1
|
Gulyaev IA, Sokol MB, Mollaeva MR, Klimenko MA, Yabbarov NG, Chirkina MV, Nikolskaya ED. Polymeric Drug Delivery Systems in Biomedicine. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S233-S262. [PMID: 40164161 DOI: 10.1134/s0006297924603976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Our review examines the key aspects of using polymeric carriers in biomedicine. The section "Polymers for Biomedicine" provides an overview of different types of polymers, their structural features and properties that determine their use as drug delivery vehicles. The section "Polymeric Carriers" characterizes the role of polymeric delivery systems in modern medicine. The main forms of polymeric carriers are described, as well as their key advantages for drug delivery. The section "Preclinical and Clinical Trials of Polymeric Drug Carriers" reviews the examples of clinical and preclinical studies of polymeric forms used for antitumor therapy, therapy for bacterial and infectious diseases. The final section "Targeted Drug Delivery Systems" is devoted to the discussion of approaches, as well as ligands that provide targeted drug delivery using polymeric carriers. We have paid special attention to modern approaches for increasing the efficacy of antibacterial therapy using vector molecules.
Collapse
Affiliation(s)
- Ivan A Gulyaev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Maria B Sokol
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maksim A Klimenko
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita V Chirkina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
2
|
Avramović N, Mandić B, Savić-Radojević A, Simić T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics 2020; 12:E298. [PMID: 32218326 PMCID: PMC7238125 DOI: 10.3390/pharmaceutics12040298] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/10/2023] Open
Abstract
Conventional chemotherapy is the most common therapeutic method for treating cancer by the application of small toxic molecules thatinteract with DNA and causecell death. Unfortunately, these chemotherapeutic agents are non-selective and can damage both cancer and healthy tissues,producing diverse side effects, andthey can have a short circulation half-life and limited targeting. Many synthetic polymers have found application as nanocarriers of intelligent drug delivery systems (DDSs). Their unique physicochemical properties allow them to carry drugs with high efficiency,specificallytarget cancer tissue and control drug release. In recent years, considerable efforts have been made to design smart nanoplatforms, including amphiphilic block copolymers, polymer-drug conjugates and in particular pH- and redox-stimuli-responsive nanoparticles (NPs). This review is focused on a new generation of polymer-based DDSs with specific chemical functionalities that improve their hydrophilicity, drug loading and cellular interactions.Recentlydesigned multifunctional DDSs used in cancer therapy are highlighted in this review.
Collapse
Affiliation(s)
- Nataša Avramović
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Boris Mandić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Ana Savić-Radojević
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.S.-R.); (T.S.)
| | - Tatjana Simić
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.S.-R.); (T.S.)
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Pan J, Rostamizadeh K, Filipczak N, Torchilin VP. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules 2019; 24:E1035. [PMID: 30875934 PMCID: PMC6471357 DOI: 10.3390/molecules24061035] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are involved in the development of cancers and their effects on survival rate. Many are related to chemo-resistance of tumor cells. Thus, treatment with a single therapeutic agent is often inadequate for successful cancer therapy. Ideally, combination therapy inhibits tumor growth through multiple pathways by enhancing the performance of each individual therapy, often resulting in a synergistic effect. Polymeric nanoparticles prepared from block co-polymers have been a popular platform for co-delivery of combinations of drugs associated with the multiple functional compartments within such nanoparticles. Various polymeric nanoparticles have been applied to achieve enhanced therapeutic efficacy in cancer therapy. However, reported drug ratios used in such systems often vary widely. Thus, the same combination of drugs may result in very different therapeutic outcomes. In this review, we investigated polymeric co-delivery systems used in cancer treatment and the drug combinations used in these systems for synergistic anti-cancer effect. Development of polymeric co-delivery systems for a maximized therapeutic effect requires a deeper understanding of the optimal ratio among therapeutic agents and the natural heterogenicity of tumors.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Kobra Rostamizadeh
