not confined to the early stages of tumorigenesis. We also show that apoptosis inhibition, beside restricting cancer mass, is sufficient to rescue tissue architecture and counteract cell migration in various cancer contexts, suggesting that a strong activation of the apoptotic pathways intensifies cancer burden by affecting distinct phenotypic traits at different stages of the disease.
Collapse
Affiliation(s)
- Manuela Sollazzo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simona Paglia
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simone Di Giacomo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniela Grifoni
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy,CanceЯEvolutionLab, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,*Correspondence: Daniela Grifoni,
| |
Collapse
|
13
|
Schmitt M, Ceteci F, Gupta J, Pesic M, Böttger TW, Nicolas AM, Kennel KB, Engel E, Schewe M, Callak Kirisözü A, Petrocelli V, Dabiri Y, Varga J, Ramakrishnan M, Karimova M, Ablasser A, Sato T, Arkan MC, de Sauvage FJ, Greten FR. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation. Nature 2022; 612:347-353. [PMID: 36385525 PMCID: PMC7613947 DOI: 10.1038/s41586-022-05426-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Solid cancers exhibit a dynamic balance between cell death and proliferation ensuring continuous tumour maintenance and growth1,2. Increasing evidence links enhanced cancer cell apoptosis to paracrine activation of cells in the tumour microenvironment initiating tissue repair programs that support tumour growth3,4, yet the direct effects of dying cancer cells on neighbouring tumour epithelia and how this paracrine effect potentially contributes to therapy resistance are unclear. Here we demonstrate that chemotherapy-induced tumour cell death in patient-derived colorectal tumour organoids causes ATP release triggering P2X4 (also known as P2RX4) to mediate an mTOR-dependent pro-survival program in neighbouring cancer cells, which renders surviving tumour epithelia sensitive to mTOR inhibition. The induced mTOR addiction in persisting epithelial cells is due to elevated production of reactive oxygen species and subsequent increased DNA damage in response to the death of neighbouring cells. Accordingly, inhibition of the P2X4 receptor or direct mTOR blockade prevents induction of S6 phosphorylation and synergizes with chemotherapy to cause massive cell death induced by reactive oxygen species and marked tumour regression that is not seen when individually applied. Conversely, scavenging of reactive oxygen species prevents cancer cells from becoming reliant on mTOR activation. Collectively, our findings show that dying cancer cells establish a new dependency on anti-apoptotic programs in their surviving neighbours, thereby creating an opportunity for combination therapy in P2X4-expressing epithelial tumours.
Collapse
Affiliation(s)
- Mark Schmitt
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Fatih Ceteci
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jalaj Gupta
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- Stem Cell Research Center, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Marina Pesic
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tim W Böttger
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adele M Nicolas
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kilian B Kennel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Esther Engel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Matthias Schewe
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Asude Callak Kirisözü
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Valentina Petrocelli
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yasamin Dabiri
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Varga
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mallika Ramakrishnan
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Madina Karimova
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Melek C Arkan
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Shields A, Amcheslavsky A, Brown E, Lee TV, Nie Y, Tanji T, Ip YT, Bergmann A. Toll-9 interacts with Toll-1 to mediate a feedback loop during apoptosis-induced proliferation in Drosophila. Cell Rep 2022; 39:110817. [PMID: 35584678 PMCID: PMC9211775 DOI: 10.1016/j.celrep.2022.110817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drosophila Toll-1 and all mammalian Toll-like receptors regulate innate immunity. However, the functions of the remaining eight Toll-related proteins in Drosophila are not fully understood. Here, we show that Drosophila Toll-9 is necessary and sufficient for a special form of compensatory proliferation after apoptotic cell loss (undead apoptosis-induced proliferation [AiP]). Mechanistically, for AiP, Toll-9 interacts with Toll-1 to activate the intracellular Toll-1 pathway for nuclear translocation of the NF-κB-like transcription factor Dorsal, which induces expression of the pro-apoptotic genes reaper and hid. This activity contributes to the feedback amplification loop that operates in undead cells. Given that Toll-9 also functions in loser cells during cell competition, we define a general role of Toll-9 in cellular stress situations leading to the expression of pro-apoptotic genes that trigger apoptosis and apoptosis-induced processes such as AiP. This work identifies conceptual similarities between cell competition and AiP.
