1
|
G P, Singh M, Gupta PK, Shukla R. Synergy of Microfluidics and Nanomaterials: A Revolutionary Approach for Cancer Management. ACS APPLIED BIO MATERIALS 2025; 8:2716-2734. [PMID: 40100776 DOI: 10.1021/acsabm.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cancer affects millions of individuals every year and is the second most common cause of death. Various therapeutic strategies are explored for the management of cancer including radiation therapy and chemotherapy with or without surgical procedures. However, the drawbacks like poor cancer cell targeting and higher toxicity for healthy cells need the advancement of the therapeutic strategy. The exploration of nanomedicine achieves targeted distribution, and the adoption of microfluidics technology for the preparation of the nanoparticulate system has enhanced the efficacy and uniformity of the nanocarriers. The overview of the existing designs of the microfluidics device assisted in the preparation of the nanoparticles, and various nanodelivery systems formulated using the microfluidic device including liposomes, lipidic nanocarriers, quantum dots, polymeric nanoparticles, and metallic nanocarriers are discussed in this review. Further, the challenges associated with the fabrication of the microfluidics device and the fabrication of microfluidics device-based nanoparticles are detailed here.
Collapse
Affiliation(s)
- Pramoda G
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Mansi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Bio-Science and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
2
|
Saadh MJ, Khidr WA, Alfarttoosi KH, Bishoyi AK, Ganesan S, Shankhyan A, Gayathri S, Rizaev J, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Metal nanoparticles as a promising therapeutic approach for prostate cancer diagnosis and therapy: a comprehensive review. Med Oncol 2025; 42:83. [PMID: 39987535 DOI: 10.1007/s12032-025-02633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Prostate cancer is a leading cause of mortality among men worldwide, particularly in the USA and European nations, with an estimated 1.9 million new cases and over 580,000 deaths annually, according to recent global statistics. The treatment of prostate tumors presents significant clinical challenges, due to the disease's high metastatic potential, specifically to vital organs, such as the liver, lungs, bones, and brain. The intrinsic heterogeneity of prostate cancer cells, characterized by diverse genetic, molecular, and phenotypic profiles, complicates conventional therapeutic strategies, highlighting the need for advanced diagnostic and treatment modalities. Nanoparticles play a critical role in oncology field due to their unique physicochemical properties, including high surface area-to-volume ratio and the ability to be functionalized with targeting ligands. Metallic-based nanoparticles exhibits significant potential for applications in field of nanomedicine, drug delivery systems, gene silencing methods, radiotherapy enhancement, cancer diagnostics, and targeted therapeutic interventions. Metal nanoparticles have substantially improved the sensitivity and specificity of major imaging modalities and have demonstrated remarkable efficacy as biosensors for the detection of prostate cancer-specific biomarkers. This review article provides an in-depth analysis of the utilization of metal nanomaterials in prostate cancer, focusing on their roles in enhancing therapeutic efficacy, advancing diagnostic precision, and supporting the development of novel treatment strategies.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Wajida Ataallah Khidr
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Ashok Kumar Bishoyi
- Department of Microbiology, Marwadi University Research Center, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - S Gayathri
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Morla-Folch J, Ranzenigo A, Fayad ZA, Teunissen AJP. Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307502. [PMID: 38050951 PMCID: PMC11045328 DOI: 10.1002/smll.202307502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zahi Adel Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abraham Jozef Petrus Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
4
|
Clinical Milestones in Nanotherapeutics: Current Status and Future Prospects. NANOMATERIALS: EVOLUTION AND ADVANCEMENT TOWARDS THERAPEUTIC DRUG DELIVERY (PART II) 2021:194-245. [DOI: 10.2174/9781681088235121010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Abstract
Different carbon nanostructures have been explored as functional materials for the development of effective nanomaterials in cancer treatment applications. This review mainly aims to discuss the features, either strength or weakness, of carbon nanohorn (CNH), carbon conical horn-shaped nanostructures of sp2 carbon atoms. The interest for these materials arises from their ability to couple the clinically relevant properties of carbon nanomaterials as drug carriers with the negligible toxicity described in vivo. Here, we offer a comprehensive overview of the recent advances in the use of CNH in cancer treatments, underlining the benefits of each functionalization route and approach, as well as the biological performances of either loaded and unloaded materials, while discussing the importance of delivery devices.
