1
|
Batallas D, Rodriguez-Hernandez V, Hidalgo V, Salvador A. Loneliness during the post-confinement period: The significance of social living conditions for stress biomarkers and memory. Behav Brain Res 2024; 459:114771. [PMID: 38000531 DOI: 10.1016/j.bbr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/29/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
In the aftermath of the COVID-19 lockdown, concerns about the impact of loneliness and reduced social interactions on mental health have arisen. This study explored the repercussions of post-lockdown social restrictions across psychological (loneliness, perceived stress, and depressive symptoms), biological (hair cortisol and cardiovascular activity), and cognitive dimensions (subjective memory complaints and working, declarative, and prospective memory), with a specific emphasis on perceived loneliness and the living situation. The study included 45 students: 23 (mean age = 25.69 years) in the Alone Group (AG), who experienced significant family changes and international relocation, and 22 (mean age = 25.50 years) in the Not Alone Group (NAG), who maintained their nuclear family and did not move from their home country. We assessed heart rate variability (HRV) before, during, and after immediate memory evaluations using time-domain (the square root of the mean, RMSSD) measures. The analysis revealed no significant group differences in telematic contact with family and friends, perceived stress, or depression. However, the AG participants reported fewer face-to-face interactions and greater perceived loneliness compared to the NAG. Additionally, the AG group exhibited slightly higher hair cortisol levels and worse working memory (WM) and prospective memory (PM) performance. Importantly, no significant associations were observed between memory outcomes and stress biomarkers. However, a significant interaction effect of loneliness in the relationship between hair cortisol levels and PM was found. That is, hair cortisol concentrations were negatively related to PM when participants perceived high and moderate loneliness. This interaction was absent in the working and declarative memory domains. In summary, these findings underscore the intricate interplay between loneliness, cortisol, and memory, emphasizing the need for comprehensive research on the complex mechanisms governing these multifaceted relationships.
Collapse
Affiliation(s)
- Daniela Batallas
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Valencia, Spain
| | - Valerie Rodriguez-Hernandez
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Valencia, Spain
| | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Valencia, Spain; Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, Teruel, Spain
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Valencia, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain
| |
Collapse
|
2
|
Haberstumpf S, Leinweber J, Lauer M, Polak T, Deckert J, Herrmann MJ. Factors associated with dropout in the longitudinal Vogel study of cognitive decline. Eur J Neurosci 2022; 56:5587-5600. [PMID: 34490950 DOI: 10.1111/ejn.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Dementia, including Alzheimer's disease, is a growing problem worldwide. Prevention or early detection of the disease or a prodromal cognitive decline is necessary. By means of our long-term follow-up 'Vogel study', we aim to predict the pathological cognitive decline of a German cohort (mean age was 73.9 ± 1.55 years at first visit) with three measurement time points within 6 years per participant. Especially in samples of the elderly and subjects with chronic or co-morbid diseases, dropouts are one of the biggest problems of long-term studies. In contrast to the large number of research articles conducted on the course of dementia, little research has been done on the completion of treatment. To ensure unbiased and reliable predictors of cognitive decline from study completers, our objective was to determine predictors of dropout. We conducted multivariate analyses of covariance and multinomial logistic regression analyses to compare and predict the subject's dropout behaviour at the second visit 3 years after baseline (full participation, partial participation and no participation/dropout) with neuropsychiatric, cognitive, blood and lifestyle variables. Lower performance in declarative memory, attention and visual-spatial processing predicted dropout rather than full participation. Lower performance in visual-spatial processing predicted partial participation as opposed to full participation. Furthermore, lower performance in mini-mental status examination predicted whether subjects dropped out or participated partially instead of full participation. Baseline cognitive parameters are associated with dropouts at follow-up with a loss of impaired participants. We expect a bias into a healthier sample over time.