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Stokes E, Shuang T, Zhang Y, Pei Y, Fu M, Guo B, Parissenti A, Wu L, Wang R, Yang G. Efflux inhibition by H2S confers sensitivity to doxorubicin-induced cell death in liver cancer cells. Life Sci 2018; 213:116-125. [DOI: 10.1016/j.lfs.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
|
5
|
Song TT, Ying SH, Feng MG. High resistance of Isaria fumosorosea to carbendazim arises from the overexpression of an ATP-binding cassette transporter (ifT1) rather than tubulin mutation. J Appl Microbiol 2011; 112:175-84. [DOI: 10.1111/j.1365-2672.2011.05188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Shen F, Bailey BJ, Chu S, Bence AK, Xue X, Erickson P, Safa AR, Beck WT, Erickson LC. Dynamic assessment of mitoxantrone resistance and modulation of multidrug resistance by valspodar (PSC833) in multidrug resistance human cancer cells. J Pharmacol Exp Ther 2009; 330:423-9. [PMID: 19423841 PMCID: PMC2713081 DOI: 10.1124/jpet.109.153551] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/06/2009] [Indexed: 11/22/2022] Open
Abstract
P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, is one of the major causes for multidrug resistance (MDR). We report using confocal microscopy to study the roles of Pgp in mediating the efflux of the anticancer agent mitoxantrone and the reversal of MDR by the specific Pgp inhibitor valspodar (PSC833). The net uptake and efflux of mitoxantrone and the effect of PSC833 were quantified and compared in Pgp-expressing human cancer MDA-MB-435 (MDR) cells and in parental wild-type cells. The MDR cells, transduced with the human Pgp-encoding gene MDR1 construct, were approximately 8-fold more resistant to mitoxantrone than the wild-type cells. Mitoxantrone accumulation in the MDR cells was 3-fold lower than that in the wild-type cells. The net uptake of mitoxantrone in the nuclei and cytoplasm of MDR cells was only 58 and 67% of that in the same intracellular compartment of the wild-type cells. Pretreatment with PSC833 increased the accumulation of mitoxantrone in the MDR cells to 85% of that in the wild-type cells. In living animals, the accumulation of mitoxantrone in MDA-MB-435mdr xenograft tumors was 61% of that in the wild-type tumors. Administration of PSC833 to animals before mitoxantrone treatment increased the accumulation of mitoxantrone in the MDR tumors to 94% of that in the wild-type tumors. These studies have added direct in vitro and in vivo visual information on how Pgp processes anticancer compounds and how Pgp inhibitors modulate MDR in resistant cancer cells.
Collapse
Affiliation(s)
- Fei Shen
- Department of Pharmacology and Toxicology, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
de Waard MA, Andrade AC, Hayashi K, Schoonbeek HJ, Stergiopoulos I, Zwiers LH. Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. PEST MANAGEMENT SCIENCE 2006; 62:195-207. [PMID: 16475240 DOI: 10.1002/ps.1150] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Drug transporters are membrane proteins that provide protection for organisms against natural toxic products and fungicides. In plant pathogens, drug transporters function in baseline sensitivity to fungicides, multidrug resistance (MDR) and virulence on host plants. This paper describes drug transporters of the filamentous fungi Aspergillus nidulans (Eidam) Winter, Botrytis cinerea Pers and Mycosphaerella graminicola (Fückel) Schroter that function in fungicide sensitivity and resistance. The fungi possess ATP-binding cassette (ABC) drug transporters that mediate MDR to fungicides in laboratory mutants. Similar mutants are not pronounced in field resistance to most classes of fungicide but may play a role in resistance to azoles. MDR may also explain historical cases of resistance to aromatic hydrocarbon fungicides and dodine. In clinical situations, MDR development in Candida albicans (Robin) Berkhout mediated by ABC transporters in patients suffering from candidiasis is common after prolonged treatment with azoles. Factors that can explain this striking difference between agricultural and clinical situations are discussed. Attention is also paid to the risk of MDR development in plant pathogens in the future. Finally, the paper describes the impact of fungal drug transporters on drug discovery.