Collapse
|
6
|
Abstract
Nanomedicine is an interdisciplinary field of research, comprising science, engineering, and medicine. Many are the clinical applications of nanomedicine, such as molecular imaging, medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, many efforts must be done to understand the complex behavior of nanoparticles (NPs) under physiological conditions, the kinetic and thermodynamic principles, involved in the rational design of NP. Once administrated in physiological environment, NPs interact with biomolecules and they are surrounded by protein corona (PC) or biocorona. PC can trigger an immune response, affecting NPs toxicity and targeting capacity. This review aims to provide a detailed description of biocorona and of parameters that are able to control PC formation and composition. Indeed, the review provides an overview about the role of PC in the modulation of both cytotoxicity and immune response as well as in the control of targeting capacity.
Collapse
Affiliation(s)
- Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
7
|
Nanoparticle-Based Chemotherapy Formulations for Head and Neck Cancer: A Systematic Review and Perspectives. NANOMATERIALS 2020; 10:nano10101938. [PMID: 33003387 PMCID: PMC7600408 DOI: 10.3390/nano10101938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/30/2023]
Abstract
Head and neck cancer (HNC) is a complex and heterogeneous disease associated with high mortality and morbidity worldwide. Standard therapeutic management of advanced HNC, which is based on radiotherapy often combined with chemotherapy, has been hampered by severe long-term side effects. To overcome these side effects, tumor-selective nanoparticles have been exploited as a potential drug delivery system to improve HNC therapy. A combination of MEDLINE, EMBASE, Cochrane Oral Health Group’s Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL) and ClinicalTrials.gov from inception up to June 2020 was used for this systematic review. A total of 1747 published manuscripts were reviewed and nine relevant references were retrieved for analysis, while eight of them were eligible for meta-analysis. Based on these studies, the level of evidence about the efficacy of nanoformulation for HNC therapy on tumor response and adverse side effects (SAE) was low. Even though basic research studies have revealed a greater promise of nanomaterial to improve the outcome of cancer therapy, none of them were translated into clinical benefits for HNC patients. This systematic review summarized and discussed the recent progress in the development of targeted nanoparticle approaches for HNC management, and open-up new avenues for future perspectives.
Collapse
|
8
|
Advances in Gold Nanoparticle-Based Combined Cancer Therapy. NANOMATERIALS 2020; 10:nano10091671. [PMID: 32858957 PMCID: PMC7557687 DOI: 10.3390/nano10091671] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
According to the global cancer observatory (GLOBOCAN), there are approximately 18 million new cancer cases per year worldwide. Cancer therapies are largely limited to surgery, radiotherapy, and chemotherapy. In radiotherapy and chemotherapy, the maximum tolerated dose is presently being used to treat cancer patients. The integrated development of innovative nanoparticle (NP) based approaches will be a key to address one of the main issues in both radiotherapy and chemotherapy: normal tissue toxicity. Among other inorganic NP systems, gold nanoparticle (GNP) based systems offer the means to further improve chemotherapy through controlled delivery of chemotherapeutics, while local radiotherapy dose can be enhanced by targeting the GNPs to the tumor. There have been over 20 nanotechnology-based therapeutic products approved for clinical use in the past two decades. Hence, the goal of this review is to understand what we have achieved so far and what else we can do to accelerate clinical use of GNP-based therapeutic platforms to minimize normal tissue toxicity while increasing the efficacy of the treatment. Nanomedicine will revolutionize future cancer treatment options and our ultimate goal should be to develop treatments that have minimum side effects, for improving the quality of life of all cancer patients.
