1
|
Lee S, Kim EW, Lee HR, Lim SU, Jung CK, Kang YJ, Jung GA, Oh IH. Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD). Int J Mol Sci 2025; 26:847. [PMID: 39859561 PMCID: PMC11766046 DOI: 10.3390/ijms26020847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
The immune-modulatory effects of mesenchymal stromal cells (MSCs) are widely used to treat inflammatory disorders, with indoleamine 2,4-dioxygenase-1 (IDO-1) playing a pivotal role in suppressing stimulated T-cell proliferation. Taking that three-dimensional (3D) cultures enhance MSCs' anti-inflammatory properties compared with two-dimensional (2D) cultures, the differentially expressed miRNAs were examined. Thus, we identified hsa-miR-4662a-5p (miR-4662a) as a key inducer of IDO-1 via its suppression of bridging integrator-1 (BIN-1), a negative regulator of the IDO-1 gene. The IDO-1-inducing potential of miR-4662a was conserved across primary MSCs from various donors and sources but exhibited variability. Notably, iPSC-derived MSCs (iMSCs) demonstrated superior IDO-1 induction and immune-modulatory efficacy compared with their donor-matched primary MSCs. Accordingly, iMSCs expressing miR-4662a (4662a/iMSC) exhibited stronger suppressive effects on T-cell proliferation and more potent suppressive effects on graft-versus-host disease (GVHD), improving survival rates and reducing tissue damage in the liver and gut. Our results point to the therapeutic potential of standardized, off-the-shelf 4662a/iMSC as a robust immune-modulating cell therapy for GVHD.
Collapse
Affiliation(s)
- Susie Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eung-Won Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| | - Sun-Ung Lim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| | - Chan Kwon Jung
- Department of Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Young-Ju Kang
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| | - Gyung-Ah Jung
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Deng X, Zhang S, Qing Q, Wang P, Ma H, Ma Q, Zhao W, Tang H, Lu M. Distinct biological characteristics of mesenchymal stem cells separated from different components of human placenta. Biochem Biophys Rep 2024; 39:101739. [PMID: 38974020 PMCID: PMC11225169 DOI: 10.1016/j.bbrep.2024.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tremendous potential in cell therapy and regenerative medicine. The placenta-derived MSCs (PMSCs) are becoming favorable sources as they are ethically preferable and rich in MSCs. Although several subgroups of PMSCs have been identified from human term placenta, optimal sources for specific clinical applications remain to be elucidated. This study aimed to isolate MSCs from various components of the placenta, and compare their biological characteristics, including morphology, proliferation, immunophenotype, differentiation potential, growth factor and cytokine secretion, and immunomodulatory properties. Finally, four distinct groups of PMSCs were isolated from the placenta: amniotic membrane-derived MSCs (AM-MSCs), chorionic membrane-derived MSCs (CM-MSCs), chorionic plate-derived MSCs (CP-MSCs), and chorionic villi-derived MSCs (CV-MSCs). The results showed that CV-MSCs had good proliferation ability, and were easier to induce osteogenic and chondrogenic differentiation; CP-MSCs exhibited the strongest inhibitory effect on the proliferation of activated T cells, secreted high levels of EGF and IL-6, and could well differentiate into osteoblasts, adipocytes, and chondroblasts; AM-MSCs showed good growth dynamics in the early generations, were able to grow at high density, and tended to induce differentiation into osteogenic and neural lineages. These findings may provide novel evidence for the selection of seed cells in clinical application.
