1
|
Amin MA, Zehravi M, Sweilam SH, Shatu MM, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Panigrahy UP, Ahmad I, Khan SL, Emran TB. Neuroprotective potential of epigallocatechin gallate in Neurodegenerative Diseases: Insights into molecular mechanisms and clinical Relevance. Brain Res 2025; 1860:149693. [PMID: 40350140 DOI: 10.1016/j.brainres.2025.149693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis pose significant challenges due to their complex pathophysiology and lack of effective treatments. Green tea, rich in the epigallocatechin gallate (EGCG) polyphenolic component, has demonstrated potential as a neuroprotective agent with numerous medicinal applications. EGCG effectively reduces tau and Aβ aggregation in ND models, promotes autophagy, and targets key signaling pathways like Nrf2-ARE, NF-κB, and MAPK. This review explores the molecular processes that underlie EGCG's neuroprotective properties, including its ability to regulate mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein misfolding. Clinical research indicates that EGCG may enhance cognitive and motor abilities, potentially inhibiting disease progression despite absorption and dose optimization limitations. The substance has been proven to slow the amyloidogenic process, prevent protein aggregation, decrease amyloid cytotoxicity, inhibit fibrillogenesis, and restructure fibrils for synergistic therapeutic effects. The review highlights the potential of EGCG as a natural, multi-targeted strategy for NDs but emphasizes the need for further clinical trials to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra 415539, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun 248007, Uttarakhand, India
| | | | | | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| |
Collapse
|
2
|
Dolui S, Maity A, Kundu S, Nanda B, Roy A, Mondal A, Adhikary A, Saha A, Pal U, Bhunia A, Maiti NC. Stabilization of α-Helical Folded Structures Retards Hydrophobic Zipping and Fibrillation of Bovine Insulin: A Key Signature from Raman Spectroscopic Analysis. J Phys Chem B 2025; 129:4320-4334. [PMID: 40289529 DOI: 10.1021/acs.jpcb.5c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Insulin is an α-helical-rich globular protein that is well-stabilized via several noncovalent forces including the inter-residue/intersubunit hydrophobic interactions. However, similar noncovalent forces, although of different degrees and orientations, effectuate many proteins to assemble and adapt thermodynamically stable β-sheet-rich fibrillar aggregates, causing a severe impact on their native structure and function. This fibrillation of proteins involves a key event, which is the zipping of hydrophobic amyloidogenic regions that are exposed intrinsically or become bared in the folded proteins under harsh conditions. This study has revealed that Coomassie Brilliant Blue G-250 (CBBG) can inhibit the essential zipping processes and stabilize the α-helical structure of bovine insulin (BI), resulting in a significant delay in the fibril formation. The interaction of CBBG with BI was found to be a thermodynamically favorable event, with it being an enthalpy-driven process (ΔH0 -88.04 kcal/mol), with the change in Gibb's free energy (ΔG0) observed to be ∼ -6.98 kcal/mol. Surface-enhanced Raman scattering measurements showed a characteristic α-helical signal of the protein at 1649 cm-1 in the presence of CBBG, suggesting the enhanced thermal stability of the hormone. Computational analysis further revealed that CBBG binds to both chains A and B of bovine insulin and boosts the folding stability in the monomeric state, causing a significant reduction in its structural fluctuation. The sulfonate moieties of CBBG showed significant intermolecular interactions with the B chain of N-terminal segments. Specifically, one sulfonate group formed multiple hydrogen bonds with both the backbone amide group and the terminal amine. Also, the N-terminal phenylalanine residue of BI (F1B) was found to have a significant contribution to the hydrophobic π-π stacking interactions with the CBBG aromatic phenyl ring.
Collapse
Affiliation(s)
- Sandip Dolui
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Anupam Maity
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Banadipa Nanda
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Anupam Roy
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Animesh Mondal
- Zoology, Govt. Gen. De. College, Mangalkote, Panchanantala, Khudrun, Purba Bardhaman, West Bengal 713132, India
| | - Ananya Adhikary
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Calcutta 700009, India
| | - Uttam Pal
- S. N. Bose National Centre for Basic Sciences, Technical Research Centre, Kolkata 700106, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN80, Kolkata 700091, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
3
|
Giraldo-Berrio D, Jimenez-Del-Rio M, Velez-Pardo C. Minocycline mitigates Aβ and TAU pathology, neuronal dysfunction, and death in the PSEN1 E280A cholinergic-like neurons model of familial Alzheimer's disease. Neuropharmacology 2024; 261:110152. [PMID: 39245141 DOI: 10.1016/j.neuropharm.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aβ), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical. We found that minocycline (MC, 5 μM) was innocuous toward wild-type (WT) PSEN1 ChLNs but significantly (i) reduces the accumulation of intracellular Aβ by -69%, (ii) blocks both abnormal phosphorylation of the protein TAU at residue Ser202/Thr205 by -33% and (iii) phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by -25%, (iv) diminishes oxidized DJ-1 at Cys106-SO3 by -29%, (v) downregulates the expression of transcription factor TP53, (vi) BH-3-only protein PUMA, and (vii) cleaved caspase 3 (CC3) by -33, -86, and -78%, respectively, compared with untreated PSEN1 E280A ChLNs. Additionally, MC increases the response to ACh-induced Ca2+ influx by +92% in mutant ChLNs. Oxygen radical absorbance capacity (ORAC) and ferric ion-reducing antioxidant power (FRAP) analysis showed that MC might operate more efficiently as a hydrogen atom transfer agent than a single electron transfer agent. In silico molecular docking analysis predicts that MC binds with high affinity to Aβ (Vina Score -6.6 kcal/mol), TAU (VS -6.5 kcal/mol), and caspase 3 (VS -7.1 kcal/mol). Taken together, our findings suggest that MC demonstrates antioxidant, anti-amyloid, and anti-apoptosis activity and promotes physiological ACh-induced Ca2+ influx in PSEN1 E280A ChLNs. The MC has therapeutic potential for treating early-onset FAD.