Collapse
|
9
|
Kovács D, Igaz N, Marton A, Rónavári A, Bélteky P, Bodai L, Spengler G, Tiszlavicz L, Rázga Z, Hegyi P, Vizler C, Boros IM, Kónya Z, Kiricsi M. Core-shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts. J Nanobiotechnology 2020; 18:18. [PMID: 31964403 PMCID: PMC6974972 DOI: 10.1186/s12951-020-0576-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although accumulating evidence suggests that the crosstalk between malignant cells and cancer-associated fibroblasts (CAFs) actively contributes to tumour growth and metastatic dissemination, therapeutic strategies targeting tumour stroma are still not common in the clinical practice. Metal-based nanomaterials have been shown to exert excellent cytotoxic and anti-cancerous activities, however, their effects on the reactive stroma have never been investigated in details. Thus, using feasible in vitro and in vivo systems to model tumour microenvironment, we tested whether the presence of gold, silver or gold-core silver-shell nanoparticles exerts anti-tumour and metastasis suppressing activities by influencing the tumour-supporting activity of stromal fibroblasts. RESULTS We found that the presence of gold-core silver-shell hybrid nanomaterials in the tumour microenvironment attenuated the tumour cell-promoting behaviour of CAFs, and this phenomenon led to a prominent attenuation of metastatic dissemination in vivo as well. Mechanistically, transcriptome analysis on tumour-promoting CAFs revealed that silver-based nanomaterials trigger expressional changes in genes related to cancer invasion and tumour metastasis. CONCLUSIONS Here we report that metal nanoparticles can influence the cancer-promoting activity of tumour stroma by affecting the gene expressional and secretory profiles of stromal fibroblasts and thereby altering their intrinsic crosstalk with malignant cells. This potential of metal nanomaterials should be exploited in multimodal treatment approaches and translated into improved therapeutic outcomes.
Collapse
Affiliation(s)
- Dávid Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Annamária Marton
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Andrea Rónavári
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, 6720, Szeged, Hungary
| | - Péter Bélteky
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, 6720, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás u. 2, 6725, Szeged, Hungary
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás u. 2, 6725, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Korányi fasor 8-10, 6720, Szeged, Hungary
- MTA-SZTE Lendület Translational Gastroenterology Research Group, Korányi fasor 8-10, 6720, Szeged, Hungary
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Zoltán Kónya
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, 6720, Szeged, Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. tér 1, 6720, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
10
|
Igaz N, Szőke K, Kovács D, Buhala A, Varga Z, Bélteky P, Rázga Z, Tiszlavicz L, Vizler C, Hideghéty K, Kónya Z, Kiricsi M. Synergistic Radiosensitization by Gold Nanoparticles and the Histone Deacetylase Inhibitor SAHA in 2D and 3D Cancer Cell Cultures. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:158. [PMID: 31963267 PMCID: PMC7023030 DOI: 10.3390/nano10010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
Abstract
Radiosensitizing agents are capable of augmenting the damage of ionizing radiation preferentially on cancer cells, thereby increasing the potency and the specificity of radiotherapy. Metal-based nanoparticles have recently gathered ground in radio-enhancement applications, owing to their exceptional competence in amplifying the cell-killing effects of irradiation. Our aim was to examine the radiosensitizing performance of gold nanoparticles (AuNPs) and the chromatin-modifying histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alone and in combination. We observed that the colony-forming capability of cancer cells decreased significantly and the DNA damage, detected by γH2AX immunostaining, was substantially greater after combinational treatments than upon individual drug exposures followed by irradiation. Synergistic radiosensitizing effects of AuNPs and SAHA were proven on various cell lines, including radioresistant A549 and DU-145 cancer cells. 3D cultures often manifest radio- and drug-resistance, nevertheless, AuNPs in combination with SAHA could effectively enhance the potency of irradiation as the number of viable cells decreased significantly when spheroids received AuNP + SAHA prior to radiotherapy. Our results imply that a relaxed chromatin structure induced by SAHA renders the DNA of cancerous cells more susceptible to the damaging effects of irradiation-triggered, AuNP-released reactive electrons. This feature of AuNPs should be exploited in multimodal treatment approaches.
Collapse
Affiliation(s)
- Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
- Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Krisztina Szőke
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
| | - Andrea Buhala
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; (A.B.); (C.V.)
| | - Zoltán Varga
- Department of Oncotherapy, University of Szeged, Korányi fasor 12, H-6720 Szeged, Hungary; (Z.V.); (K.H.)
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás utca 2, H-6720 Szeged, Hungary; (Z.R.); (L.T.)