Collapse
Affiliation(s)
- Xiangxiong Deng
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Su Zhang
- Huzhou Maternity and Child Health Care Hospital, Huzhou, Zhejiang, 313000, China
| | - Quan Qing
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Pengfei Wang
- Huzhou Maternity and Child Health Care Hospital, Huzhou, Zhejiang, 313000, China
| | - Haiyang Ma
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Qinghua Ma
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Weixiang Zhao
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Hanjing Tang
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Min Lu
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| |
Collapse
|
3
|
Wang H, Mao X, Zhong Y, Zhao X, Li C, Jiang J, Hong Z, Wang N, Wang F. Human amniotic mesenchymal stem cells inhibit immune rejection injury from allogeneic mouse heart transplantation: A preliminary study on the microRNA expression. Transpl Immunol 2024; 84:102022. [PMID: 38452986 DOI: 10.1016/j.trim.2024.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Mesenchymal stem cell therapy is a new treatment for immune rejection in heart transplantation. The aim of this paper is to investigate the effect of human amniotic mesenchymal stem cells (hAMSCs) on alleviating immune rejection of allogeneic heart transplantation in mice and its possible underlying mechanism. METHODS We injected hAMSCs into cervical ectopic heart transplantation model mice via tail vein to observe the survival time, the pathological changes of donor myocardium, and the fluorescent distribution of hAMSCs after the transplantation. MicroRNAs (miRs) with significantly differential expression were obtained by RNA sequencing and bioinformatic analysis, and a dual luciferase reporter gene assay together with real-time quantitative PCR (qRT-PCR) was performed to verify the relationship between miRs and their targeting genes. RESULTS The intervention of hAMSCs prolonged the graft survival time and alleviated the pathological damage of the donor heart. The injected hAMSCs were distributed mainly in the liver, spleen, and kidney, only a very small portion in the donor and recipient hearts. In the allogeneic transplantation models, the expression of miR-34b-5p significantly increased after hAMSC treatment. MiR-34b-5p showed a knockdown effect on gene Fc gamma receptor 2B (FCGR2B). CONCLUSIONS hAMSCs can reduce the immune rejection injury after allogeneic heart transplantation. This effect may be associated with the upregulation of miR-34b-5p expression to knock down its targeting gene FCGR2B.
Collapse
Affiliation(s)
- Haoyuan Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China; Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xin Mao
- Department of Clinical Medical College, Zunyi Medical University, Zunyi 563006, Guizhou, China; Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Yue Zhong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Xu Zhao
- Department of Clinical Medical College, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Chuntian Li
- Department of Clinical Medical College, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Jun Jiang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Zheng Hong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China; The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China; Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| | - Feng Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou, China; The Second Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou, China; Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
4
|
Wu J, Huang QM, Liu Y, Zhou J, Tang WR, Wang XY, Wang LF, Zhang ZH, Tan HL, Guan XH, Deng KY, Xin HB. Long-term hypoxic hUCMSCs-derived extracellular vesicles alleviates allergic rhinitis through triggering immunotolerance of their VEGF-mediated inhibition of dendritic cells maturation. Int Immunopharmacol 2023; 124:110875. [PMID: 37742368 DOI: 10.1016/j.intimp.2023.110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Extensions of mesenchymal stem cells (MSCs) in vitro may lead to the loss of their biological functions. However, hypoxic culturation has been shown to enhance the proliferation, survival, and immunomodulatory capacity of MSCs. OBJECTIVE We aimed to investigate the effects of long-term hypoxic cultivation on the properties of human umbilical cord-derived MSCs (hUCMSCs) and the therapeutic effects of their extracellular vesicles (EVs) in allergic rhinitis (AR). METHODS Proliferation, senescence, telomerase activity and multipotent properties of hUCMSCs were analyzed under long-term culturation of hypoxia (1%) or normoxia (21%), and the therapeutic effects of their conditional medium (CM) and EVs were evaluated in OVA-induced AR mice. Effects of hypoxia-EVs (Hy-EVs) or normoxia-EVs (No-EVs) on human monocyte-derived dendritic cells (DCs) were investigated, and the possible mechanisms of Hy-EVs in induction of immunotolerance were further explored. RESULTS Long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs. Hy-CM and Hy-EVs showed better therapeutic effects in AR mice compared to No-EVs, seen as improvement of AR-related behaviors such as rubbing and sneezing, and attenuation of inflammation in nasal tissues. In addition, Hy-EVs significantly reduced the expressions of HLA-DR, CD80, CD40, and CD83 induced by OVA plus LPS in DCs, inhibiting the maturation of DCs. Furthermore, we observed that VEGF was remarkably enriched in Hy-EVs, but not in No-EVs, and the inhibition of DCs maturation was markedly neutralized by VEGF antibodies, suggesting that VEGF derived from Hy-EVs was responsible for the inhibition of DCs maturation. CONCLUSION Our results demonstrated that long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs, and hypoxia treated hUCMSCs-derived EVs enhanced their therapeutic effects in AR mice through VEGF-mediated inhibition of DCs maturation.