Collapse
Affiliation(s)
- Daniela Giraldo-Berrio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratory 412, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratory 412, Medellín, Colombia.
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratory 412, Medellín, Colombia.
| |
Collapse
|
4
|
Yang K, Lv Z, Zhao W, Lai G, Zheng C, Qi F, Zhao C, Hu K, Chen X, Fu F, Li J, Xie G, Wang H, Wu X, Zheng W. The potential of natural products to inhibit abnormal aggregation of α-Synuclein in the treatment of Parkinson's disease. Front Pharmacol 2024; 15:1468850. [PMID: 39508052 PMCID: PMC11537895 DOI: 10.3389/fphar.2024.1468850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD), as a refractory neurological disorder with complex etiology, currently lacks effective therapeutic agents. Natural products (NPs), derived from plants, animals, or microbes, have shown promising effects in PD models through their antioxidative and anti-inflammatory properties, as well as the enhancement of mitochondrial homeostasis and autophagy. The misfolding and deposition of α-Synuclein (α-Syn), due to abnormal overproduction and impaired clearance, being central to the death of dopamine (DA) neurons. Thus, inhibiting α-Syn misfolding and aggregation has become a critical focus in PD discovery. This review highlights NPs that can reduce α-Syn aggregation by preventing its overproduction and misfolding, emphasizing their potential as novel drugs or adjunctive therapies for PD treatment, thereby providing further insights for clinical translation.
Collapse
Affiliation(s)
- Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wen Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zheng
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haifeng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wu Zheng
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Deryusheva EI, Shevelyova MP, Rastrygina VA, Nemashkalova EL, Vologzhannikova AA, Machulin AV, Nazipova AA, Permyakova ME, Permyakov SE, Litus EA. In Search for Low-Molecular-Weight Ligands of Human Serum Albumin That Affect Its Affinity for Monomeric Amyloid β Peptide. Int J Mol Sci 2024; 25:4975. [PMID: 38732194 PMCID: PMC11084196 DOI: 10.3390/ijms25094975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
An imbalance between production and excretion of amyloid β peptide (Aβ) in the brain tissues of Alzheimer's disease (AD) patients leads to Aβ accumulation and the formation of noxious Aβ oligomers/plaques. A promising approach to AD prevention is the reduction of free Aβ levels by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aβ. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aβ. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aβ40 interaction: prednisone favors HSA-Aβ interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.
Collapse
Affiliation(s)
- Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Alisa A. Vologzhannikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pr. Nauki, 5, Pushchino 142290, Moscow Region, Russia;
| | - Alija A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| |
Collapse
|
6
|
Gomez-Sequeda N, Jimenez-Del-Rio M, Velez-Pardo C. Combination of Tramiprosate, Curcumin, and SP600125 Reduces the Neuropathological Phenotype in Familial Alzheimer Disease PSEN1 I416T Cholinergic-like Neurons. Int J Mol Sci 2024; 25:4925. [PMID: 38732141 PMCID: PMC11084854 DOI: 10.3390/ijms25094925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAβ; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 μM), CU (10 μM), or SP (1 μM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 μM) concentration was efficient in diminishing the iAβ, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAβ compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAβ-induced ChLN damage in FAD.
Collapse
Affiliation(s)
| | | | - Carlos Velez-Pardo
- Neuroscience Research Group, Faculty of Medicine, Institute of Medical Research, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (N.G.-S.); (M.J.-D.-R.)
| |
Collapse
|
7
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Neuroprotective Effect of Combined Treatment with Epigallocatechin 3-Gallate and Melatonin on Familial Alzheimer's Disease PSEN1 E280A Cerebral Spheroids Derived from Menstrual Mesenchymal Stromal Cells. J Alzheimers Dis 2024; 99:S51-S66. [PMID: 36846998 DOI: 10.3233/jad-220903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Background Familial Alzheimer's disease (FAD) is caused by mutations in one or more of 3 genes known as AβPP, PSEN1, and PSEN2. There are currently no effective therapies for FAD. Hence, novel therapeutics are needed. Objective To analyze the effect of treatment with a combination of epigallocatechin-3-gallate (EGCG) and Melatonin (N-acetyl-5-methoxytryptamine, aMT) in a cerebral spheroid (CS) 3D in vitro model of PSEN 1 E280A FAD. Methods We developed a CS in vitro model based on menstrual stromal cells derived from wild-type (WT) and mutant PSEN1 E280A menstrual blood cultured in Fast-N-Spheres V2 medium. Results Beta-tubulin III, choline acetyltransferase, and GFAP in both WT and mutant CSs spontaneously expressed neuronal and astroglia markers when grown in Fast-N-Spheres V2 medium for 4 or 11 days. Mutant PSEN1 CSs had significantly increased levels of intracellular AβPP fragment peptides and concomitant appearance of oxidized DJ-1 as early as 4 days, and phosphorylated tau, decreased ΔΨm, and increased caspase-3 activity were observed on Day 11. Moreover, mutant CSs were unresponsive to acetylcholine. Treatment with a combination of EGCG and aMT decreased the levels of all typical pathological markers of FAD more efficiently than did EGCG or aMT alone, but aMT failed to restore Ca2+ influx in mutant CSs and decreased the beneficial effect of EGCG on Ca2+ influx in mutant CSs. Conclusion Treatment with a combination of EGCG and aMT can be of high therapeutic value due to the high antioxidant capacity and anti-amyloidogenic effect of both compounds.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| |
Collapse
|
9
|