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás utca 2, H-6720 Szeged, Hungary; (Z.R.); (L.T.)
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; (A.B.); (C.V.)
| | - Katalin Hideghéty
- Department of Oncotherapy, University of Szeged, Korányi fasor 12, H-6720 Szeged, Hungary; (Z.V.); (K.H.)
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
| |
Collapse
|
11
|
Sheng J, Wang X, Yan J, Pan D, Yang R, Wang L, Xu Y, Yang M. Theranostic radioiodine-labelled melanin nanoparticles inspired by clinical brachytherapy seeds. J Mater Chem B 2018; 6:8163-8169. [PMID: 32254935 DOI: 10.1039/c8tb02817f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radioiodine is widely used in nuclear medicine, mainly serving as a tracer and therapeutic agent, and benefits from its various radioactive isotopes of iodine including I-123, I-124, I-125, I-131 and so on. Melanin is a natural material widely dispersed in the human skin, hair and eyes. The excellent biocompatibility and multifunctional abilities of melanin make it a perfect carrier for biomedical applications. Here, we fabricated theranostic radioiodine-labelled melanin nanoparticles (MNPs) through a novel Ag-I two-step method. The Ag-I labelling method for MNP radioiodine-labelling has advantages including a faster labelling time, higher labelling yield, and higher stability than the chloramine-T oxidation method reported previously. The obtained MNP-Ag-131I can be used for both single-photon emission computed tomography and Cherenkov radiation imaging. The β-rays of 131I also make it a good candidate as a cancer cell killer. The theranostic properties of this nanoparticle were also proved in a xenograft tumor model in vivo. In summary, this study provides a new concept for radioiodine labelling nanoparticles, which can be further investigated in various imaging and radiotherapy applications with different radioactive isotopes of iodine.
Collapse
Affiliation(s)
- Jie Sheng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tao Z, Muzumdar MD, Detappe A, Huang X, Xu ES, Yu Y, Mouhieddine TH, Song H, Jacks T, Ghoroghchian PP. Differences in Nanoparticle Uptake in Transplanted and Autochthonous Models of Pancreatic Cancer. NANO LETTERS 2018; 18:2195-2208. [PMID: 29533667 PMCID: PMC5957485 DOI: 10.1021/acs.nanolett.7b04043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) contains a distinctively dense stroma that limits the accessibility of anticancer drugs, contributing to its poor overall prognosis. Nanoparticles can enhance drug delivery and retention in pancreatic tumors and have been utilized clinically for their treatment. In preclinical studies, various mouse models differentially recapitulate the microenvironmental features of human PDAC. Here, we demonstrate that through utilization of different organic cosolvents and by doping of a homopolymer of poly(ε-caprolactone), a diblock copolymer composition of poly(ethylene oxide)- block-poly(ε-caprolactone) may be utilized to generate biodegradable and nanoscale micelles with different physical properties. Noninvasive optical imaging was employed to examine the pharmacology and biodistribution of these various nanoparticle formulations in both allografted and autochthonous mouse models of PDAC. In contrast to the results reported with transplanted tumors, spherical micelles as large as 300 nm in diameter were found to extravasate in the autochthonous model, reaching a distance of approximately 20 μm from the nearest tumor cell clusters. A lipophilic platinum(IV) prodrug of oxaliplatin was further able to achieve a ∼7-fold higher peak accumulation and a ∼50-fold increase in its retention half-life in pancreatic tumors when delivered with 100 nm long worm-like micelles as when compared to the free drug formulation of oxaliplatin. Through further engineering of nanoparticle properties, as well as by widespread adoption of the autochthonous tumor model for preclinical testing, future therapeutic formulations may further enhance the targeting and penetration of anticancer agents to improve survival outcomes in PDAC.