Collapse
Affiliation(s)
- Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Juan Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Wen-Rong Tang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Lin-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhou-Hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Mendiratta M, Mendiratta M, Mohanty S, Sahoo RK, Prakash H. Breaking the graft-versus-host-disease barrier: Mesenchymal stromal/stem cells as precision healers. Int Rev Immunol 2023; 43:95-112. [PMID: 37639700 DOI: 10.1080/08830185.2023.2252007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Mesenchymal Stromal/Stem Cells (MSCs) are multipotent, non-hematopoietic progenitor cells with a wide range of immune modulation and regenerative potential which qualify them as a potential component of cell-based therapy for various autoimmune/chronic inflammatory ailments. Their immunomodulatory properties include the secretion of immunosuppressive cytokines, the ability to suppress T-cell activation and differentiation, and the induction of regulatory T-cells. Considering this and our interest, we here discuss the significance of MSC for the management of Graft-versus-Host-Disease (GvHD), one of the autoimmune manifestations in human. In pre-clinical models, MSCs have been shown to reduce the severity of GvHD symptoms, including skin and gut damage, which are the most common and debilitating manifestations of this disease. While initial clinical studies of MSCs in GvHD cases were promising, the results were variable in randomized studies. So, further studies are warranted to fully understand their potential benefits, safety profile, and optimal dosing regimens. Owing to these inevitable issues, here we discuss various mechanisms, and how MSCs can be employed in managing GvHD, as a cellular therapeutic approach for this disease.
Collapse
Affiliation(s)
- Mohini Mendiratta
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, Noida, India
| |
Collapse
|
6
|
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, Rigi A, Kiasari BA. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res 2023; 28:47. [PMID: 36707899 PMCID: PMC9881387 DOI: 10.1186/s40001-023-01008-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-β (TGFβ), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Maria V Mikhailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Soheil Rasoolzadegan
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Falaki
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Azad University, Zahedan, Iran.
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Li H, Zhirong Z, Shibo Z, Lichen Z, Ming S, Hua J, Zheng T, Ruiwu D. The Effects of Umbilical Cord Mesenchymal Stem Cells on Traumatic Pancreatitis in Rats. Dig Dis Sci 2023; 68:147-154. [PMID: 35430701 DOI: 10.1007/s10620-022-07493-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE This study explored the therapeutic and protective effects of umbilical cord mesenchymal stem cells (ucMSCs) on traumatic pancreatitis (TP) to provide a theoretical basis for TP treatment with MCSs by establishing a TP rat model. METHODS We used 60 healthy adult male Sprague Dawley (SD) rats to create four experimental groups: sham, ucMSC control, TP, and ucMSC treatment. We observed ucMSC homing in the rats by fluorescence microscopy and assessed the degree of pancreatic tissue injury by hematoxylin and eosin (HE) staining on days 1, 3, and 7 after transplantation. Furthermore, we used an in vivo imaging system to evaluate the localization of cell membrane-stained ucMSCs in rats with TP. Finally, we measured the serum levels of amylase, lipase, pro-and anti-inflammatory factors, and oxidative stress factors by enzyme-linked immunosorbent assay (ELISA). RESULTS The pancreatic histopathological score and the serum amylase and lipase levels were lower in the ucMSC treatment group than in the TP group (P < 0.05). Interleukin (IL)-6, tumor necrosis factor-α (TNF-α), and oxidase malondialdehyde (MOD) levels were significantly higher in the ucMSC treatment group than in the TP group. However, IL-10, transforming growth factor-β, and superoxide dismutase (an antioxidant enzyme, SOD) levels were significantly higher in the ucMSC treatment group than in the TP group (P < 0.05). CONCLUSION ucMSCs can migrate and implant in injured areas of the pancreas in rats. Furthermore, they participate in pancreatic tissue repair and regulate immunity by inhibiting the systemic inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Han Li
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Zhao Zhirong
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Zhou Shibo
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- College of Clinical Medicine Southwest, Medical University, Luzhou, 646000, Sichuan Province, China
| | - Zhou Lichen
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- College of Clinical Medicine Southwest, Medical University, Luzhou, 646000, Sichuan Province, China
| | - Shi Ming
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- College of Clinical Medicine Southwest, Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ji Hua
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- College of Clinical Medicine Southwest, Medical University, Luzhou, 646000, Sichuan Province, China
| | - Tang Zheng
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- College of Clinical Medicine Southwest, Medical University, Luzhou, 646000, Sichuan Province, China
| | - Dai Ruiwu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China.