Mishra S. Emerging Trends in Cryo-EM-based Structural Studies of Neuropathological Amyloids. J Mol Biol 2023; 435:168361. [PMID: 37949311 DOI: 10.1016/j.jmb.2023.168361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Tauopathies, synucleinopathies, Aβ amyloidosis, TDP-43 proteinopathies, and prion diseases- these neurodegenerative diseases have in common the formation of amyloid filaments rich in cross-β sheets. Cryo-electron microscopy now permits the visualization of amyloid assemblies at atomic resolution, ushering a wide range of structural studies on several of these poorly understood amyloidogenic proteins. Amyloids are polymorphic with minor modulations in reaction environment affecting the overall architecture of their assembly, making amyloids an extremely challenging venture for structure-based therapeutic intervention. In 2017, the first cryo-EM structure of tau filaments from an Alzheimer's disease-affected brain established that in vitro assemblies might not necessarily reflect the native amyloid fold. Since then, brain-derived amyloid structures for several proteins across many neurodegenerative diseases have uncovered the disease-relevant amyloid folds. It has now been shown for tauopathies, synucleinopathies and TDP-43 proteinopathies, that distinct amyloid folds of the same protein might be related to different diseases. Salient features of each of these brain-derived folds are discussed in detail. It was also recently observed that seeded aggregation does not necessarily replicate the brain-derived structural fold. Owing to high throughput structure determination, some of these native amyloid folds have also been successfully replicated in vitro. In vitro replication of disease-relevant filaments will aid development of imaging ligands and defibrillating drugs. Towards this direction, recent high-resolution structures of tau filaments with positron emission tomography tracers and a defibrillating drug are also discussed. This review summarizes and celebrates the recent advancements in structural understanding of neuropathological amyloid filaments using cryo-EM.
Collapse
Affiliation(s)
- Suman Mishra
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bengaluru 560 012, Karnataka, India.
| |
Collapse
|
10
|
Qassim HM, Seyedalipour B, Baziyar P, Ahamady-Asbchin S. Polyphenolic flavonoid compounds act as the inhibitory potential of aggregation process: Implications for the prevention and therapeutics against FALS-associated D101G SOD1 mutant. Comput Biol Chem 2023; 107:107967. [PMID: 37844376 DOI: 10.1016/j.compbiolchem.2023.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Aggregation of proteins is a biological phenomenon caused by misfolded proteins. Human superoxide dismutase (hSOD1) misfolding and aggregation underlie the neurological illness amyotrophic lateral sclerosis (ALS). The most significant contributing factor to ALS is genetic point mutations in SOD1. particularly, D101G mutant is the most harmful because it significantly reduces the life expectancy of patients. Subsequently, the use of natural polyphenolic flavonoids is strongly recommended to reduce the amyloidogenic behavior of protopathic proteins. In this study, using computational parameters such as protein-ligand interaction and molecular dynamics (MD) simulation analyses, we are trying to identify a pharmacodynamically promising flavonoid compound that can effectively inhibit the pathogenic behavior of the D101G mutant. Epigallocatechin-gallate (EGCG), Hesperidin, Isorhamnetin, and Diosmetin were identified as potential leads in a preliminary screening of flavonoids to anti-amyloid action. The results of MD showed that the binding of flavonoids to D101G mutant caused changes in stability, hydrophobicity of protein, and flexibility, as well as significantly led to the restoration of lost hydrogen bonds. Secondary structure analysis showed that protein destabilization and the increased propensity of β-sheet caused by the mutation were restored to the wild-type state upon binding of flavonoids. Besides, to differentiate aggregation, we elucidated alterations in the free energy landscape (FEL) and dynamic cross-correlation matrix (DCCM) of WT-SOD1 and mutant (unbound /bound) states. Among flavonoids, Epigallocatechin-gallate and Hesperidin had the most therapeutic efficacy against the D101G mutant. Therefore, Epigallocatechin-gallate and Hesperidin promise considerable therapeutic potential to develop highly effective inhibitors in reducing fatal and irreversible ALS.
Collapse
Affiliation(s)
- Hussein Maitham Qassim
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Salman Ahamady-Asbchin
- Department of Microbiology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
11
|
Chandhok S, Pereira L, Momchilova EA, Marijan D, Zapf R, Lacroix E, Kaur A, Keymanesh S, Krieger C, Audas TE. Stress-mediated aggregation of disease-associated proteins in amyloid bodies. Sci Rep 2023; 13:14471. [PMID: 37660155 PMCID: PMC10475078 DOI: 10.1038/s41598-023-41712-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
The formation of protein aggregates is a hallmark of many neurodegenerative diseases and systemic amyloidoses. These disorders are associated with the fibrillation of a variety of proteins/peptides, which ultimately leads to cell toxicity and tissue damage. Understanding how amyloid aggregation occurs and developing compounds that impair this process is a major challenge in the health science community. Here, we demonstrate that pathogenic proteins associated with Alzheimer's disease, diabetes, AL/AA amyloidosis, and amyotrophic lateral sclerosis can aggregate within stress-inducible physiological amyloid-based structures, termed amyloid bodies (A-bodies). Using a limited collection of small molecule inhibitors, we found that diclofenac could repress amyloid aggregation of the β-amyloid (1-42) in a cellular setting, despite having no effect in the classic Thioflavin T (ThT) in vitro fibrillation assay. Mapping the mechanism of the diclofenac-mediated repression indicated that dysregulation of cyclooxygenases and the prostaglandin synthesis pathway was potentially responsible for this effect. Together, this work suggests that the A-body machinery may be linked to a subset of pathological amyloidosis, and highlights the utility of this model system in the identification of new small molecules that could treat these debilitating diseases.