Collapse
Affiliation(s)
- Zhimin Tao
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Mandar Deepak Muzumdar
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Alexandre Detappe
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Xing Huang
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Eric S. Xu
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Yingjie Yu
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Tarek H. Mouhieddine
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Haiqin Song
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - P. Peter Ghoroghchian
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, MA 02139, USA
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
13
|
Priming the body to receive the therapeutic agent to redefine treatment benefit/risk profile. Sci Rep 2018; 8:4797. [PMID: 29556068 PMCID: PMC5859131 DOI: 10.1038/s41598-018-23140-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
Many therapeutic agents offer a low useful dose (dose responsible for efficacy)/useless dose (dose eliminated or responsible for toxicity) ratio, mainly due to the fact that therapeutic agents must ensure in one single object all the functions required to deliver the treatment, which leads to compromises in their physico-chemical design. Here we introduce the concept of priming the body to receive the treatment by uncorrelating these functions into two distinct objects sequentially administered: a nanoprimer occupying transiently the main pathway responsible for therapeutic agent limited benefit/risk ratio followed by the therapeutic agent. The concept was evaluated for different nature of therapeutic agents: For nanomedicines we designed a liposomal nanoprimer presenting preferential hepatic accumulation without sign of acute toxicity. This nanoprimer was able to increase the blood bioavailability of nanomedicine correlated with a lower hepatic accumulation. Finally this nanoprimer markedly enhanced anti-tumor efficacy of irinotecan loaded liposomes in the HT-29 tumor model when compared to the nanomedicine alone. Then, for small molecules we demonstrated the ability of a cytochrome inhibitor loaded nanoprimer to increase efficacy of docetaxel treatment. These results shown that specific nanoprimers could be designed for each family of therapeutic agents to answer to their specific needs.
Collapse
|
14
|
Cayre F, Mura S, Andreiuk B, Sobot D, Gouazou S, Desmaële D, Klymchenko AS, Couvreur P. In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squalene-Based Prodrug Nanoparticles. Adv Healthc Mater 2018; 7. [PMID: 29195020 DOI: 10.1002/adhm.201700830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Indexed: 12/23/2022]
Abstract
Förster resonance energy transfer (FRET) is used here for the first time to monitor the in vivo fate of nanoparticles made of the squalene-gemcitabine prodrug and two novel derivatives of squalene with the cyanine dyes 5.5 and 7.5, which behave as efficient FRET pair in the NIR region. Following intravenous administration, nanoparticles initially accumulate in the liver, then they show loss of their integrity within 2 h and clearance of the squalene bioconjugates is observed within 24 h. Such awareness is a key prerequisite before introduction into clinical settings.
Collapse
Affiliation(s)
- Fanny Cayre
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Simona Mura
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Bohdan Andreiuk
- Laboratoire de Biophotonique et Pharmacologie; UMR CNRS 7213; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- Organic Chemistry Department; Chemistry Faculty; Taras Shevchenko National University of Kyiv; 01601 Kyiv Ukraine
| | - Dunja Sobot
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Sandrine Gouazou
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Didier Desmaële
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie; UMR CNRS 7213; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
| | - Patrick Couvreur
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| |
Collapse
|
15
|
Qu D, Wang L, Qin Y, Guo M, Guo J, Huang M, Liu Y, Liu C, Li H, Chen Y. Non-triggered sequential-release liposomes enhance anti-breast cancer efficacy of STS and celastrol-based microemulsion. Biomater Sci 2018; 6:3284-3299. [PMID: 30346001 DOI: 10.1039/c8bm00796a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A codelivery system that sequentially releases its contents is an effective strategy to enhance anticancer efficacy.