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China.
- College of Clinical Medicine Southwest, Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
8
|
Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022; 346:260-274. [PMID: 35469984 PMCID: PMC9045711 DOI: 10.1016/j.jconrel.2022.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Abdelgawad M, Bakry NS, Farghali AA, Abdel-Latif A, Lotfy A. Mesenchymal stem cell-based therapy and exosomes in COVID-19: current trends and prospects. Stem Cell Res Ther 2021; 12:469. [PMID: 34419143 PMCID: PMC8379570 DOI: 10.1186/s13287-021-02542-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2. The virus causes an exaggerated immune response, resulting in a cytokine storm and acute respiratory distress syndrome, the leading cause of COVID-19-related mortality and morbidity. So far, no therapies have succeeded in circumventing the exacerbated immune response or cytokine storm associated with COVID-19. Mesenchymal stem cells (MSCs), through their immunomodulatory and regenerative activities, mostly mediated by their paracrine effect and extracellular vesicle production, have therapeutic potential in many autoimmune, inflammatory, and degenerative diseases. In this paper, we review clinical studies on the use of MSCs for COVID-19 treatment, including the salutary effects of MSCs on the pathophysiology of COVID-19 and the immunomodulation of the cytokine storm. Ongoing clinical trial designs, cell sources, dose and administration, and populations are summarized, and the paracrine mode of benefit is discussed. We also offer suggestions for optimizing MSC-based therapies, including genetic engineering, strategies for cell surface modification, nanotechnology applications, and combination therapies.
Collapse
Affiliation(s)
- Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Nourhan Saied Bakry
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA. .,College of Medicine, University of Kentucky, Lexington, KY, 40506-0046, USA.
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt.