Collapse
Affiliation(s)
- Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Lionel Pereira
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Evgenia A Momchilova
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Dane Marijan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Richard Zapf
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Avneet Kaur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Shayan Keymanesh
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
12
|
Siwecka N, Saramowicz K, Galita G, Rozpędek-Kamińska W, Majsterek I. Inhibition of Protein Aggregation and Endoplasmic Reticulum Stress as a Targeted Therapy for α-Synucleinopathy. Pharmaceutics 2023; 15:2051. [PMID: 37631265 PMCID: PMC10459316 DOI: 10.3390/pharmaceutics15082051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
α-synuclein (α-syn) is an intrinsically disordered protein abundant in the central nervous system. Physiologically, the protein regulates vesicle trafficking and neurotransmitter release in the presynaptic terminals. Pathologies related to misfolding and aggregation of α-syn are referred to as α-synucleinopathies, and they constitute a frequent cause of neurodegeneration. The most common α-synucleinopathy, Parkinson's disease (PD), is caused by abnormal accumulation of α-syn in the dopaminergic neurons of the midbrain. This results in protein overload, activation of endoplasmic reticulum (ER) stress, and, ultimately, neural cell apoptosis and neurodegeneration. To date, the available treatment options for PD are only symptomatic and rely on dopamine replacement therapy or palliative surgery. As the prevalence of PD has skyrocketed in recent years, there is a pending issue for development of new disease-modifying strategies. These include anti-aggregative agents that target α-syn directly (gene therapy, small molecules and immunization), indirectly (modulators of ER stress, oxidative stress and clearance pathways) or combine both actions (natural compounds). Herein, we provide an overview on the characteristic features of the structure and pathogenic mechanisms of α-syn that could be targeted with novel molecular-based therapies.
Collapse
Affiliation(s)
| | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (N.S.); (K.S.); (G.G.); (W.R.-K.)
| |
Collapse
|
13
|
Merz GE, Chalkley MJ, Tan SK, Tse E, Lee J, Prusiner SB, Paras NA, DeGrado WF, Southworth DR. Stacked binding of a PET ligand to Alzheimer's tau paired helical filaments. Nat Commun 2023; 14:3048. [PMID: 37236970 PMCID: PMC10220082 DOI: 10.1038/s41467-023-38537-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulation of filamentous aggregates of tau protein in the brain is a pathological hallmark of Alzheimer's disease (AD) and many other neurodegenerative tauopathies. The filaments adopt disease-specific cross-β amyloid conformations that self-propagate and are implicated in neuronal loss. Development of molecular diagnostics and therapeutics is of critical importance. However, mechanisms of small molecule binding to the amyloid core is poorly understood. We used cryo-electron microscopy to determine a 2.7 Å structure of AD patient-derived tau paired-helical filaments bound to the PET ligand GTP-1. The compound is bound stoichiometrically at a single site along an exposed cleft of each protofilament in a stacked arrangement matching the fibril symmetry. Multiscale modeling reveals pi-pi aromatic interactions that pair favorably with the small molecule-protein contacts, supporting high specificity and affinity for the AD tau conformation. This binding mode offers critical insight into designing compounds to target different amyloid folds found across neurodegenerative diseases.
Collapse
Affiliation(s)
- Gregory E Merz
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew J Chalkley
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Sophia K Tan
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Joanne Lee
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Nick A Paras
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - William F DeGrado
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Wen JH, He XH, Feng ZS, Li DY, Tang JX, Liu HF. Cellular Protein Aggregates: Formation, Biological Effects, and Ways of Elimination. Int J Mol Sci 2023; 24:ijms24108593. [PMID: 37239937 DOI: 10.3390/ijms24108593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The accumulation of protein aggregates is the hallmark of many neurodegenerative diseases. The dysregulation of protein homeostasis (or proteostasis) caused by acute proteotoxic stresses or chronic expression of mutant proteins can lead to protein aggregation. Protein aggregates can interfere with a variety of cellular biological processes and consume factors essential for maintaining proteostasis, leading to a further imbalance of proteostasis and further accumulation of protein aggregates, creating a vicious cycle that ultimately leads to aging and the progression of age-related neurodegenerative diseases. Over the long course of evolution, eukaryotic cells have evolved a variety of mechanisms to rescue or eliminate aggregated proteins. Here, we will briefly review the composition and causes of protein aggregation in mammalian cells, systematically summarize the role of protein aggregates in the organisms, and further highlight some of the clearance mechanisms of protein aggregates. Finally, we will discuss potential therapeutic strategies that target protein aggregates in the treatment of aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun-Hao Wen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiang-Hong He
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ze-Sen Feng
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dong-Yi Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
15
|
Almeida ZL, Brito RMM. Amyloid Disassembly: What Can We Learn from Chaperones? Biomedicines 2022; 10:3276. [PMID: 36552032 PMCID: PMC9776232 DOI: 10.3390/biomedicines10123276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-β structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.
Collapse
Affiliation(s)
| | - Rui M. M. Brito
- Chemistry Department and Coimbra Chemistry Centre—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
16
|
Seidler PM, Murray KA, Boyer DR, Ge P, Sawaya MR, Hu CJ, Cheng X, Abskharon R, Pan H, DeTure MA, Williams CK, Dickson DW, Vinters HV, Eisenberg DS. Structure-based discovery of small molecules that disaggregate Alzheimer's disease tissue derived tau fibrils in vitro. Nat Commun 2022; 13:5451. [PMID: 36114178 PMCID: PMC9481533 DOI: 10.1038/s41467-022-32951-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the consequence of neuronal death and brain atrophy associated with the aggregation of protein tau into fibrils. Thus disaggregation of tau fibrils could be a therapeutic approach to AD. The small molecule EGCG, abundant in green tea, has long been known to disaggregate tau and other amyloid fibrils, but EGCG has poor drug-like properties, failing to fully penetrate the brain. Here we have cryogenically trapped an intermediate of brain-extracted tau fibrils on the kinetic pathway to EGCG-induced disaggregation and have determined its cryoEM structure. The structure reveals that EGCG molecules stack in polar clefts between the paired helical protofilaments that pathologically define AD. Treating the EGCG binding position as a pharmacophore, we computationally screened thousands of drug-like compounds for compatibility for the pharmacophore, discovering several that experimentally disaggregate brain-derived tau fibrils in vitro. This work suggests the potential of structure-based, small-molecule drug discovery for amyloid diseases.