Collapse
Affiliation(s)
- Sophia Haberstumpf
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Jonas Leinweber
- Department of Psychotherapy, Alexianer Psychiatric Hospital Köln-Porz, Köln, Germany
| | - Martin Lauer
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Polak
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Martin J Herrmann
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Becker M, Repantis D, Dresler M, Kühn S. Cognitive enhancement: Effects of methylphenidate, modafinil, and caffeine on latent memory and resting state functional connectivity in healthy adults. Hum Brain Mapp 2022; 43:4225-4238. [PMID: 35670369 PMCID: PMC9435011 DOI: 10.1002/hbm.25949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Stimulants like methylphenidate, modafinil, and caffeine have repeatedly shown to enhance cognitive processes such as attention and memory. However, brain-functional mechanisms underlying such cognitive enhancing effects of stimulants are still poorly characterized. Here, we utilized behavioral and resting-state fMRI data from a double-blind randomized placebocontrolled study of methylphenidate, modafinil, and caffeine in 48 healthy male adults. The results show that performance in different memory tasks is enhanced, and functional connectivity (FC) specifically between the frontoparietal network (FPN) and default mode network (DMN) is modulated by the stimulants in comparison to placebo. Decreased negative connectivity between right prefrontal and medial parietal but also between medial temporal lobe and visual brain regions predicted stimulant-induced latent memory enhancement. We discuss dopamine's role in attention and memory as well as its ability to modulate FC between large-scale neural networks (e.g., FPN and DMN) as a potential cognitive enhancement mechanism.
Collapse
Affiliation(s)
- Maxi Becker
- Department of PsychologyHumboldt‐University BerlinBerlinGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dimitris Repantis
- Department of Psychiatry and PsychotherapyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu BerlinBerlinGermany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and BehaviourRadboud University Medical Center NijmegenNijmegenThe Netherlands
| | - Simone Kühn
- Department of Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Lise Meitner Group for Environmental NeuroscienceMax Planck Institute for Human DevelopmentBerlinGermany
| |
Collapse
|
4
|
Harris BN, Cooke JT, Littlefield AK, Tucker CA, Campbell CM, King KS. Relations among CRFR1 and FKBP5 genotype, cortisol, and cognitive function in aging humans: A Project FRONTIER study. Physiol Behav 2022; 254:113884. [PMID: 35718217 DOI: 10.1016/j.physbeh.2022.113884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 01/23/2023]
Abstract
Here we use the glucocorticoid cascade hypothesis framework to address the role of baseline cortisol on changes in cognitive function over a 3-year span in non-demented rural Americans. We also determine if genotype at 4 different single nucleotide polymorphisms (SNPs) relates to change in cognitive function. We predicted 1) over time, increases in baseline cortisol will be associated with decline in cognitive function, 2) individuals homozygous for 3 CRFR1 SNP rare alleles (AA rs110402, TT rs7209436, and TT rs242924 vs. others) will show less cognitive decline and this will be particularly pronounced in those with lower baseline cortisol, and 3) FKBP5 T carriers (TT or CT vs. CC homozygotes) will have decreased cognitive performance and this will be particularly pronounced in individuals with higher baseline cortisol. Collectively, our data do not robustly support the glucocorticoid cascade hypothesis. In several cases, higher baseline cortisol related to better cognitive performance over time, but within individuals, increased cortisol over time related to decreased performance on some cognitive domains over time. Contrary to our predictions, individuals with the rare CRFR1 haplotype (AA, TT, TT) performed worse than individuals with the common haplotype across multiple domains of cognitive function. FKBP5 genotype status had minimal impacts on cognitive outcomes. Genotype effects were largely not dependent on cortisol. The Project FRONTIER dataset is supported by Texas Tech University Health Sciences Center Garrison Institute on Aging.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America.