Collapse
Affiliation(s)
- Alicia Shields
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alla Amcheslavsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Elizabeth Brown
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Takahiro Tanji
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
Villars A, Levayer R. Collective effects in epithelial cell death and cell extrusion. Curr Opin Genet Dev 2021; 72:8-14. [PMID: 34626896 DOI: 10.1016/j.gde.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
Programmed cell death, notably apoptosis, is an essential guardian of tissue homeostasis and an active contributor of organ shaping. While the regulation of apoptosis has been mostly analysed in the framework of a cell autonomous process, recent works highlighted important collective effects which can tune cell elimination. This is particularly relevant for epithelial cell death, which requires fine coordination with the neighbours in order to maintain tissue sealing during cell expulsion. In this review, we will focus on the recent advances which outline the complex multicellular communications at play during epithelial cell death and cell extrusion. We will first focus on the new unanticipated functions of neighbouring cells during extrusion, discuss the contribution of distant neighbours, and finally highlight the complex feedbacks generated by cell elimination on neighbouring cell death.
Collapse
Affiliation(s)
- Alexis Villars
- Institut Pasteur, Université de Paris, CNRS UMR3738, Department of Developmental and Stem Cell Biology, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F75005 Paris, France
| | - Romain Levayer
- Institut Pasteur, Université de Paris, CNRS UMR3738, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.
| |
Collapse
|
16
|
Dillard C, Reis JGT, Rusten TE. RasV12; scrib-/- Tumors: A Cooperative Oncogenesis Model Fueled by Tumor/Host Interactions. Int J Mol Sci 2021; 22:ijms22168873. [PMID: 34445578 PMCID: PMC8396170 DOI: 10.3390/ijms22168873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The phenomenon of how oncogenes and tumor-suppressor mutations can synergize to promote tumor fitness and cancer progression can be studied in relatively simple animal model systems such as Drosophila melanogaster. Almost two decades after the landmark discovery of cooperative oncogenesis between oncogenic RasV12 and the loss of the tumor suppressor scribble in flies, this and other tumor models have provided new concepts and findings in cancer biology that has remarkable parallels and relevance to human cancer. Here we review findings using the RasV12; scrib-/- tumor model and how it has contributed to our understanding of how these initial simple genetic insults cooperate within the tumor cell to set in motion the malignant transformation program leading to tumor growth through cell growth, cell survival and proliferation, dismantling of cell-cell interactions, degradation of basement membrane and spreading to other organs. Recent findings have demonstrated that cooperativity goes beyond cell intrinsic mechanisms as the tumor interacts with the immediate cells of the microenvironment, the immune system and systemic organs to eventually facilitate malignant progression.
Collapse
Affiliation(s)
- Caroline Dillard
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Correspondence: (C.D.); (T.E.R.)
| | - José Gerardo Teles Reis
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Correspondence: (C.D.); (T.E.R.)
| |
Collapse
|
17
|
Carbonell M B, Zapata Cardona J, Delgado JP. Hydrogen peroxide is necessary during tail regeneration in juvenile axolotl. Dev Dyn 2021; 251:1054-1076. [PMID: 34129260 DOI: 10.1002/dvdy.386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2 O2 ) is a key reactive oxygen species (ROS) generated during appendage regeneration among vertebrates. However, its role during tail regeneration in axolotl as redox signaling molecule is unclear. RESULTS Treatment with exogenous H2 O2 rescues inhibitory effects of apocynin-induced growth suppression in tail blastema cells leading to cell proliferation. H2 O2 also promotes recruitment of immune cells, regulate the activation of AKT kinase and Agr2 expression during blastema formation. Additionally, ROS/H2 O2 regulates the expression and transcriptional activity of Yap1 and its target genes Ctgf and Areg. CONCLUSIONS These results show that H2 O2 is necessary and sufficient to promote tail regeneration in axolotls. Additionally, Akt signaling and Agr2 were identified as ROS targets, suggesting that ROS/H2 O2 is likely to regulate epimorphic regeneration through these signaling pathways. In addition, ROS/H2 O2 -dependent-Yap1 activity is required during tail regeneration.
