1
|
Shah SA, Brown P, Gimeno H, Lin JP, McClelland VM. Application of Machine Learning Using Decision Trees for Prognosis of Deep Brain Stimulation of Globus Pallidus Internus for Children With Dystonia. Front Neurol 2020; 11:825. [PMID: 32849251 PMCID: PMC7115974 DOI: 10.3389/fneur.2020.00825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND While Deep Brain Stimulation (DBS) of the Globus pallidus internus is a well-established therapy for idiopathic/genetic dystonia, benefits for acquired dystonia are varied, ranging from modest improvement to deterioration. Predictive biomarkers to aid DBS prognosis for children are lacking, especially in acquired dystonias, such as dystonic Cerebral Palsy. We explored the potential role of machine learning techniques to identify parameters that could help predict DBS outcome. METHODS We conducted a retrospective study of 244 children attending King's College Hospital between September 2007 and June 2018 for neurophysiological tests as part of their assessment for possible DBS at Evelina London Children's Hospital. For the 133 individuals who underwent DBS and had 1-year outcome data available, we assessed the potential predictive value of six patient parameters: sex, etiology (including cerebral palsy), baseline severity (Burke-Fahn-Marsden Dystonia Rating Scale-motor score), cranial MRI and two neurophysiological tests, Central Motor Conduction Time (CMCT) and Somatosensory Evoked Potential (SEP). We applied machine learning analysis to determine the best combination of these features to aid DBS prognosis. We developed a classification algorithm based on Decision Trees (DTs) with k-fold cross validation for independent testing. We analyzed all possible combinations of the six features and focused on acquired dystonias. RESULTS Several trees resulted in better accuracy than the majority class classifier. However, the two features that consistently appeared in top 10 DTs were CMCT and baseline dystonia severity. A decision tree based on CMCT and baseline severity provided a range of sensitivity and specificity, depending on the threshold chosen for baseline dystonia severity. In situations where CMCT was not available, a DT using SEP alone provided better than the majority class classifier accuracy. CONCLUSION The results suggest that neurophysiological parameters can help predict DBS outcomes, and DTs provide a data-driven, highly interpretable decision support tool that lends itself to being used in clinical practice to help predict potential benefit of DBS in dystonic children. Our results encourage the introduction of neurophysiological parameters in assessment pathways, and data collection to facilitate multi-center evaluation and validation of these potential predictive markers and of the illustrative decision support tools presented here.
Collapse
Affiliation(s)
- Syed Ahmar Shah
- Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Hortensia Gimeno
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Women and Children's Health Institute, King's College London, London, United Kingdom
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Women and Children's Health Institute, King's College London, London, United Kingdom
| | - Verity M. McClelland
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Alterman RL, Filippidis AS. Genetic Subtypes and Deep Brain Stimulation in Dystonia. Mov Disord Clin Pract 2018; 5:357-360. [PMID: 30838292 PMCID: PMC6336377 DOI: 10.1002/mdc3.12660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Ron L. Alterman
- Division of NeurosurgeryBeth Israel Deaconess Medical CenterBostonMA
| | | |
Collapse
|
3
|
Alterman RL, Stone S. Deep Brain Stimulation for Dystonia. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Somatosensory Evoked Potentials and Central Motor Conduction Times in children with dystonia and their correlation with outcomes from Deep Brain Stimulation of the Globus pallidus internus. Clin Neurophysiol 2017; 129:473-486. [PMID: 29254860 PMCID: PMC5786451 DOI: 10.1016/j.clinph.2017.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
A high proportion (47%) of children with dystonia have evidence of abnormal sensory pathway function. Central motor conduction times (CMCTs) and somatosensory evoked potentials (SEPs) show a significant relationship with deep brain stimulation (DBS) outcome, independent of aetiology or cranial MRI. CMCTs and SEPs can guide patient selection and help counsel families about potential benefit of DBS.