Collapse
Affiliation(s)
- Paul M Seidler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kevin A Murray
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - David R Boyer
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Peng Ge
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Carolyn J Hu
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Xinyi Cheng
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Romany Abskharon
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Hope Pan
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Los Angeles, CA, USA
| | | | - Christopher K Williams
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - David S Eisenberg
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA.
- UCLA-DOE Institute, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Srinivasan E, Chandrasekhar G, Rajasekaran R. Probing the polyphenolic flavonoid, morin as a highly efficacious inhibitor against amyloid(A4V) mutant SOD1 in fatal amyotrophic lateral sclerosis. Arch Biochem Biophys 2022; 727:109318. [PMID: 35690129 DOI: 10.1016/j.abb.2022.109318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Deposition of misfolded protein aggregates in key areas of human brain is the quintessential trait of various pertinent neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). Genetic point mutations in Cu/Zn superoxide dismutase (SOD1) are found to be the most important contributing factor behind familial ALS. Especially, single nucleotide polymorphism (SNP) A4V is the most nocuous since it substantially decreases life expectancy of patients. Besides, the use of naturally occurring polyphenolic flavonoids is profoundly being advocated for palliating amyloidogenic behavior of proteopathic proteins. In the present analysis, through proficient computational tools, we have attempted to ascertain a pharmacodynamically promising flavonoid compound that effectively curbs the pathogenic behavior of A4V SOD1 mutant. Initial screening of flavonoids that exhibit potency against amyloids identified morin, myricetin and epigallocatechin gallate as promising leads. Further, with the help of feasible and yet adept protein-ligand interaction studies and stalwart molecular simulation analyses, we were able to observe that aforementioned flavonoids were able to considerably divert mutant A4V SOD1 from its distinct pathogenic behavior. Among which, morin showed the most curative potential against A4V SOD1. Therefore, morin holds a great therapeutic potential in contriving highly efficacious inhibitors in mitigating fatal and insuperable ALS.
Collapse
Affiliation(s)
- E Srinivasan
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India; Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - G Chandrasekhar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
18
|
Multifaceted neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) in Alzheimer’s disease: an overview of pre-clinical studies focused on β-amyloid peptide. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. (-)-Epigallocatechin-3-Gallate Diminishes Intra-and Extracellular Amyloid-Induced Cytotoxic Effects on Cholinergic-like Neurons from Familial Alzheimer's Disease PSEN1 E280A. Biomolecules 2021; 11:biom11121845. [PMID: 34944489 PMCID: PMC8699501 DOI: 10.3390/biom11121845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aβ aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for its treatment are in need. The goal of this investigation was to evaluate the effect of the polyphenol epigallocatechin-3-gallate (EGCG) on cholinergic-like neurons (ChLNs) bearing the mutation E280A in PRESENILIN 1 (PSEN1 E280A). To this aim, wild-type (WT) and PSEN1 E280A ChLNs were exposed to EGCG (5–50 μM) for 4 days. Untreated or treated neurons were assessed for biochemical and functional analysis. We found that EGCG (50 μM) significantly inhibited the aggregation of (i)sAPPβf, blocked p-TAU, increased ∆Ψm, decreased oxidation of DJ-1 at residue Cys106-SH, and inhibited the activation of transcription factor c-JUN and P53, PUMA, and CASPASE-3 in mutant ChLNs compared to WT. Although EGCG did not reduce (e)Aβ42, the polyphenol reversed Ca2+ influx dysregulation as a response to acetylcholine (ACh) stimuli in PSEN1 E280A ChLNs, inhibited the activation of transcription factor NF-κB, and reduced the secretion of pro-inflammatory IL-6 in wild-type astrocyte-like cells (ALCs) when exposed to mutant ChLNs culture supernatant. Taken together, our findings suggest that the EGCG might be a promising therapeutic approach for the treatment of FAD.