Collapse
Affiliation(s)
- Belfran Carbonell M
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
| | - Juliana Zapata Cardona
- Grupo de Investigación en Patobiología Quirón, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
| |
Collapse
|
18
|
Krautz R, Khalili D, Theopold U. Tissue-autonomous immune response regulates stress signaling during hypertrophy. eLife 2020; 9:64919. [PMID: 33377870 PMCID: PMC7880693 DOI: 10.7554/elife.64919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Postmitotic tissues are incapable of replacing damaged cells through proliferation, but need to rely on buffering mechanisms to prevent tissue disintegration. By constitutively activating the Ras/MAPK-pathway via RasV12-overexpression in the postmitotic salivary glands (SGs) of Drosophila larvae, we overrode the glands adaptability to growth signals and induced hypertrophy. The accompanied loss of tissue integrity, recognition by cellular immunity, and cell death are all buffered by blocking stress signaling through a genuine tissue-autonomous immune response. This novel, spatio-temporally tightly regulated mechanism relies on the inhibition of a feedback-loop in the JNK-pathway by the immune effector and antimicrobial peptide Drosomycin. While this interaction might allow growing SGs to cope with temporary stress, continuous Drosomycin expression in RasV12-glands favors unrestricted hypertrophy. These findings indicate the necessity to refine therapeutic approaches that stimulate immune responses by acknowledging their possible, detrimental effects in damaged or stressed tissues. Tissues and organs work hard to maintain balance in everything from taking up nutrients to controlling their growth. Ageing, wounding, sickness, and changes in the genetic code can all alter this balance, and cause the tissue or organ to lose some of its cells. Many tissues restore this loss by dividing their remaining cells to fill in the gaps. But some – like the salivary glands of fruit fly larvae – have lost this ability. Tissues like these rely on being able to sense and counteract problems as they arise so as to not lose their balance in the first place. The immune system and stress responses are crucial for this process. They trigger steps to correct the problem and interact with each other to find a common decision about the fate of the affected tissue. To better understand how the immune system and stress response work together, Krautz, Khalili and Theopold genetically manipulated cells in the salivary gland of fruit fly larvae. These modifications switched on signals that stimulate cells to keep growing, causing the salivary gland’s tissue to slowly lose its balance and trigger the stress and immune response. The experiments showed that while the stress response instructed the cells in the gland to die, a peptide released by the immune system called Drosomycin blocked this response and prevented the tissue from collapsing. The cells in the part of the gland not producing this immune peptide were consequently killed by the stress response. When all the cells in the salivary gland were forced to produce Drosomycin, none of the cells died and the whole tissue survived. But it also allowed the cells in the gland to grow uncontrollably, like a tumor, threatening the health of the entire organism. Mapping the interactions between immune and stress pathways could help to fine-tune treatments that can prevent tissue damage. Fruit flies share many genetic features and molecular pathways with humans. So, the next step towards these kinds of treatments would be to screen for similar mechanisms that block stress activation in damaged human tissues. But this research carries a warning: careless activation of the immune system to protect stressed tissues could lead to uncontrolled tissue growth, and might cause more harm than good.
Collapse
Affiliation(s)
- Robert Krautz
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Dilan Khalili
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| |
Collapse
|
19
|
Amcheslavsky A, Lindblad JL, Bergmann A. Transiently "Undead" Enterocytes Mediate Homeostatic Tissue Turnover in the Adult Drosophila Midgut. Cell Rep 2020; 33:108408. [PMID: 33238125 PMCID: PMC7754855 DOI: 10.1016/j.celrep.2020.108408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023] Open
Abstract
We reveal surprising similarities between homeostatic cell turnover in adult Drosophila midguts and "undead" apoptosis-induced compensatory proliferation (AiP) in imaginal discs. During undead AiP, immortalized cells signal for AiP, allowing its analysis. Critical for undead AiP is the Myo1D-dependent localization of the initiator caspase Dronc to the plasma membrane. Here, we show that Myo1D functions in mature enterocytes (ECs) to control mitotic activity of intestinal stem cells (ISCs). In Myo1D mutant midguts, many signaling events involved in AiP (ROS generation, hemocyte recruitment, and JNK signaling) are affected. Importantly, similar to AiP, Myo1D is required for membrane localization of Dronc in ECs. We propose that ECs destined to die transiently enter an undead-like state through Myo1D-dependent membrane localization of Dronc, which enables them to generate signals for ISC activity and their replacement. The concept of transiently "undead" cells may be relevant for other stem cell models in flies and mammals.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, Worcester, MA 01605, USA