Objectives To report Somatosensory Evoked Potentials (SEPs) and Central Motor Conduction Times (CMCT) in children with dystonia and to test the hypothesis that these parameters predict outcome from Deep Brain Stimulation (DBS). Methods 180 children with dystonia underwent assessment for Globus pallidus internus (GPi) DBS, mean age 10 years (range 2.5–19). CMCT to each limb was calculated using Transcranial Magnetic Stimulation. Median and posterior tibial nerve SEPs were recorded over contralateral and midline centro-parietal scalp. Structural abnormalities were assessed with cranial MRI. One-year outcome from DBS was assessed as percentage improvement in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS-m). Results Abnormal CMCTs and SEPs were found in 19% and 47% of children respectively and were observed more frequently in secondary than primary dystonia. Of children proceeding to DBS, better outcome was seen in those with normal (n = 78/89) versus abnormal CMCT (n = 11/89) (p = 0.002) and those with normal (n = 35/51) versus abnormal SEPs (n = 16/51) (p = 0.001). These relationships were independent of dystonia aetiology and cranial MRI findings. Conclusions CMCTs and SEPs provide objective evidence of motor and sensory pathway dysfunction in children with dystonia and relate to DBS outcome. Significance CMCTs and SEPs can contribute to patient selection and counselling of families about potential benefit from neuromodulation for dystonia.
Collapse
|
5
|
Lozeron P, Poujois A, Richard A, Masmoudi S, Meppiel E, Woimant F, Kubis N. Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia. Front Neural Circuits 2016; 10:90. [PMID: 27891079 PMCID: PMC5102895 DOI: 10.3389/fncir.2016.00090] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug's side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS) is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS) can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA) interneurons mediated inhibition and brain-derived neurotrophic factor modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre)-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a valuable tool to improve our understanding of the pathophysiology of dystonia but large controlled studies using sham stimulation are still necessary to delineate the place of rTMS in the therapeutic strategy of dystonia. In this review, we will focus successively on the use of TMS as a tool to better understand pathophysiology, and the use of rTMS as a therapeutic strategy.
Collapse
Affiliation(s)
- Pierre Lozeron
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; INSERM UMR965Paris, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - Aurélia Poujois
- Service de Neurologie, AP-HP, Hôpital LariboisièreParis, France; Centre de Référence National de la Maladie de Wilson, Hôpital LariboisièreParis, France
| | - Alexandra Richard
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - Sana Masmoudi
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière Paris, France
| | - Elodie Meppiel
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - France Woimant
- Service de Neurologie, AP-HP, Hôpital LariboisièreParis, France; Centre de Référence National de la Maladie de Wilson, Hôpital LariboisièreParis, France
| | - Nathalie Kubis
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; INSERM UMR965Paris, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| |
Collapse
|
6
|
McClelland VM, Valentin A, Rey HG, Lumsden DE, Elze MC, Selway R, Alarcon G, Lin JP. Differences in globus pallidus neuronal firing rates and patterns relate to different disease biology in children with dystonia. J Neurol Neurosurg Psychiatry 2016; 87:958-67. [PMID: 26848170 PMCID: PMC5013118 DOI: 10.1136/jnnp-2015-311803] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/24/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND The pathophysiology underlying different types of dystonia is not yet understood. We report microelectrode data from the globus pallidus interna (GPi) and globus pallidus externa (GPe) in children undergoing deep brain stimulation (DBS) for dystonia and investigate whether GPi and GPe firing rates differ between dystonia types. METHODS Single pass microelectrode data were obtained to guide electrode position in 44 children (3.3-18.1 years, median 10.7) with the following dystonia types: 14 primary, 22 secondary Static and 8 progressive secondary to neuronal brain iron accumulation (NBIA). Preoperative stereotactic MRI determined coordinates for the GPi target. Digitised spike trains were analysed offline, blind to clinical data. Electrode placement was confirmed by a postoperative stereotactic CT scan. FINDINGS We identified 263 GPi and 87 GPe cells. Both GPi and GPe firing frequencies differed significantly with dystonia aetiology. The median GPi firing frequency was higher in the primary group than in the secondary static group (13.5 Hz vs 9.6 Hz; p=0.002) and higher in the NBIA group than in either the primary (25 Hz vs 13.5 Hz; p=0.006) or the secondary static group (25 Hz vs 9.6 Hz; p=0.00004). The median GPe firing frequency was higher in the NBIA group than in the secondary static group (15.9 Hz vs 7 Hz; p=0.013). The NBIA group also showed a higher proportion of regularly firing GPi cells compared with the other groups (p<0.001). A higher proportion of regular GPi cells was also seen in patients with fixed/tonic dystonia compared with a phasic/dynamic dystonia phenotype (p<0.001). The GPi firing frequency showed a positive correlation with 1-year outcome from DBS measured by improvement in the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS-m) score (p=0.030). This association was stronger for the non-progressive patients (p=0.006). INTERPRETATION Pallidal firing rates and patterns differ significantly with dystonia aetiology and phenotype. Identification of specific firing patterns may help determine targets and patient-specific protocols for neuromodulation therapy. FUNDING National Institute of Health Research, Guy's and St. Thomas' Charity, Dystonia Society UK, Action Medical Research, German National Academic Foundation.