Collapse
|
20
|
Ziaunys M, Mikalauskaite K, Sakalauskas A, Smirnovas V. Interplay between epigallocatechin-3-gallate and ionic strength during amyloid aggregation. PeerJ 2021; 9:e12381. [PMID: 34733592 PMCID: PMC8544251 DOI: 10.7717/peerj.12381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
The formation and accumulation of protein amyloid aggregates is linked with multiple amyloidoses, including neurodegenerative Alzheimer's or Parkinson's disease. The mechanism of such fibril formation is impacted by various environmental conditions, which greatly complicates the search for potential anti-amyloid compounds. One of these factors is solution ionic strength, which varies between different aggregation protocols during in vitro drug screenings. In this work, we examine the interplay between ionic strength and a well-known protein aggregation inhibitor-epigallocatechin-3-gallate. We show that changes in solution ionic strength have a major impact on the compound's inhibitory effect, reflected in both aggregation times and final fibril structure. We also observe that this effect is unique to different amyloid-forming proteins, such as insulin, alpha-synuclein and amyloid-beta.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kamile Mikalauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
21
|
Dimitriadis SI, Lyssoudis C, Tsolaki AC, Lazarou E, Kozori M, Tsolaki M. Greek High Phenolic Early Harvest Extra Virgin Olive Oil Reduces the Over-Excitation of Information-Flow Based on Dominant Coupling Mode (DoCM) Model in Patients with Mild Cognitive Impairment: An EEG Resting-State Validation Approach. J Alzheimers Dis 2021; 83:191-207. [PMID: 34308906 DOI: 10.3233/jad-210454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Extra virgin olive oil (EVOO) constitutes a natural compound with high protection over cognitive function that could positively alter brain dynamics and the mixture of within and between-frequency connectivity. OBJECTIVE The balance of cross-frequency coupling over within-frequency coupling can build a nonlinearity index (NI) that encapsulates the over-excitation of information flow between brain areas and across experimental time. The present study investigated for the very first time how the Greek High Phenolic Early Harvest Extra Virgin Olive Oil (HP-EH-EVOO) versus Moderate Phenolic (MP-EVOO) and Mediterranean Diet (MeDi) intervention in people with mild cognitive impairment (MCI) could affect their spontaneous EEG dynamic connectivity. METHODS Forty-three subjects (14 in MeDi, 16 in MP-EVOO, and 13 in HP-EH-EVOO) followed an EEG resting-state recording session (eyes-open and closed) before and after the treatment. Following our dominant coupling mode model, we built a dynamic integrated dynamic functional connectivity graph that tabulates the functional strength and the dominant coupling mode model of every pair of brain areas. RESULTS Signal spectrum within 1-13 Hz and theta/beta ratio have decreased in the HP-EH-EVOO group in the eyes-open condition. The intervention improved the FIDoCM across groups and conditions but was more prominent in the HP-EH-EVOO group (p < 0.001). Finally, we revealed a significant higher post-intervention reduction of NI (ΔNITotal and α) for the HP-EH-EVOO compared to the MP-EVOO and MeDi groups (p < 0.0001). CONCLUSION Long-term intervention with HP-EH-EVOO reduced the over-excitation of information flow in spontaneous brain activity and altered the signal spectrum of EEG rhythms.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- 1st Department of Neurology, G.H. "AHEPA, " School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece.,Integrative Neuroimaging Lab, Thessaloniki, Greece.,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, United Kingdom.,Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff, Wales, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, United Kingdom.,School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, United Kingdom.,Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Christos Lyssoudis
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Anthoula C Tsolaki
- 1st Department of Neurology, G.H. "AHEPA, " School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Eftychia Lazarou
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Mahi Kozori
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Magda Tsolaki
- 1st Department of Neurology, G.H. "AHEPA, " School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| |
Collapse
|
22
|
Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct 2021; 11:9370-9396. [PMID: 33094767 DOI: 10.1039/d0fo02054k] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the mechanisms of antibacterial action of green tea catechins, discussing the structure-activity relationship (SAR) studies for each mechanism. The antibacterial activity of green tea catechins results from a variety of mechanisms that can be broadly classified into the following groups: (1) inhibition of virulence factors (toxins and extracellular matrix); (2) cell wall and cell membrane disruption; (3) inhibition of intracellular enzymes; (4) oxidative stress; (5) DNA damage; and (6) iron chelation. These mechanisms operate simultaneously with relative importance differing among bacterial strains. In all SAR studies, the highest antibacterial activity is observed for galloylated compounds (EGCG, ECG, and theaflavin digallate). This observation, combined with numerous experimental and theoretical evidence, suggests that catechins share a common binding mode, characterized by the formation of hydrogen bonds and hydrophobic interactions with their target.
Collapse
Affiliation(s)
- Andrea Renzetti
- Global Education Institute, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | |
Collapse
|
23
|
Tsolaki M, Lazarou E, Kozori M, Petridou N, Tabakis I, Lazarou I, Karakota M, Saoulidis I, Melliou E, Magiatis P. A Randomized Clinical Trial of Greek High Phenolic Early Harvest Extra Virgin Olive Oil in Mild Cognitive Impairment: The MICOIL Pilot Study. J Alzheimers Dis 2021; 78:801-817. [PMID: 33044178 DOI: 10.3233/jad-200405] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Extra virgin olive oil (EVOO) constitutes a natural compound with high protection over cognitive function. OBJECTIVE To investigate for the first time the effect of Greek High Phenolic Early Harvest Extra Virgin Olive Oil (HP-EH-EVOO) versus Moderate Phenolic (MP-EVOO) and Mediterranean Diet (MeDi) in people with mild cognitive impairment (MCI). METHODS We conducted a randomized prospective study so as to examine the HP-EH-EVOO and MP-EVOO versus MeDi in MCI. Genetic predisposition (APOEɛ4) to Alzheimer's disease (AD) was tested and an extensive neuropsychological battery was administered at baseline and after 12 months. Each participant was randomized and assigned one of three groups: 1) Group 1 received the HP-EH-EVOO (50 mL/day); 2) Group 2 received the MP-EVOO (50 mL/day), and 3) Group 3 received only the MeDi instructions. RESULTS Better follow-up performance was found in Group 1 compared to Group 2 and Group 3 in the almost all cognitive domains. Moreover, Group 2 showed also significant improvement compared to Group 3 in ADAS-cog (p = 0.001) and MMSE (p = 0.05), whereas Group 3 exhibited worse or similar to baseline performance in almost all domains. In particular, Group 1 and Group 2 had better outcomes with regards to ADAS-cog (p = 0.003), Digit Span (p = 0.006), and Letter fluency (p = 0.003). Moreover, there was a significant difference (p = 0.001) in the presence of APOEɛ4 between the Groups 1 and 2 versus Group 3. CONCLUSION Long-term intervention with HP-EH-EVOO or MP-EVOO was associated with significant improvement in cognitive function compared to MeDi, independent of the presence of APOEɛ4.