| | - Jillian L Lindblad
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, Worcester, MA 01605, USA
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Brown J, Bush I, Bozon J, Su TT. Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms. PLoS Genet 2020; 16:e1009056. [PMID: 33075096 PMCID: PMC7595702 DOI: 10.1371/journal.pgen.1009056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 10/29/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Loss of Heterozygosity (LOH) typically refers to a phenomenon in which diploid cells that are heterozygous for a mutant allele lose their wild type allele through mutations. LOH is implicated in oncogenesis when it affects the remaining wild type copy of a tumor suppressor. Drosophila has been a useful model to identify genes that regulate the incidence of LOH, but most of these studies use adult phenotypic markers such as multiple wing hair (mwh). Here, we describe a cell-autonomous fluorescence-based system that relies on the QF/QS transcriptional module to detect LOH, which may be used in larval, pupal and adult stages and in conjunction with the GAL4/UAS system. Using the QF/QS system, we were able to detect the induction of cells with LOH by X-rays in a dose-dependent manner in the larval wing discs, and to monitor their fate through subsequent development in pupa and adult stages. We tested the genetic requirement for changes in LOH, using both classical mutants and GAL4/UAS-mediated RNAi. Our results identify two distinct culling phases that eliminate cells with LOH, one in late larval stages and another in the pupa. The two culling phases are genetically separable, showing differential requirement for pro-apoptotic genes of the H99 locus and transcription factor Srp. A direct comparison of mwh LOH and QF/QS LOH suggests that cells with different LOH events are distinguished from each other in a p53-dependent manner and are retained to different degrees in the final adult structure. These studies reveal previously unknown mechanisms for the elimination of cells with chromosome aberrations.
Collapse
Affiliation(s)
- Jeremy Brown
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Inle Bush
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Justine Bozon
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| |
Collapse
|
21
|
Gadiyar V, Lahey KC, Calianese D, Devoe C, Mehta D, Bono K, Desind S, Davra V, Birge RB. Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cells 2020; 9:cells9102207. [PMID: 33003477 PMCID: PMC7599747 DOI: 10.3390/cells9102207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
The physiological fate of cells that die by apoptosis is their prompt and efficient removal by efferocytosis. During these processes, apoptotic cells release intracellular constituents that include purine nucleotides, lysophosphatidylcholine (LPC), and Sphingosine-1-phosphate (S1P) that induce migration and chemo-attraction of phagocytes as well as mitogens and extracellular membrane-bound vesicles that contribute to apoptosis-induced compensatory proliferation and alteration of the extracellular matrix and the vascular network. Additionally, during efferocytosis, phagocytic cells produce a number of anti-inflammatory and resolving factors, and, together with apoptotic cells, efferocytic events have a homeostatic function that regulates tissue repair. These homeostatic functions are dysregulated in cancers, where, aforementioned events, if not properly controlled, can lead to cancer progression and immune escape. Here, we summarize evidence that apoptosis and efferocytosis are exploited in cancer, as well as discuss current translation and clinical efforts to harness signals from dying cells into therapeutic strategies.
Collapse
|
22
|
Diwanji N, Bergmann A. Basement membrane damage by ROS- and JNK-mediated Mmp2 activation drives macrophage recruitment to overgrown tissue. Nat Commun 2020; 11:3631. [PMID: 32686670 PMCID: PMC7371875 DOI: 10.1038/s41467-020-17399-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/25/2020] [Indexed: 01/25/2023] Open
Abstract
Macrophages are a major immune cell type infiltrating tumors and promoting tumor growth and metastasis. To elucidate the mechanism of macrophage recruitment, we utilize an overgrowth tumor model ("undead" model) in larval Drosophila imaginal discs that are attached by numerous macrophages. Here we report that changes to the microenvironment of the overgrown tissue are important for recruiting macrophages. First, we describe a correlation between generation of reactive oxygen species (ROS) and damage of the basement membrane (BM) in all neoplastic, but not hyperplastic, models examined. ROS and the stress kinase JNK mediate the accumulation of matrix metalloproteinase 2 (Mmp2), damaging the BM, which recruits macrophages to the tissue. We propose a model where macrophage recruitment to and activation at overgrowing tissue is a multi-step process requiring ROS- and JNK-mediated Mmp2 upregulation and BM damage. These findings have implications for understanding the role of the tumor microenvironment for macrophage activation.
Collapse
Affiliation(s)
- Neha Diwanji
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, LRB 419, Worcester, MA, 01605, USA
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, LRB 419, Worcester, MA, 01605, USA.
| |
Collapse
|