Collapse
Affiliation(s)
- V M McClelland
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - A Valentin
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK Department of Basic and Clinical Neuroscience, King's College London, London, UK Department of Human Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - H G Rey
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK
| | - D E Lumsden
- Rayne Institute, King's College London, London, UK Complex Motor Disorder Service, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - M C Elze
- Department of Statistics, University of Warwick, Coventry, UK
| | - R Selway
- Department of Functional Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - G Alarcon
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK Department of Basic and Clinical Neuroscience, King's College London, London, UK Department of Human Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - J-P Lin
- Complex Motor Disorder Service, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Alongi P, Iaccarino L, Perani D. PET Neuroimaging: Insights on Dystonia and Tourette Syndrome and Potential Applications. Front Neurol 2014; 5:183. [PMID: 25295029 PMCID: PMC4171987 DOI: 10.3389/fneur.2014.00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/09/2014] [Indexed: 11/13/2022] Open
Abstract
Primary dystonia (pD) is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both. Gilles de la Tourette syndrome (GTS) is a childhood-onset neuropsychiatric developmental disorder characterized by motor and phonic tics, which could progress to behavioral changes. GTS and obsessive-compulsive disorders are often seen in comorbidity, also suggesting that a possible overlap in the pathophysiological bases of these two conditions. PET techniques are of considerable value in detecting functional and molecular abnormalities in vivo, according to the adopted radioligands. For example, PET is the unique technique that allows in vivo investigation of neurotransmitter systems, providing evidence of changes in GTS or pD. For example, presynaptic and post-synaptic dopaminergic studies with PET have shown alterations compatible with dysfunction or loss of D2-receptors bearing neurons, increased synaptic dopamine levels, or both. Measures of cerebral glucose metabolism with (18)F-fluorodeoxyglucose PET ((18)F-FDG PET) are very sensitive in showing brain functional alterations as well. (18)F-FDG PET data have shown metabolic changes within the cortico-striato-pallido-thalamo-cortical and cerebello-thalamo-cortical networks, revealing possible involvement of brain circuits not limited to basal ganglia in pD and GTS. The aim of this work is to overview PET consistent neuroimaging literature on pD and GTS that has provided functional and molecular knowledge of the underlying neural dysfunction. Furthermore, we suggest potential applications of these techniques in monitoring treatments.
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Department of Nuclear Medicine, San Raffaele Hospital , Milan , Italy ; Bicocca University , Milan , Italy
| | - Leonardo Iaccarino
- Department of Nuclear Medicine, San Raffaele Hospital , Milan , Italy ; Vita-Salute San Raffaele University , Milan , Italy
| | - Daniela Perani
- Department of Nuclear Medicine, San Raffaele Hospital , Milan , Italy ; Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
8
|
|
9
|
Abstract
The few controlled studies that have been carried out have shown that bilateral internal globus pallidum stimulation is a safe and long-term effective treatment for hyperkinetic disorders. However, most recent published data on deep brain stimulation (DBS) for dystonia, applied to different targets and patients, are still mainly from uncontrolled case reports (especially for secondary dystonia). This precludes clear determination of the efficacy of this procedure and the choice of the 'good' target for the 'good' patient. We performed a literature analysis on DBS for dystonia according to the expected outcome. We separated those with good evidence of favourable outcome from those with less predictable outcome. In the former group, we review the main results for primary dystonia (generalised/focal) and highlight recent data on myoclonus-dystonia and tardive dystonia (as they share, with primary dystonia, a marked beneficial effect from pallidal stimulation with good risk/benefit ratio). In the latter group, poor or variable results have been obtained for secondary dystonia (with a focus on heredodegenerative and metabolic disorders). From this overview, the main results and limits for each subgroup of patients that may help in the selection of dystonic patients who will benefit from DBS are discussed.