Collapse
Affiliation(s)
- Maarten A de Waard
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, NL-6709 PD Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Verjovski-Almeida S, Leite LCC, Dias-Neto E, Menck CFM, Wilson RA. Schistosome transcriptome: insights and perspectives for functional genomics. Trends Parasitol 2004; 20:304-8. [PMID: 15193558 DOI: 10.1016/j.pt.2004.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Lev DC, Onn A, Melinkova VO, Miller C, Stone V, Ruiz M, McGary EC, Ananthaswamy HN, Price JE, Bar-Eli M. Exposure of melanoma cells to dacarbazine results in enhanced tumor growth and metastasis in vivo. J Clin Oncol 2004; 22:2092-100. [PMID: 15123733 DOI: 10.1200/jco.2004.11.070] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In recent years, the incidence of cutaneous melanoma has increased more than that of any other cancer. Dacarbazine is considered the gold standard for treatment, having a response rate of 15% to 20%, but most responses are not sustained. Previously, we have shown that short exposure of primary cutaneous melanoma cells to dacarbazine resulted in the upregulation of interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF). The purpose of the present study was to determine how long-term exposure of melanoma cells to dacarbazine would affect their tumorigenic and metastatic potential in vivo. MATERIALS AND METHODS The primary cutaneous melanoma cell lines SB2 and MeWo were repeatedly exposed in vitro to increasing concentrations of dacarbazine, and dacarbazine-resistant cell lines SB2-D and MeWo-D were selected and examined for their ability to grow and metastasize in nude mice. RESULTS The dacarbazine-resistant cell lines SB2-D and MeWo-D exhibited increased tumor growth and metastatic behavior in vivo. This increase could be explained by the activation of RAF, MEK, and ERK, which led to the upregulation of IL-8 and VEGF. More IL-8, VEGF, matrix metalloproteinase-2 (MMP-2), and microvessel density (CD-31) were found in tumors produced by SB2-D and MeWo-D in vivo than in those produced by their parental counterparts. No mutations were observed in BRAF. CONCLUSION Our results have significant clinical implications. Treatment of melanoma patients with dacarbazine could select for a more aggressive melanoma phenotype. We propose that combination treatment with anti-VEGF/IL-8 or MEK inhibitors may potentiate the therapeutic effects of dacarbazine.
Collapse
Affiliation(s)
- Dina Chelouche Lev
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Unit 0173, 7777 Knight Rd, Houston, TX 77054, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ramos AJ, Lazarowski A, Villar MJ, Brusco A. Transient expression of MDR-1/P-glycoprotein in a model of partial cortical devascularization. Cell Mol Neurobiol 2004; 24:101-7. [PMID: 15049514 PMCID: PMC11529942 DOI: 10.1023/b:cemn.0000012728.19117.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. MDR-1 gene product confer to expressing cells the multidrug resistance phenotype to a broad range of drugs and xenobiotics. 2. It is known that different stress signals are able to induce MDR-1 expression through different promoters. 3. In a rat model of ischemia by partial cortical devascularization we studied the expression profile and the cellular localization of MDR-1 after 1, 3, 7, 14 and 28 days post lesion (DPL). 4. Using two different antibody clones we found that MDR-1 is expressed in cortical and striatal neurons ipsilateral to the devascularizing lesion, starting at 1DPL, showing a maximum at 7DPL to be thereafter reduced until undetectable levels by 28DPL. 5. MDR-1 expression may be defining a neuronal subset with a particular pharmacological profile.
Collapse
Affiliation(s)
- Alberto Javier Ramos
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
11
|
Abstract
Toxicology has matured since it was defined as the 'science of poisons'. Modern toxicology is no longer anthropocentric but takes on different views at various biological systems, including ecosystems. Each will interact specifically when exposed to defined chemical agents, including drugs. Adverse effects during drug therapy or after (accidental) poisoning are the result of some negative interactions between the agent and the exposed biological system. Toxicity is no longer a specific property of drugs and chemicals but an operative term to describe the adverse outcome of a specific drugs-host interaction. Newer developments in toxicology have focused on the host. Toxicogenetics continues to provide answers to variations of host response to xenobiotics, including drugs. Clinically relevant genetic polymorphisms and gene defects have been detected, and their number is rapidly growing. The key to understanding is in the host proteins that interact with the drug and mediate the cellular response. Hence, the proteom, i.e. the complete set of proteins of a cell, an individual or a species, determines how an exposed biological system may interact with the manifold of different xenobiotics. Structure-activity studies try to find out useful predictive parameters for risk and toxicity assessment.
Collapse
Affiliation(s)
- Harald Mückter
- Walther-Straub-Institute for Pharmacology and Toxicology, Nussbaumstrasse 26, München D-80336, Germany.
| |
Collapse
|