| | - Jeffrey T Cooke
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, United States of America
| | - Andrew K Littlefield
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, United States of America
| | - Cody A Tucker
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| | - Callie M Campbell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| | - Kaleb S King
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| |
Collapse
|
5
|
Zeltser G, Sukhanov IM, Nevorotin AJ. MMM - The molecular model of memory. J Theor Biol 2022; 549:111219. [PMID: 35810778 DOI: 10.1016/j.jtbi.2022.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Identifying mechanisms underlying neurons ability to process information including acquisition, storage, and retrieval plays an important role in the understanding of the different types of memory, pathogenesis of many neurological diseases affecting memory and therapeutic target discovery. However, the traditional understanding of the mechanisms of memory associated with the electrical signals having a unique combination of frequency and amplitude does not answer the question how the memories can survive for life-long periods of time, while exposed to synaptic noise. Recent evidence suggests that, apart from neuronal circuits, a diversity of the molecular memory (MM) carriers, are essential for memory performance. The molecular model of memory (MMM) is proposed, according to which each item of incoming information (the elementary memory item - eMI) is encoded by both circuitries, with the unique for a given MI electrical parameters, and also the MM carriers, unique by its molecular composition. While operating as the carriers of incoming information, the MMs, are functioning within the neuron plasma membrane. Inactive (latent) initially, during acquisition each of the eMIs is activated to become a virtual copy of some real fact or events bygone. This activation is accompanied by the considerable remodeling of the MM molecule associated with the resonance effect.
Collapse
Affiliation(s)
| | - Ilya M Sukhanov
- Lab. Behavioral Pharmacology, Dept. Psychopharmacology, Valdman Institute of Pharmacology, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| | - Alexey J Nevorotin
- Laboratory of Electron Microscopy, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| |
Collapse
|
6
|
Blokland A. Cholinergic models of memory impairment in animals and man: scopolamine vs. biperiden. Behav Pharmacol 2022; 33:231-237. [PMID: 35621168 DOI: 10.1097/fbp.0000000000000670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Scopolamine has been used as a pharmacologic model for cognitive impairments in dementia and Alzheimer's disease. The validity of this model seems to be limited because findings in animals do not readily translate to novel treatments in humans. Biperiden is also a cholinergic deficit model for cognitive impairments but specifically blocks muscarinic M1 receptors. The effects of scopolamine and biperiden (and pirenzepine) are compared in animal studies and related to findings in humans. It is concluded that the effects on cognitive functions are different for scopolamine and biperiden, and they should be considered as different cognitive deficit models. Scopolamine may model more advanced stages of Alzheimer's disease whereas biperiden may model the early deficits in declarative memory in aging and mild cognitive impairment.
Collapse
Affiliation(s)
- Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Haberstumpf S, Forster A, Leinweber J, Rauskolb S, Hewig J, Sendtner M, Lauer M, Polak T, Deckert J, Herrmann MJ. Measurement invariance testing of longitudinal neuropsychiatric test scores distinguishes pathological from normative cognitive decline and highlights its potential in early detection research. J Neuropsychol 2021; 16:324-352. [PMID: 34904368 DOI: 10.1111/jnp.12269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a growing challenge worldwide, which is why the search for early-onset predictors must be focused as soon as possible. Longitudinal studies that investigate courses of neuropsychological and other variables screen for such predictors correlated to mild cognitive impairment (MCI). However, one often neglected issue in analyses of such studies is measurement invariance (MI), which is often assumed but not tested for. This study uses the absence of MI (non-MI) and latent factor scores instead of composite variables to assess properties of cognitive domains, compensation mechanisms, and their predictability to establish a method for a more comprehensive understanding of pathological cognitive decline. METHODS An exploratory factor analysis (EFA) and a set of increasingly restricted confirmatory factor analyses (CFAs) were conducted to find latent factors, compared them with the composite approach, and to test for longitudinal (partial-)MI in a neuropsychiatric test battery, consisting of 14 test variables. A total of 330 elderly (mean age: 73.78 ± 1.52 years at baseline) were analyzed two times (3 years apart). RESULTS EFA revealed a four-factor model representing declarative memory, attention, working memory, and visual-spatial processing. Based on CFA, an accurate model was estimated across both measurement timepoints. Partial non-MI was found for parameters such as loadings, test- and latent factor intercepts as well as latent factor variances. The latent factor approach was preferable to the composite approach. CONCLUSION The overall assessment of non-MI latent factors may pose a possible target for this field of research. Hence, the non-MI of variances indicated variables that are especially suited for the prediction of pathological cognitive decline, while non-MI of intercepts indicated general aging-related decline. As a result, the sole assessment of MI may help distinguish pathological from normative aging processes and additionally may reveal compensatory neuropsychological mechanisms.