Collapse
Affiliation(s)
- Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
10
|
Vidailhet M, Jutras MF, Roze E, Grabli D. Deep brain stimulation for dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:167-187. [PMID: 24112893 DOI: 10.1016/b978-0-444-53497-2.00014-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The few reported controlled studies show that bilateral stimulation of the globus pallidus interna (GPi) is a safe and effective long-term treatment for hyperkinetic disorders. However, the recently published data on deep brain stimulation (DBS) applied to different targets or patients (especially those with secondary dystonia) are mainly uncontrolled case reports, precluding a clear determination of its efficacy, and providing little guidance as to the choice of a "good" target in a "good" patient. This chapter reviews the literature on DBS in primary dystonia, paying particular attention to the risk:benefit ratio in focal and segmental dystonias (cervical dystonia, cranial dystonia) and to the predictive factors for a good outcome. The chapter also highlights recent data on the marked benefits of the technique in myoclonus dystonia (in which pallidal, as opposed to thalamic, stimulation is more effective) and in tardive dystonia-dyskinesia. Although, the decision to treat appears relatively straightforward in patients with primary dystonia, myoclonus-dystonia, and tardive dystonia who have a normal findings on magnetic resonance imaging and normal cognitive function, there are still no reliable tools to help predict the timescale of postoperative benefit. This chapter provides a comprehensive analysis of the use of the treatment in various types of secondary dystonia, with little to moderate benefit in most cases, based on single cases or small series. Beyond the reduction in the severity of dystonia, the global motor and functional outcome is difficult to determine owing to the paucity of adequate evaluation tools. Because of the large interpatient variability, different targets may be effective depending on the symptoms in each individual.
Collapse
Affiliation(s)
- Marie Vidailhet
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Research Center of the Brain and Spinal Cord Institute, Université Paris 6/Inserm UMR S975, Paris, France; Pierre et Marie Curie Paris-6 University, Paris, France
| | | | | | | |
Collapse
|
11
|
Kim JP, Chang WS, Cho SR, Chang JW. The effect of bilateral globus pallidus internus deep brain stimulation plus ventralis oralis thalamotomy on patients with cerebral palsy. Stereotact Funct Neurosurg 2012; 90:292-9. [PMID: 22797720 DOI: 10.1159/000338093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 02/28/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We compared bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) with bilateral GPi DBS plus ventralis oralis (Vo) thalamotomy to analyze the effect of the combined Vo thalamotomy. METHODS Between March 2003 and December 2008, 10 patients underwent DBS and/or Vo thalamotomy for treatment of cerebral palsy in our institute of neurosurgery and rehabilitation medicine. Four patients received bilateral posteroventral GPi DBS as group I and 6 patients received GPi DBS plus unilateral thalamotomy as group II. RESULTS The movement and disability scores of group I improved by 32 and 14.3%, respectively, at the last follow-up compared with baseline. The movement and disability scores of group II improved by 31.5 and 0.18%. The BFMDRS-movement subscores of group II demonstrated statistically significant improvement in the contralateral arm compared to group I (p = 0.042). Body pain, vitality and mental health seemed to improve in group II, in terms of health-related quality of life. CONCLUSIONS Contrary to our expectations, we were unable to demonstrate clear improvements in overall BFMDRS scores between group I and group II. However, movements of the contralateral upper extremities improved and health-related quality of life in group II showed satisfactory results.
Collapse
Affiliation(s)
- Joo Pyung Kim
- Department of Neurosurgery, Severance Hospital, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
12
|
Delnooz CCS, van de Warrenburg BPC. Current and future medical treatment in primary dystonia. Ther Adv Neurol Disord 2012; 5:221-40. [PMID: 22783371 PMCID: PMC3388529 DOI: 10.1177/1756285612447261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dystonia is a hyperkinetic movement disorder, characterized by involuntary and sustained contractions of opposing muscles causing twisting movements and abnormal postures. It is often a disabling disorder that has a significant impact on physical and psychosocial wellbeing. The medical therapeutic armamentarium used in practice is quite extensive, but for many of these interventions formal proof of efficacy is lacking. Exceptions are the use of botulinum toxin in patients with cervical dystonia, some forms of cranial dystonia (in particular, blepharospasm) and writer's cramp; deep brain stimulation of the pallidum in generalized and segmental dystonia; and high-dose trihexyphenidyl in young patients with segmental and generalized dystonia. In order to move this field forward, we not only need better trials that examine the effect of current treatment interventions, but also a further understanding of the pathophysiology of dystonia as a first step to design and test new therapies that are targeted at the underlying biologic and neurophysiologic mechanisms.