Collapse
Affiliation(s)
- Magda Tsolaki
- Department of Neurology General University Hopsital "AHEPA", Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Eftychia Lazarou
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Mahi Kozori
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Niki Petridou
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Irene Tabakis
- Department of Neurology General University Hopsital "AHEPA", Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Ioulietta Lazarou
- Department of Neurology General University Hopsital "AHEPA", Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Maria Karakota
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Iordanis Saoulidis
- Department of Neurology General University Hopsital "AHEPA", Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Eleni Melliou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Prokopios Magiatis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| |
Collapse
|
24
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
25
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
26
|
Pagano K, Tomaselli S, Molinari H, Ragona L. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Front Neurosci 2020; 14:619667. [PMID: 33414705 PMCID: PMC7783407 DOI: 10.3389/fnins.2020.619667] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, with no cure and preventive therapy. Misfolding and extracellular aggregation of Amyloid-β (Aβ) peptides are recognized as the main cause of AD progression, leading to the formation of toxic Aβ oligomers and to the deposition of β-amyloid plaques in the brain, representing the hallmarks of AD. Given the urgent need to provide alternative therapies, natural products serve as vital resources for novel drugs. In recent years, several natural compounds with different chemical structures, such as polyphenols, alkaloids, terpenes, flavonoids, tannins, saponins and vitamins from plants have received attention for their role against the neurodegenerative pathological processes. However, only for a small subset of them experimental evidences are provided on their mechanism of action. This review focuses on those natural compounds shown to interfere with Aβ aggregation by direct interaction with Aβ peptide and whose inhibitory mechanism has been investigated by means of biophysical and structural biology experimental approaches. In few cases, the combination of approaches offering a macroscopic characterization of the oligomers, such as TEM, AFM, fluorescence, together with high-resolution methods could shed light on the complex mechanism of inhibition. In particular, solution NMR spectroscopy, through peptide-based and ligand-based observation, was successfully employed to investigate the interactions of the natural compounds with both soluble NMR-visible (monomer and low molecular weight oligomers) and NMR-invisible (high molecular weight oligomers and protofibrils) species. The molecular determinants of the interaction of promising natural compounds are here compared to infer the chemical requirements of the inhibitors and the common mechanisms of inhibition. Most of the data converge to indicate that the Aβ regions relevant to perturb the aggregation cascade and regulate the toxicity of the stabilized oligomers, are the N-term and β1 region. The ability of the natural aggregation inhibitors to cross the brain blood barrier, together with the tactics to improve their low bioavailability are discussed. The analysis of the data ensemble can provide a rationale for the selection of natural compounds as molecular scaffolds for the design of new therapeutic strategies against the progression of early and late stages of AD.
Collapse
Affiliation(s)
- Katiuscia Pagano
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Simona Tomaselli
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Henriette Molinari
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| |
Collapse
|
27
|
Quercetin Disaggregates Prion Fibrils and Decreases Fibril-Induced Cytotoxicity and Oxidative Stress. Pharmaceutics 2020; 12:pharmaceutics12111081. [PMID: 33187342 PMCID: PMC7696844 DOI: 10.3390/pharmaceutics12111081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases caused by misfolding and aggregation of prion protein (PrP). Previous studies have demonstrated that quercetin can disaggregate some amyloid fibrils, such as amyloid β peptide (Aβ) and α-synuclein. However, the disaggregating ability is unclear in PrP fibrils. In this study, we examined the amyloid fibril-disaggregating activity of quercetin on mouse prion protein (moPrP) and characterized quercetin-bound moPrP fibrils by imaging, proteinase resistance, hemolysis assay, cell viability, and cellular oxidative stress measurements. The results showed that quercetin treatment can disaggregate moPrP fibrils and lead to the formation of the proteinase-sensitive amorphous aggregates. Furthermore, quercetin-bound fibrils can reduce the membrane disruption of erythrocytes. Consequently, quercetin-bound fibrils cause less oxidative stress, and are less cytotoxic to neuroblastoma cells. The role of quercetin is distinct from the typical function of antiamyloidogenic drugs that inhibit the formation of amyloid fibrils. This study provides a solution for the development of antiamyloidogenic therapy.