Collapse
Affiliation(s)
- Sophia Haberstumpf
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - André Forster
- Institute of Psychology, Julius-Maximilians-University, Würzburg, Germany
| | | | - Stefanie Rauskolb
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Hewig
- Institute of Psychology, Julius-Maximilians-University, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Martin Lauer
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Polak
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Martin J Herrmann
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Lorena FB, do Nascimento BPP, Camargo ELRA, Bernardi MM, Fukushima AR, do N Panizza J, de B Nogueira P, Brandão MES, Ribeiro MO. Long-term obesity is associated with depression and neuroinflammation. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:537-548. [PMID: 34714995 PMCID: PMC10528574 DOI: 10.20945/2359-3997000000400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Obesity is characterized by a state of chronic, low-intensity systemic inflammation frequently associated with insulin resistance and dyslipidemia. METHODS Given that chronic inflammation has been implicated in the pathogenesis of mood disorders, we investigated if chronic obesity that was initiated early in life - lasting through adulthood - could be more harmful to memory impairment and mood fluctuations such as depression. RESULTS Here we show that pre-pubertal male rats (30 days old) treated with a high-fat diet (40%) for 8-months gained ~50% more weight when compared to controls, exhibited depression and anxiety-like behaviors but no memory impairment. The prefrontal cortex of the obese rats exhibited an increase in the expression of genes related to inflammatory response, such as NFKb, MMP9, CCl2, PPARb, and PPARg. There were no alterations in genes known to be related to depression. CONCLUSION Long-lasting obesity with onset in prepuberal age led to depression and neuroinflammation but not to memory impairment.
Collapse
Affiliation(s)
- Fernanda B Lorena
- Programa de Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
- Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Bruna P P do Nascimento
- Programa de Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
- Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Esther L R A Camargo
- Programa de Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
- Departamento de Pesquisa e Extensão, Faculdade de Ciências da Saúde IGESP, São Paulo, SP, Brasil
| | - Maria M Bernardi
- Instituto de Ciências da Saúde, Universidade Paulista, São Paulo, SP, Brasil
| | - André R Fukushima
- Departamento de Pesquisa e Extensão, Faculdade de Ciências da Saúde IGESP, São Paulo, SP, Brasil
| | - Julia do N Panizza
- Programa de Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - Paula de B Nogueira
- Programa de Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - Marllos E S Brandão
- Programa de Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
- Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Departamento de Pesquisa e Extensão, Faculdade de Ciências da Saúde IGESP, São Paulo, SP, Brasil
| | - Miriam O Ribeiro
- Programa de Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil,
- Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
9
|
Adam LC, Repantis D, Konrad BN, Dresler M, Kühn S. Memory enhancement with stimulants: Differential neural effects of methylphenidate, modafinil, and caffeine. A pilot study. Brain Cogn 2021; 154:105802. [PMID: 34592684 DOI: 10.1016/j.bandc.2021.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022]
Abstract
Human memory is susceptible to manipulation in many respects. While consolidation is well known to be prone to disruption, there is also growing evidence for the enhancement of memory function. Beside cognitive strategies and mnemonic training, the use of stimulants may improve memory processing in healthy adults. In this single-dose, double-blind, within-subject, randomized, placebo-controlled pilot study, 20 mg methylphenidate (N = 13) or 200 mg modafinil (N = 12) or 200 mg caffeine (N = 14) were administrated to in total 39 healthy participants while performing a declarative memory task. Each participant received only one substance and functional magnetic resonance imaging (fMRI) was used to assess drug-dependent memory effects of the substance for encoding and recognition compared to task-related activation under placebo. While methylphenidate showed some behavioral effect regarding memory recall performance, on the neural level, methylphenidate-dependent deactivations were found in fronto-parietal and temporal regions during recognition of previously learned words. No BOLD alterations were seen during encoding. Caffeine led to deactivations in the precentral gyrus during encoding whereas modafinil did not show any BOLD signal alterations at all. These results should be interpreted with caution since this a pilot study with several limitations, most importantly the small number of participants per group. However, our main finding of task-related deactivations may point to a drug-dependent increase of efficiency in physiological response to memory processing.