Collapse
Affiliation(s)
- Cathérine C S Delnooz
- Radboud University Nijmegen Medical Centre, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, the Netherlands
| | | |
Collapse
|
13
|
Fernández-Alvarez E, Nardocci N. Update on pediatric dystonias: etiology, epidemiology, and management. Degener Neurol Neuromuscul Dis 2012; 2:29-41. [PMID: 30890876 DOI: 10.2147/dnnd.s16082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained muscle contractions producing twisting, repetitive, and patterned movements or abnormal postures. Dystonia is among the most commonly observed movement disorders in clinical practice both in adults and children. It is classified on the basis of etiology, age at onset of symptoms, and distribution of affected body regions. Etiology The etiology of pediatric dystonia is quite heterogeneous. There are many different genetic syndromes and several causes of symptomatic syndromes. Dystonia can be secondary to virtually any pathological process that affects the motor system, and particularly the basal ganglia. Classification The etiological classification distinguishes primary dystonia with no identifiable exogenous cause or evidence of neurodegeneration and secondary syndromes. Treatment Treatment for most forms of dystonia is symptomatic and includes drugs (systemic or focal treatments, such as botulinum toxin) and surgical procedures. There are several medications including anticholinergic, dopamine-blocking and depleting agents, baclofen, and benzodiazepines. In patients with dopamine synthesis defects L-dopa treatment may be very useful. Botulinum toxin treatment may be helpful in controlling the most disabling symptoms of segmental or focal dystonia. Long-term electrical stimulation of the globus pallidum internum appears to be especially successful in children suffering from generalized dystonia.
Collapse
Affiliation(s)
| | - Nardo Nardocci
- Child Neurology Department, Fondazione IRCCS Istituto Neurologico "C. Besta", Milano, Italy
| |
Collapse
|
14
|
Houdayer E, Beck S, Karabanov A, Poston B, Hallett M. The differential modulation of the ventral premotor-motor interaction during movement initiation is deficient in patients with focal hand dystonia. Eur J Neurosci 2012; 35:478-85. [PMID: 22288483 PMCID: PMC3270366 DOI: 10.1111/j.1460-9568.2011.07960.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A major feature of focal hand dystonia (FHD) pathophysiology is the loss of inhibition. One inhibitory process, surround inhibition, for which the cortical mechanisms are still unknown, is abnormal in FHD. As the ventral premotor cortex (PMv) plays a key role in the sensorimotor processing involved in shaping finger movements and has many projections onto the primary motor cortex (M1), we hypothesized that the PMv-M1 connections might play a role in surround inhibition. A paired-pulse transcranial magnetic stimulation paradigm was used in order to evaluate and compare the PMv-M1 interactions during different phases (rest, preparation and execution) of an index finger movement in patients with FHD and controls. A sub-threshold conditioning pulse (80% resting motor threshold) was applied to the PMv at 6 ms before M1 stimulation. The right abductor pollicis brevis, a surround muscle, was the target muscle. In healthy controls, the results showed that PMv stimulation induced an ipsilateral ventral premotor-motor inhibition at rest. This cortico-cortical interaction changed into an early facilitation (100 ms before movement onset) and turned back to inhibition 50 ms later. In patients with FHD, this PMv-M1 interaction and its modulation were absent. Our results show that, although the ipsilateral ventral premotor-motor inhibition does not play a key role in the genesis of surround inhibition, PMv has a dynamic influence on M1 excitability during the early steps of motor execution. The impaired cortico-cortical interactions observed in patients with FHD might contribute, at least in part, to the abnormal motor command.