Collapse
Affiliation(s)
- Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| | - Lixiang Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
| | - Yue Qin
- Jiangsu Provincial Academy of Traditional Chinese Medicine
- Nanjing 210028
- China
| | - Mengfei Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
| | - Jian Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
| | - Mengmeng Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| | - Hui Li
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100010
- China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| |
Collapse
|
16
|
Rationally designed peptide nanosponges for cell-based cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2555-2564. [DOI: 10.1016/j.nano.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022]
|
17
|
Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo. Proc Natl Acad Sci U S A 2017; 114:4129-4134. [PMID: 28373576 DOI: 10.1073/pnas.1702736114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA interference (RNAi)-based gene regulation platforms have shown promise as a novel class of therapeutics for the precision treatment of cancer. Techniques in preclinical evaluation of RNAi-based nanoconjugates have yet to allow for optimization of their gene regulatory activity. We have developed spherical nucleic acids (SNAs) as a blood-brain barrier-/blood-tumor barrier-penetrating nanoconjugate to deliver small interfering (si) and micro (mi)RNAs to intracranial glioblastoma (GBM) tumor sites. To identify high-activity SNA conjugates and to determine optimal SNA treatment regimens, we developed a reporter xenograft model to evaluate SNA efficacy in vivo. Engrafted tumors stably coexpress optical reporters for luciferase and a near-infrared (NIR) fluorescent protein (iRFP670), with the latter fused to the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT). Using noninvasive imaging of animal subjects bearing reporter-modified intracranial xenografts, we quantitatively assessed MGMT knockdown by SNAs composed of MGMT-targeting siRNA duplexes (siMGMT-SNAs). We show that systemic administration of siMGMT-SNAs via single tail vein injection is capable of robust intratumoral MGMT protein knockdown in vivo, with persistent and SNA dose-dependent MGMT silencing confirmed by Western blotting of tumor tissue ex vivo. Analyses of SNA biodistribution and pharmacokinetics revealed rapid intratumoral uptake and significant intratumoral retention that increased the antitumor activity of coadministered temozolomide (TMZ). Our study demonstrates that dual noninvasive bioluminescence and NIR fluorescence imaging of cancer xenograft models represents a powerful in vivo strategy to identify RNAi-based nanotherapeutics with potent gene silencing activity and will inform additional preclinical and clinical investigations of these constructs.
Collapse
|
18
|
Bhirde AA, Sindiri S, Calco GN, Aronova MA, Beaucage SL. Algorithm-driven high-throughput screening of colloidal nanoparticles under simulated physiological and therapeutic conditions. NANOSCALE 2017; 9:2291-2300. [PMID: 28127597 DOI: 10.1039/c6nr08579b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colloidal nanoparticles have shown tremendous potential as cancer drug carriers and as phototherapeutics. However, the stability of nanoparticles under physiological and phototherapeutic conditions is a daunting issue, which needs to be addressed in order to ensure a successful clinical translation. The design, development and implementation of unique algorithms are described herein for high-throughput hydrodynamic size measurements of colloidal nanoparticles. The data obtained from such measurements provide clinically-relevant particle size distribution assessments that are directly related to the stability and aggregation profiles of the nanoparticles under putative physiological and phototherapeutic conditions; those profiles are not only dependent on the size and surface coating of the nanoparticles, but also on their composition. Uncoated nanoparticles showed varying degrees of association with bovine serum albumin, whereas PEGylated nanoparticles did not exhibit significant association with the protein. The algorithm-driven, high-throughput size screening method described in this report provides highly meaningful size measurement patterns stemming from the association of colloidal particles with bovine serum albumin used as a protein model. Noteworthy is that this algorithm-based high-throughput method can accomplish sophisticated hydrodynamic size measurement protocols within days instead of years it would take conventional hydrodynamic size measurement techniques to achieve a similar task.
Collapse
Affiliation(s)
- Ashwinkumar A Bhirde
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Sivasish Sindiri
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gina N Calco
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
19
|
Anselmo AC, Prabhakarpandian B, Pant K, Mitragotri S. Clinical and commercial translation of advanced polymeric nanoparticle systems: opportunities and material challenges. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/2053-1613/aa5468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Silva MC, Silva AS, Fernandez-Lodeiro J, Casimiro T, Lodeiro C, Aguiar-Ricardo A. Supercritical CO₂-Assisted Spray Drying of Strawberry-Like Gold-Coated Magnetite Nanocomposites in Chitosan Powders for Inhalation. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E74. [PMID: 28772434 PMCID: PMC5344610 DOI: 10.3390/ma10010074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 01/03/2023]
Abstract
Lung cancer is one of the leading causes of death worldwide. Therefore, it is of extreme importance to develop new systems that can deliver anticancer drugs into the site of action when initiating a treatment. Recently, the use of nanotechnology and particle engineering has enabled the development of new drug delivery platforms for pulmonary delivery. In this work, POXylated strawberry-like gold-coated magnetite nanocomposites and ibuprofen (IBP) were encapsulated into a chitosan matrix using Supercritical Assisted Spray Drying (SASD). The dry powder formulations showed adequate morphology and aerodynamic performances (fine particle fraction 48%-55% and aerodynamic diameter of 2.6-2.8 µm) for deep lung deposition through the pulmonary route. Moreover, the release kinetics of IBP was also investigated showing a faster release of the drug at pH 6.8, the pH of lung cancer. POXylated strawberry-like gold-coated magnetite nanocomposites proved to have suitable sizes for cellular internalization and their fluorescent capabilities enable their future use in in vitro cell based assays. As a proof-of-concept, the reported results show that these nano-in-micro formulations could be potential drug vehicles for pulmonary administration.