Collapse
Affiliation(s)
- Lucas C Adam
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Dimitris Repantis
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin, Germany.
| | - Boris N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany; University Medical Center Hamburg-Eppendorf (UKE), Department of Psychiatry and Psychotherapy, Hamburg, Germany
| |
Collapse
|
10
|
Wu D, Kumal JPP, Lu X, Li Y, Mao D, Tang X, Nie M, Liu X, Sun L, Liu B, Zhang Y. Traumatic Brain Injury Accelerates the Onset of Cognitive Dysfunction and Aggravates Alzheimer's-Like Pathology in the Hippocampus by Altering the Phenotype of Microglia in the APP/PS1 Mouse Model. Front Neurol 2021; 12:666430. [PMID: 34539542 PMCID: PMC8440856 DOI: 10.3389/fneur.2021.666430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
An increasing number of studies have suggested that traumatic brain injury (TBI) is associated with some neurodegenerative diseases, including Alzheimer's disease (AD). Various aspects of the mechanism of TBI-induced AD have been elucidated. However, there are also studies opposing the view that TBI is one of the causes of AD. In the present study, we demonstrated that TBI exacerbated the disruption of hippocampal-dependent learning and memory, worsened the reductions in neuronal cell density and synapse formation, and aggravated the deposition of Aβ plaques in the hippocampi of APP/PS1 mice. We also found that TBI rapidly activated microglia in the central nervous system (CNS) and that this effect lasted for at least for 3 weeks. Furthermore, TBI boosted Aβ-related microglia-mediated neuroinflammation in the hippocampi of APP/PS1 mice and the transformation of microglia toward the proinflammatory phenotype. Therefore, our experiments suggest that TBI accelerates the onset of cognitive dysfunction and Alzheimer-like pathology in the APP/PS1 mouse model, at least partly by altering microglial reactions and polarization.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jay Prakash P Kumal
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xiaodi Lu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yixuan Li
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Dongsheng Mao
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xudong Tang
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Meitong Nie
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xin Liu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Liang Sun
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Bin Liu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yafang Zhang
- Department of Human Anatomy, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| |
Collapse
|
11
|
Repantis D, Bovy L, Ohla K, Kühn S, Dresler M. Cognitive enhancement effects of stimulants: a randomized controlled trial testing methylphenidate, modafinil, and caffeine. Psychopharmacology (Berl) 2021; 238:441-451. [PMID: 33201262 PMCID: PMC7826302 DOI: 10.1007/s00213-020-05691-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
RATIONAL At all times humans have made attempts to improve their cognitive abilities by different means, among others, with the use of stimulants. Widely available stimulants such as caffeine, but also prescription substances such as methylphenidate and modafinil, are being used by healthy individuals to enhance cognitive performance. OBJECTIVES There is a lack of knowledge on the effects of prescription stimulants when taken by healthy individuals (as compared with patients) and especially on the effects of different substances across different cognitive domains. METHODS We conducted a pilot study with three arms in which male participants received placebo and one of three stimulants (caffeine, methylphenidate, modafinil) and assessed cognitive performance with a test battery that captures various cognitive domains. RESULTS Our study showed some moderate effects of the three stimulants tested. Methylphenidate had positive effects on self-reported fatigue as well as on declarative memory 24 hours after learning; caffeine had a positive effect on sustained attention; there was no significant effect of modafinil in any of the instruments of our test battery. All stimulants were well tolerated, and no trade-off negative effects on other cognitive domains were found. CONCLUSIONS The few observed significant positive effects of the tested stimulants were domain-specific and of rather low magnitude. The results can inform the use of stimulants for cognitive enhancement purposes as well as direct further research to investigate the effects of stimulants on specific cognitive domains that seem most promising, possibly by using tasks that are more demanding.