Collapse
Affiliation(s)
- Elise Houdayer
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, 10 Center Drive MSC 1428, Building 10, Room 7D37, Bethesda, MD 20892, USA
| | - Sandra Beck
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, 10 Center Drive MSC 1428, Building 10, Room 7D37, Bethesda, MD 20892, USA
- Department of Neurology and Clinical Neurophysiology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anke Karabanov
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, 10 Center Drive MSC 1428, Building 10, Room 7D37, Bethesda, MD 20892, USA
| | - Brach Poston
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, 10 Center Drive MSC 1428, Building 10, Room 7D37, Bethesda, MD 20892, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, 10 Center Drive MSC 1428, Building 10, Room 7D37, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Treatment of secondary dystonia with a combined stereotactic procedure: long-term surgical outcomes. Acta Neurochir (Wien) 2011; 153:2319-27; discussion 2328. [PMID: 21909834 DOI: 10.1007/s00701-011-1147-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/24/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVE There is some debate about the effects of pallidal deep brain stimulation (DBS) or lesioning on secondary dystonia. We applied a multimodal method to maximize the treatment effects of deep brain stimulation in patients with secondary dystonia. METHODS Between March 2003 and January 2009, four patients underwent bilateral globus pallidus internus (GPi) DBS and six patients underwent bilateral GPi DBS plus unilateral thalamotomy for treatment of cerebral palsy (CP). Among the patients with secondary dystonia without CP, five were also treated by DBS. We classified patients with generalized secondary dystonia with cerebral palsy into group I and patients with focal dystonia without CP into group II. Clinical outcome assessments were based on Burke-Fahn-Marsden Dystonia Rating Scale movement and disability scores. Heath-related quality of life was assessed with a 36-item short-form general health survey questionnaire preoperatively and at the last follow-up. RESULTS The movement and disability scores of group I-A had improved by 32.0% (P = 0.285) and 14.3% (P = 0.593), respectively, at the last follow-up compared with baseline. The movement and disability scores of group I-B had improved by 31.5% and 0.18% at the last follow-up compared with baseline, respectively. In comparison with patients in group I-A, patients in group I-B showed a significant improvement in movement scores for the contralateral arm (P = 0.042). Group II patients showed a marked improvement in movement and disability scores of 77.7% (P = 0.039) and 80.0% (P = 0.041), respectively. CONCLUSIONS We demonstrated that DBS plus unilateral ventralis oralis thalamotomy for CP patients with fixed states in the upper extremities is useful not only to treat secondary dystonic movement but also to improve quality of life. In group II patients with post-traumatic dystonia and tardive dyskinesia, we achieved excellent clinical outcomes using a stereotactic procedure.
Collapse
|
16
|
Lalli S, Canavese C, Zorzi G, Nardocci N, Albanese A. Diagnostic issues in childhood and adult dystonia. ACTA ACUST UNITED AC 2011; 5:483-500. [DOI: 10.1517/17530059.2011.615831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
|
18
|
Garibotto V, Romito LM, Elia AE, Soliveri P, Panzacchi A, Carpinelli A, Tinazzi M, Albanese A, Perani D. In vivo evidence for GABA(A) receptor changes in the sensorimotor system in primary dystonia. Mov Disord 2011; 26:852-7. [PMID: 21370265 DOI: 10.1002/mds.23553] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/05/2010] [Accepted: 11/01/2010] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Preclinical and clinical evidence suggests that impaired gamma-aminobutyric (GABA) control, leading to disinhibition within the sensorimotor system, might play a role in dystonia. Aim of this study is the in vivo assessment of the GABAergic system in dystonia using positron emission tomography (PET) and (11) C-flumazenil, a selective GABA(A) receptor ligand. METHODS Fourteen subjects with primary dystonia (9 carriers of the DYT1 mutation and 5 sporadic cases) were compared to 11 controls, using a simplified reference tissue model to measure binding potential. RESULTS Voxel-based analyses showed a reduction in GABA(A) receptor expression/affinity both in DYT1 carriers and sporadic patients in primary motor and premotor cortex, primary and secondary somatosensory cortex, and in the motor component of the cingulate gyrus. CONCLUSIONS Dysfunction of GABA(A) receptors in sensorimotor systems in primary (genetic and sporadic) dystonia supports the view that lack of GABAergic control may be associated with the generation of dystonic movements.
Collapse
|
19
|
Haq IU, Foote KD, Goodman WK, Ricciuti N, Ward H, Sudhyadhom A, Jacobson CE, Siddiqui MS, Okun MS. A case of mania following deep brain stimulation for obsessive compulsive disorder. Stereotact Funct Neurosurg 2010; 88:322-8. [PMID: 20714212 DOI: 10.1159/000319960] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 04/11/2010] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) of the basal ganglia is an effective treatment for select movement disorders, including Parkinson's disease, essential tremor and dystonia. Based on these successes, DBS has been explored as an experimental treatment for medication-resistant neuropsychiatric disease. During a multiyear experience employing DBS to treat patients for obsessive compulsive disorder (OCD) we encountered several unanticipated stimulation-induced psychiatric side effects. We present a case of a young woman treated for OCD with DBS of the anterior limb of the internal capsule and nucleus accumbens region, who subsequently manifested a manic episode. We aim to discuss the case details, treatment and potential neuroanatomical underpinnings of this response.
Collapse
Affiliation(s)
- Ihtsham U Haq
- Department of Neurology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Because dystonia can vary in clinical presentation and etiology, proper diagnosis and classification of these disorders are important in making therapeutic decisions. In primary dystonia, treatment is generally geared toward alleviating symptoms rather than curing the underlying condition, therefore severity of contractions, pain, and functional and social impact are also factors to consider in determining if and how to initiate therapy. On the other hand, if a secondary cause is identified, then it is often appropriate to direct treatment toward the underlying disorder. Treatment options include physical and occupational therapy, oral medications, botulinum toxin, and surgery. This article briefly reviews the clinical features, pathophysiology, and classification of dystonia before reviewing current therapeutic options.