| |
Collapse
|
10
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Xiong Y, Wang Y, Zhang J, Zhao N, Zhang H, Zhang A, Zhao D, Yu Z, Yin Y, Song L, Xiong Y, Luan X. hPMSCs protects against D-galactose-induced oxidative damage of CD4 + T cells through activating Akt-mediated Nrf2 antioxidant signaling. Stem Cell Res Ther 2020; 11:468. [PMID: 33148324 PMCID: PMC7641865 DOI: 10.1186/s13287-020-01993-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) were considered a regenerative therapeutic approach in both acute and chronic diseases. However, whether MSCs regulate the antioxidant metabolism of CD4+ T cells and weaken immunosenescence remains unclear. Here, we reported the protective effects of hPMSCs in aging-related CD4+ T cell senescence and identified the underlying mechanisms using a D-gal-induced mouse aging model. METHODS In vivo study, 40 male C57BL/6 mice (8 weeks) were randomly divided into four groups: control group, D-gal group, hPMSC group, and PBS group. In in vitro experiment, human naive CD4+ T (CD4CD45RA) cells were prepared using a naive CD4+ T cell isolation kit II and pretreated with the Akt inhibitor LY294002 and Nrf2 inhibitor ML385. Then, isolated naive CD4+ T cell were co-cultured with hPMSCs for 72 h in the absence or presence of anti-CD3/CD28 Dynabeads and IL-2 as a mitogenic stimulus. Intracellular ROS changes were detected by flow cytometry. The activities of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase were measured by colorimetric analysis. The senescent T cells were detected SA-β-gal stain. The expression of aging-related proteins was detected by Western blotting, RT-PCR, and confocal microscopy. RESULTS We found that hPMSC treatment markedly decreased the ROS level, SA-β-gal-positive cells number, senescence-associated secretory phenotype (IL-6 and OPN) expression, and aging-related protein (P16 and P21) expression in senescent CD4+ T cells. Furthermore, hPMSC treatment effectively upregulated Nrf2 nuclear translocation and the expression of downstream target genes (HO-1, CAT, GCLC, and NQO1) in senescent CD4+ T cells. Moreover, in vitro studies revealed that hPMSCs attenuated CD4+ T cell senescence by upregulating the Akt/GSK-3β/Fyn pathway to activate Nrf2 functions. Conversely, the antioxidant effects of hPMSCs were blocked by the Akt inhibitor LY294002 and Nrf2 inhibitor ML385 in senescent CD4+ T cells. CONCLUSIONS Our results indicate that hPMSCs attenuate D-gal-induced CD4+ T cell senescence by activating Nrf2-mediated antioxidant defenses and that upregulation of Nrf2 by hPMSCs is regulated via the Akt/GSK-3β/Fyn pathway.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Yueming Wang
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Nannan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Aiping Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Dongmei Zhao
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Zhenhai Yu
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Yancun Yin
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Lele Song
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Yanlei Xiong
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China.
| |
Collapse
|
12
|
Bhagavathula AS, Aldhaleei WA, Rovetta A, Rahmani J. Vaccines and Drug Therapeutics to Lock Down Novel Coronavirus Disease 2019 (COVID-19): A Systematic Review of Clinical Trials. Cureus 2020; 12:e8342. [PMID: 32494546 PMCID: PMC7263008 DOI: 10.7759/cureus.8342] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
The ongoing novel coronavirus disease 2019 (COVID-19) pandemic has been responsible for millions of infections and hundreds of thousands of deaths. To date, there is no approved targeted treatment, and many investigational therapeutic agents and vaccine candidates are being considered for the treatment of COVID-19. To extract and summarize information on potential vaccines and therapeutic agents against COVID-19 at different stages of clinical trials from January to March 2020, we reviewed major clinical trial databases such as ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP), and other primary registries between January and March 15, 2020. Interventional studies at different phases under the COVID-19 pipeline were included. A total of 249 clinical trials were identified between January to March 15, 2020. After filtering observational studies (194 studies), a total of 56 interventional trials were considered. The majority of clinical trials have been conducted on chloroquine (n=10) and traditional Chinese medications (TCMs; n=10), followed by antivirals (n=8), anti-inflammatory/immunosuppressants (n=9), cellular therapies (n=4), combinations of different antivirals therapies (n=3), antibacterial (n=1), and other therapies (n=5). Five vaccines are under phase I, and there are a couple of phase III trials on the Bacillus Calmette-Guérin (BCG) vaccine under investigation among healthcare workers. Many novel compounds and vaccines against COVID-19 are currently under investigation. Some candidates have been tested for other viral infections and are listed for clinical trials against the COVID-19 pipeline. Currently, there are no effective specific antivirals or drug combinations available for the treatment of COVID-19.
Collapse
Affiliation(s)
- Akshaya S Bhagavathula
- Public Health, Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, ARE
| | | | - Alessandro Rovetta
- Mathematical, Statistical and Epidemiological Models, Research and Disclosure Division, Mensana SRLS, Brescia, ITA
| | - Jamal Rahmani
- Community Nutrition, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, IRN
| |
Collapse
|