Collapse
Affiliation(s)
- Dimitris Repantis
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | - Leonore Bovy
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kathrin Ohla
- Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations. Brain Sci 2020; 10:brainsci10020102. [PMID: 32069958 PMCID: PMC7071506 DOI: 10.3390/brainsci10020102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabis has been associated with deficits in memory performance. However, the neural correlates that may underpin impairments remain unclear. We carried out a systematic review of functional magnetic resonance imaging (fMRI) studies investigating brain functional alterations in cannabis users (CU) compared to nonusing controls while performing memory tasks, complemented with focused narrative reviews of relevant preclinical and human studies. Twelve studies employing fMRI were identified finding functional brain activation during memory tasks altered in CU. Memory performance studies showed CU performed worse particularly during verbal memory tasks. Longitudinal studies suggest that cannabis use may have a causal role in memory deficits. Preclinical studies have not provided conclusive evidence of memory deficits following cannabinoid exposure, although they have shown evidence of cannabinoid-induced structural and histological alteration. Memory performance deficits may be related to cannabis use, with lower performance possibly underpinned by altered functional activation. Memory impairments may be associated with the level of cannabis exposure and use of cannabis during developmentally sensitive periods, with possible improvement following cessation of cannabis use.
Collapse
|
13
|
Pro-cognitive effect of 1MeTIQ on recognition memory in the ketamine model of schizophrenia in rats: the behavioural and neurochemical effects. Psychopharmacology (Berl) 2020; 237:1577-1593. [PMID: 32076746 PMCID: PMC7239818 DOI: 10.1007/s00213-020-05484-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE Schizophrenia is a mental illness which is characterised by positive and negative symptoms and by cognitive impairments. While the major prevailing hypothesis is that altered dopaminergic and/or glutamatergic transmission contributes to this disease, there is evidence that the noradrenergic system also plays a role in its major symptoms. OBJECTIVES In the present paper, we investigated the pro-cognitive effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) an endogenous neuroprotective compound, on ketamine-modelled schizophrenia in rats. METHODS We used an antagonist of NMDA receptors (ketamine) to model memory deficit symptoms in rats. Using the novel object recognition (NOR) test, we investigated the pro-cognitive effect of 1MeTIQ. Additionally, olanzapine, an atypical antipsychotic drug, was used as a standard to compare the pro-cognitive effects of the substances. In vivo microdialysis studies allowed us to verify the changes in the release of monoamines and their metabolites in the rat striatum. RESULTS Our study demonstrated that 1MeTIQ, similarly to olanzapine, exhibits a pro-cognitive effect in NOR test and enhances memory disturbed by ketamine treatment. Additionally, in vivo microdialysis studies have shown that ketamine powerfully increased noradrenaline release in the rat striatum, while 1MeTIQ and olanzapine completely antagonised this neurochemical effect. CONCLUSIONS 1MeTIQ, as a possible pro-cognitive drug, in contrast to olanzapine, expresses beneficial neuroprotective activity in the brain, increasing concentration of the extraneuronal dopamine metabolite, 3-methoxytyramine (3-MT), which plays an important physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Moreover, we first demonstrated the essential role of noradrenaline release in memory disturbances observed in the ketamine-model of schizophrenia, and its possible participation in negative symptoms of the schizophrenia.