Collapse
Affiliation(s)
- Ninith Kartha
- Department of Neurology, Loyola University Medical Center, 2160 South First Avenue, Room 2700, Maywood, IL 60153, USA.
| |
Collapse
|
21
|
Effects of pharmacological entopeduncular manipulations on idiopathic dystonia in the dt sz mutant hamster. J Neural Transm (Vienna) 2010; 117:747-57. [DOI: 10.1007/s00702-010-0410-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 04/18/2010] [Indexed: 10/19/2022]
|
22
|
Vasques X, Cif L, Gonzalez V, Nicholson C, Coubes P. Factors predicting improvement in primary generalized dystonia treated by pallidal deep brain stimulation. Mov Disord 2009; 24:846-53. [PMID: 19199337 DOI: 10.1002/mds.22433] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite the beneficial effects of Globus Pallidus internus (GPi) deep brain stimulation (DBS) in patients with primary generalized dystonia (PGD), the degree of improvement varies from one patient to another. The objective of this study was to examine the effects of clinical, anatomical (volume of the GPi), and electrical variables on the postoperative Burke-Fahn-Marsden Dystonia rating scale (BFMDRS) motor score to identify which factors may be predictive of the degree of improvement. We reviewed retrospectively the clinical records of 40 steady-state patients with PGD who had been treated by bilateral GPi lead implantation. The follow-up period was 2 to 8 years. The correlation between the electrical parameters (voltage, impedance, and current) and the clinical outcome was studied. An analysis of covariance was performed to identify factors predictive of the magnitude of improvement. The most influential factors according to the model are as follows: the preoperative BFMDRS score (P < 0.0001); age at surgery (P < 0.0001); the right GPi volume (P = 0.002); the left stimulated GPi volume (P = 0.005). No significant correlation was found between the electrical parameters used and the mean motor scores in steady state.
Collapse
Affiliation(s)
- Xavier Vasques
- CHRU Montpellier, Service de Neurochirurgie, Montpellier, France
| | | | | | | | | |
Collapse
|
23
|
Deep brain stimulation for secondary dystonia: results in 8 patients. Acta Neurochir (Wien) 2009; 151:473-8; discussion 478. [PMID: 19322514 DOI: 10.1007/s00701-009-0281-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND Dystonia is a medically intractable condition characterized by involuntary twisting movements and/or abnormal postures. Deep Brain Stimulation (DBS) has been used successfully in various forms of dystonia. In the present study, we report on eight patients with secondary dystonia, treated with DBS in our clinic. METHOD Eight patients (five males, three females) underwent DBS for secondary dystonia. The etiology of dystonia was cerebral palsy (n = 2), drug-induced (n = 1), post encephalitis (n = 2) and postanoxic dystonia (n = 3). The functional capacity was evaluated before and after surgery with the use of Burke-Fahn-Mardsen Dystonia Rating Scale (BFM scale), both movement and disability scale (MS and DS, respectively). The target for DBS was the globus pallidus internus (GPi) in 7 patients and in one patient, with postanoxic damaged pallidum, the ventralis oralis anterior (Voa) nucleus. Brain perfusion scintigraphy using Single Photon Emission Computed Tomography (SPECT) was performed in two separate studies for each patient, one in the "off-DBS" and the other in the "on-DBS" state. FINDINGS Postoperative both MS and DS scores were found to be significantly lower compared to preoperative scores (p = 0.018 and p = 0.039, respectively). Mean improvement rate after DBS was 41.4% (0-94.3) and 29.5% (0-84.2) in MS and DS scores, respectively. The SPECT Scan, during the "on-DBS" state, showed a decrease in regional cerebral blood flow (rCBF), compared to the "off-DBS" state. CONCLUSIONS Our results seem promising in the field of secondary dystonia treatment. More studies with greater number of patients and longer follow-up periods are necessary in order to establish the role of DBS in the management of secondary dystonia. Finally, the significance of brain SPECT imaging in the investigation of dystonia and functional effects of DBS should be further evaluated.