Collapse
Affiliation(s)
- Marta C Silva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
- BIOSCOPE Research Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, Caparica 2829-516, Portugal.
| | - Ana Sofia Silva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
- CICS-UBI, Health Sciences Research Center, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal.
| | - Javier Fernandez-Lodeiro
- BIOSCOPE Research Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, Caparica 2829-516, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, Caparica 2829-516, Portugal.
| | - Teresa Casimiro
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - Carlos Lodeiro
- BIOSCOPE Research Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, Caparica 2829-516, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, Caparica 2829-516, Portugal.
| | - Ana Aguiar-Ricardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| |
Collapse
|
21
|
Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 2017. [DOI: 10.1039/c7py00559h] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Application of 3D multicellular tumor spheroids to the investigation of polymer nanomedicines.
Collapse
Affiliation(s)
- Gianpiero Lazzari
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
22
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
23
|
Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer. Ther Deliv 2016; 7:245-55. [PMID: 27010986 DOI: 10.4155/tde-2015-0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aberrant gene expression can trigger several vital molecular events that not only result in carcinogenesis but also cause chemoresistance, metastasis and relapse. Gene-based therapies using siRNA/miRNA have been suggested as new treatment method to improve the current regimen. Although these agents can restore the normal molecular cascade thereby resensitizing the cancer cells, delivering a standard regimen (either subsequently or simultaneously) is necessary to achieve the therapeutic benefit. However, co-delivery using a single carrier could give an additional advantage of similar biodistribution profile of the loaded agents. While much research has been carried out in this field in recent years, challenges involved in designing combination formulations including efficient coloading, stability, appropriate biodistribution and target specificity have hampered their clinical translation. This article highlights current aspects of nano-carriers used for co-delivery of small molecules and genes to treat cancer.
Collapse
|
24
|
Qin JJ, Wang W, Sarkar S, Zhang R. Oral delivery of anti-MDM2 inhibitor SP141-loaded FcRn-targeted nanoparticles to treat breast cancer and metastasis. J Control Release 2016; 237:101-14. [PMID: 27394681 DOI: 10.1016/j.jconrel.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 01/21/2023]
Abstract
We have recently discovered a specific Murine Double Minute 2 (MDM2) oncogene inhibitor, called SP141, which exerts potent anticancer activity in various breast cancer models. However, its low oral bioavailability is the major hurdle for moving this drug to clinical trial. The present study was designed to discover and validate a novel nano-oral delivery system for this promising anticancer agent. Herein, we report the preparation, characterization, and evaluation of the efficacy and safety of the SP141-loaded IgG Fc-conjugated maleimidyl-poly(ethylene glycol)-co-poly(ε-caprolactone) (Mal-PEG-PCL) nanoparticles (SP141FcNP) as an orally cancer therapeutic agent. Our results indicated that SP141FcNP showed a biphasic release pattern and increased transepithelial transport in vitro and in vivo with the involvement of FcRn-mediated transcytosis. SP141FcNP also exhibited increased intestinal epithelial permeability, cellular uptake, and oral bioavailability, with extended blood circulation time, increased tumor accumulation, enhanced MDM2 inhibition, and stronger responses in anti-tumor growth and metastasis effects in vitro and in vivo, without apparent host toxicity. Collectively, this newly developed nanoparticle oral delivery system provides a basis for evaluation of SP141 as a potential clinical candidate for cancer therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Sushanta Sarkar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
25
|