Collapse
|
14
|
Chon SH, Timmermann F, Dratsch T, Schuelper N, Plum P, Berlth F, Datta RR, Schramm C, Haneder S, Späth MR, Dübbers M, Kleinert J, Raupach T, Bruns C, Kleinert R. Serious Games in Surgical Medical Education: A Virtual Emergency Department as a Tool for Teaching Clinical Reasoning to Medical Students. JMIR Serious Games 2019; 7:e13028. [PMID: 30835239 PMCID: PMC6423463 DOI: 10.2196/13028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 02/17/2019] [Indexed: 12/27/2022] Open
Abstract
Background Serious games enable the simulation of daily working practices and constitute a potential tool for teaching both declarative and procedural knowledge. The availability of educational serious games offering a high-fidelity, three-dimensional environment in combination with profound medical background is limited, and most published studies have assessed student satisfaction rather than learning outcome as a function of game use. Objective This study aimed to test the effect of a serious game simulating an emergency department (“EMERGE”) on students’ declarative and procedural knowledge, as well as their satisfaction with the serious game. Methods This nonrandomized trial was performed at the Department of General, Visceral and Cancer Surgery at University Hospital Cologne, Germany. A total of 140 medical students in the clinical part of their training (5th to 12th semester) self-selected to participate in this experimental study. Declarative knowledge (measured with 20 multiple choice questions) and procedural knowledge (measured with written questions derived from an Objective Structured Clinical Examination station) were assessed before and after working with EMERGE. Students’ impression of the effectiveness and applicability of EMERGE were measured on a 6-point Likert scale. Results A pretest-posttest comparison yielded a significant increase in declarative knowledge. The percentage of correct answers to multiple choice questions increased from before (mean 60.4, SD 16.6) to after (mean 76.0, SD 11.6) playing EMERGE (P<.001). The effect on declarative knowledge was larger in students in lower semesters than in students in higher semesters (P<.001). Additionally, students’ overall impression of EMERGE was positive. Conclusions Students self-selecting to use a serious game in addition to formal teaching gain declarative and procedural knowledge.
Collapse
Affiliation(s)
- Seung-Hun Chon
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | | | | | - Nikolai Schuelper
- Department of Haematology and Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Patrick Plum
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Felix Berlth
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Rabi Raj Datta
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christoph Schramm
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Stefan Haneder
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Cologne, Germany
| | - Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Martin Dübbers
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Julia Kleinert
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Tobias Raupach
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,Division of Medical Education Research and Curriculum Development, University Medical Centre Göttingen, Göttingen, Germany
| | - Christiane Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Robert Kleinert
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Zureick AH, Evans CL, Niemierko A, Grieco JA, Nichols AJ, Fullerton BC, Hess CB, Goebel CP, Gallotto SL, Weyman EA, Gaudet DE, Nartowicz JA, Ebb DH, Jones RM, MacDonald SM, Tarbell NJ, Yock TI, Pulsifer MB. Left hippocampal dosimetry correlates with visual and verbal memory outcomes in survivors of pediatric brain tumors. Cancer 2018; 124:2238-2245. [DOI: 10.1002/cncr.31143] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/25/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Andrew H. Zureick
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Casey L. Evans
- Department of Psychiatry; Massachusetts General Hospital; Boston Massachusetts
| | - Andrzej Niemierko
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Julie A. Grieco
- Department of Psychiatry; Massachusetts General Hospital; Boston Massachusetts
| | - Alexandra J. Nichols
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Barbara C. Fullerton
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Clayton B. Hess
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Claire P. Goebel
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Sara L. Gallotto
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Elizabeth A. Weyman
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Dillon E. Gaudet
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Jessica A. Nartowicz
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - David H. Ebb
- Department of Pediatrics; Massachusetts General Hospital; Boston Massachusetts
| | - Robin M. Jones
- Department of Neurology; Massachusetts General Hospital; Boston Massachusetts
| | - Shannon M. MacDonald
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Nancy J. Tarbell
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | - Torunn I. Yock
- Department of Radiation Oncology; Massachusetts General Hospital; Boston Massachusetts
| | | |
Collapse
|
16
|
Acute administration of roflumilast enhances immediate recall of verbal word memory in healthy young adults. Neuropharmacology 2018; 131:31-38. [DOI: 10.1016/j.neuropharm.2017.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/31/2022]
|
17
|
Blokland A, Sambeth A, Prickaerts J, Riedel WJ. Why an M1 Antagonist Could Be a More Selective Model for Memory Impairment than Scopolamine. Front Neurol 2016; 7:167. [PMID: 27746762 PMCID: PMC5042959 DOI: 10.3389/fneur.2016.00167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Anke Sambeth
- Maastricht University , Maastricht , Netherlands
| | | | - Wim J Riedel
- Maastricht University , Maastricht , Netherlands
| |
Collapse
|