Collapse
|
24
|
|
25
|
Hewett JW, Nery FC, Niland B, Ge P, Tan P, Hadwiger P, Tannous BA, Sah DW, Breakefield XO. siRNA knock-down of mutant torsinA restores processing through secretory pathway in DYT1 dystonia cells. Hum Mol Genet 2008; 17:1436-45. [PMID: 18258738 PMCID: PMC2861568 DOI: 10.1093/hmg/ddn032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/29/2008] [Indexed: 01/12/2023] Open
Abstract
Most cases of the dominantly inherited movement disorder, early onset torsion dystonia (DYT1) are caused by a mutant form of torsinA lacking a glutamic acid residue in the C-terminal region (torsinADeltaE). TorsinA is an AAA+ protein located predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope apparently involved in membrane structure/movement and processing of proteins through the secretory pathway. A reporter protein Gaussia luciferase (Gluc) shows a reduced rate of secretion in primary fibroblasts from DYT1 patients expressing endogenous levels of torsinA and torsinADeltaE when compared with control fibroblasts expressing only torsinA. In this study, small interfering RNA (siRNA) oligonucleotides were identified, which downregulate the levels of torsinA or torsinADeltaE mRNA and protein by over 65% following transfection. Transfection of siRNA for torsinA message in control fibroblasts expressing Gluc reduced levels of luciferase secretion compared with the same cells non-transfected or transfected with a non-specific siRNA. Transfection of siRNA selectively inhibiting torsinADeltaE message in DYT fibroblasts increased luciferase secretion when compared with cells non-transfected or transfected with a non-specific siRNA. Further, transduction of DYT1 cells with a lentivirus vector expressing torsinA, but not torsinB, also increased secretion. These studies are consistent with a role for torsinA as an ER chaperone affecting processing of proteins through the secretory pathway and indicate that torsinADeltaE acts to inhibit this torsinA activity. The ability of allele-specific siRNA for torsinADeltaE to normalize secretory function in DYT1 patient cells supports its potential role as a therapeutic agent in early onset torsion dystonia.
Collapse
Affiliation(s)
- Jeffrey W. Hewett
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Flávia C. Nery
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Brian Niland
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Pei Ge
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | - Pamela Tan
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | - Bakhos A. Tannous
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, Standaert DG. The pathophysiological basis of dystonias. Nat Rev Neurosci 2008; 9:222-34. [PMID: 18285800 DOI: 10.1038/nrn2337] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystonias comprise a group of movement disorders that are characterized by involuntary movements and postures. Insight into the nature of neuronal dysfunction has been provided by the identification of genes responsible for primary dystonias, the characterization of animal models and functional evaluations and in vivo brain imaging of patients with dystonia. The data suggest that alterations in neuronal development and communication within the brain create a susceptible substratum for dystonia. Although there is no overt neurodegeneration in most forms of dystonia, there are functional and microstructural brain alterations. Dystonia offers a window into the mechanisms whereby subtle changes in neuronal function, particularly in sensorimotor circuits that are associated with motor learning and memory, can corrupt normal coordination and lead to a disabling motor disorder.
Collapse
Affiliation(s)
- Xandra O Breakefield
- Department of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Blood AJ. New hypotheses about postural control support the notion that all dystonias are manifestations of excessive brain postural function. BIOSCIENCE HYPOTHESES 2008; 1:14-25. [PMID: 19180244 PMCID: PMC2631655 DOI: 10.1016/j.bihy.2008.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper postulates that all forms of the neurological movement disorder, dystonia, can be argued to reflect excessive function of one or more components of the brain postural system. This is based on four central arguments. First, because some forms of postural control are already known to be dynamic, rather than static, it is suggested that hyperkinetic dystonias reflect excessive function of dynamic postures, rather than abnormal movements. Second, the range of functional roles served by the postural system is hypothesized to include direct control of movement, suggesting a postural basis for task-specific dystonias. Third, by defining posture as a neural system that maintains body stabilization, it can be shown that the range of mechanical means of implementing stabilization, including co-contraction of antagonistic muscles, matches the range of presentations of dystonia. Fourth, it is shown that the above premises are able to account for previously unexplained observations in dystonia. Based on the inhibitory influence that stabilizing mechanisms exert on movement, it is suggested that the broad functional role that is here referred to as posture may be the function served by the indirect pathway of the basal ganglia. Specifically, it is proposed that this pathway centrally coordinates function of the distributed network of brain regions controlling posture and, in conjunction with the direct pathway, coordinates posture and movement.
Collapse
Affiliation(s)
- Anne J Blood
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, CNY 149-2301, 13th St., Charlestown, MA 02129
| |
Collapse
|