Korsmeyer R. Critical questions in development of targeted nanoparticle therapeutics. Regen Biomater 2016; 3:143-7. [PMID: 27047683 PMCID: PMC4817320 DOI: 10.1093/rb/rbw011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is ‘Engineer Better Medicines’. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places severe constraints on the types of molecules that can be used. A molecule administered by systemic delivery must be effective at low concentrations in the target tissue, yet safe everywhere else in the body. If drug carriers could be developed to deliver therapeutic molecules selectively to the desired target, it should be possible to greatly improve safety and efficacy of therapy. Nanoparticles (and related nanostructures, such as liposomes, nanoemulsions, micelles and dendrimers) are an attractive drug carrier concept because they can be made from a variety of materials engineered to have properties that allow loading and precise delivery of bound therapeutic molecules. The field of targeted nanoparticles has been extraordinarily active in the academic realm, with thousands of articles published over the last few years. Many of these publications seem to demonstrate very promising results in in vitro studies and even in animal models. In addition, a handful of human clinical trials are in progress. Yet, the biopharmaceutical industry has been relatively slow to make major investments in targeted nanoparticle development programs, despite a clear desire to introduce innovative new therapies to the market. What is the reason for such caution? Some degree of caution is no doubt due to the use of novel materials and the unproven nature of targeted nanoparticle technology, but many other unproven technologies have generated intense interest at various times. We believe that the major barrier to the exploration of nanoparticles is because they are so complex. The very design flexibility that makes the nanoparticle approach attractive also makes it challenging. Fortunately, continuing progress in experimental tools has greatly improved the ability to study biology and potential interventions at a nanoscale. Thus, it is increasingly possible to answer detailed questions about how nanoparticles can and should work. However, a detailed understanding at the mechanistic level is only the beginning. Any new medicine must not only work at the molecular level, but must also be manufactured reproducibly at scale and proven in the clinic. New materials will require new methods at all scales. The purpose of this short article is to focus on a set of questions that are being asked in the large biopharmaceutical companies and that must be answered if targeted nanoparticles are to become the medicines of the 21st century.
Collapse
Affiliation(s)
- Richard Korsmeyer
- Pharmaceutical Sciences, Pfizer Worldwide R&D, 445 Eastern Point Rd, Groton, CT 06340, USA
| |
Collapse
|
26
|
Mangues R, Vázquez E, Villaverde A. Targeting in Cancer Therapies. Med Sci (Basel) 2016; 4:medsci4010006. [PMID: 29083369 PMCID: PMC5635766 DOI: 10.3390/medsci4010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB-SantPau) and Josep Carreras Leukemia Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
27
|
Truong NP, Whittaker MR, Anastasaki A, Haddleton DM, Quinn JF, Davis TP. Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polym Chem 2016. [DOI: 10.1039/c5py01467k] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RAFT-mediated emulsion polymerization of styrene and subsequent morphological transition produces nanoaggregates with tuneable morphologies.
Collapse
Affiliation(s)
- Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Athina Anastasaki
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - David M. Haddleton
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
28
|
Abstract
Albumin is a large, highly abundant protein circulating in the blood stream which is regulated and actively recycled via the neonatal Fc receptor (FcRn). In humans this results in serum albumin having an exceptional long half-life of ~21 days. Some time ago it was realized that these intrinsic properties could be harnessed and albumin could be used as a privileged drug delivery vehicle. However, active development of albumin based therapeutics has been hampered by the lack of economic, relevant experimental models which can accurately recapitulate human albumin metabolism and pharmacokinetics. In mice for example, introduced human albumin is not recycled and is catabolized rapidly. This is mainly due to the failure of mouse FcRn to bind human albumin consequently, human albumin has a half-life of only 2-3 days in mice. To overcome this we developed and characterized a humanized mouse model which is null for mouse FcRn and mouse albumin, but is transgenic for, and expressing functional human FcRn. Published data clearly demonstrate that upon injection of human albumin into this model animal that it accurately recapitulates human albumin FcRn dependent serum recycling, with human albumin now having a half-life ~24 days, closely mimicking that observed in humans. In this practical review we briefly review this model and outline its use for pharmacokinetic studies of human albumin.
Collapse
|