Collapse
|
28
|
Henríquez G, Gomez A, Guerrero E, Narayan M. Potential Role of Natural Polyphenols against Protein Aggregation Toxicity: In Vitro, In Vivo, and Clinical Studies. ACS Chem Neurosci 2020; 11:2915-2934. [PMID: 32822152 DOI: 10.1021/acschemneuro.0c00381] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the main features of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease is the amyloidogenic behavior of disease-specific proteins including amyloid β, tau, α-synuclein, and mutant Huntingtin which participate in the formation, accumulation, and deposition of toxic misfolded aggregates. Consequently, these proteins not only associated with the progress of their respective neurodegenerative pathologies but also qualify as disease-specific biomarkers. The aim of using natural polyphenols is to target amyloid-dependent proteopathies by decreasing free radical damage and inhibiting and dissolving amyloid fibrils. We explore the effectiveness of the polyphenols epigallocatechin-3-gallate, oleuropein aglycone, and quercetin on their ability to inhibit aggregation of amyloid β, tau, and α-synuclein and mitigate other pathological features for Alzheimer's disease and Parkinson's disease. The analysis was carried from in vitro and cell line studies to animal models and clinical trials. This Review describes the use of phytochemical compounds as prophylactic agents for Alzheimer's disease, Parkinson's disease, and other proteopathies.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Alejandra Gomez
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Erick Guerrero
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
29
|
Wu MH, Chan AC, Tu LH. Role of lysine residue of islet amyloid polypeptide in fibril formation, membrane binding, and inhibitor binding. Biochimie 2020; 177:153-163. [PMID: 32860895 DOI: 10.1016/j.biochi.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
The aggregation of islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of type 2 diabetes (T2D). In T2D, this peptide aggregates to form amyloid fibrils; the mechanism responsible for islet amyloid formation is unclear. However, it is known that the aggregation propensity of IAPP is highly related to its primary sequence. Several residues have been suggested to be critical in modulating IAPP amyloid formation, but role of the sole lysine residue at position 1 (Lys-1) in IAPP has not been discussed. In our previous study, we found that glycated IAPP can form amyloid faster than normal IAPP and induce normal IAPP to expedite the aggregation process. To gain more insight into the contribution of Lys-1 in the kinetics of fibril formation, we synthesized another two IAPP variants, K1E-IAPP and K1Nle-IAPP, in which the Lys residue was mutated to glutamate and norleucine, respectively. Interestingly, we observed that the negative or neutral charged side chain at this position was preferred for amyloid formation. The findings suggested this residue may take part in the inter- or intra-molecular interaction during IAPP aggregation, even though it was proposed not to be in part of fibril core structure. Our data also revealed that the inhibitory mechanism of some inhibitors for IAPP aggregation require reaction with Lys-1. Modifications of Lys-1, such as protein glycation, may affect the effectiveness of the inhibitory action of some potential drugs in the treatment of amyloidosis.
Collapse
Affiliation(s)
- Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Ai-Ci Chan
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
30
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
31
|
Martinez Pomier K, Ahmed R, Melacini G. Catechins as Tools to Understand the Molecular Basis of Neurodegeneration. Molecules 2020; 25:E3571. [PMID: 32781559 PMCID: PMC7465241 DOI: 10.3390/molecules25163571] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding as well as the subsequent self-association and deposition of amyloid aggregates is implicated in the progression of several neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Modulators of amyloidogenic aggregation serve as essential tools to dissect the underlying molecular mechanisms and may offer insight on potential therapeutic solutions. These modulators include green tea catechins, which are potent inhibitors of amyloid aggregation. Although catechins often exhibit poor pharmacokinetic properties and bioavailability, they are still essential tools for identifying the drivers of amyloid aggregation and for developing other aggregation modulators through structural mimicry. As an illustration of such strategies, here we review how catechins have been used to map the toxic surfaces of oligomeric amyloid-like species and develop catechin-based phenolic compounds with enhanced anti-amyloid activity.
Collapse
Affiliation(s)
- Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada;
| |
Collapse
|
32
|
Leri M, Vasarri M, Palazzi L, Barletta E, Nielsen E, Bucciantini M, Degl'Innocenti D. Maysin plays a protective role against α-Synuclein oligomers cytotoxicity by triggering autophagy activation. Food Chem Toxicol 2020; 144:111626. [PMID: 32738375 DOI: 10.1016/j.fct.2020.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder characterized by the progressive loss of neurons. The accumulation of aggregated forms of the α-Synuclein (Syn) protein is the main cause of neurotoxicity in PD by disrupting cellular homeostasis until neuronal death. Scientific research is constantly looking for natural products as preventive agents against the progression of several neurodisorders due their safety and non-toxic nature. Neuroprotective phytochemicals include Maysin (Mys), the most abundant C-glycosilflavone in corn silk. In this work, the Mys protective role against damage by Syn amyloid aggregates - oligomers and fibrils - was investigated in SH-SY5Y human neuroblastoma cells obtaining novel and interesting information concerning the Mys molecular mechanism of action. Mys showed effectiveness in preventing the typical toxic events induced by Syn amyloid aggregates, i.e. oxidative stress and imbalance of intracellular calcium homeostasis. Mys exhibited a cytoprotective role, especially against Syn oligomers injury, activating an autophagic degradative process, thus playing a key role on several features of amyloid neurotoxicity. Therefore, Mys could be proposed for the first time to the scientific community as an interesting novel natural compound that might allow to develop alternative strategies to prevent the damage of Syn oligomers involved in Parkinson's disease.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Luana Palazzi
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padua, via F. Marzolo 5, 35131, Padua, Italy.
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Erik Nielsen
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Donatella Degl'Innocenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
33
|
Sonawane SK, Chidambaram H, Boral D, Gorantla NV, Balmik AA, Dangi A, Ramasamy S, Marelli UK, Chinnathambi S. EGCG impedes human Tau aggregation and interacts with Tau. Sci Rep 2020; 10:12579. [PMID: 32724104 PMCID: PMC7387440 DOI: 10.1038/s41598-020-69429-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tau aggregation and accumulation is a key event in the pathogenesis of Alzheimer’s disease. Inhibition of Tau aggregation is therefore a potential therapeutic strategy to ameliorate the disease. Phytochemicals are being highlighted as potential aggregation inhibitors. Epigallocatechin-3-gallate (EGCG) is an active phytochemical of green tea that has shown its potency against various diseases including aggregation inhibition of repeat Tau. The potency of EGCG in altering the PHF assembly of full-length human Tau has not been fully explored. By various biophysical and biochemical analyses like ThS fluorescence assay, MALDI-TOF analysis and Isothermal Titration Calorimetry, we demonstrate dual effect of EGCG on aggregation inhibition and disassembly of full-length Tau and their binding affinity. The IC50 for Tau aggregation by EGCG was found to be 64.2 μM.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Debjyoti Boral
- Structural Biology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Abhishek Ankur Balmik
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Abha Dangi
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Sureshkumar Ramasamy
- Structural Biology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Udaya Kiran Marelli
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
34
|
Malik R, Corrales C, Linsenmeier M, Alalami H, Sepanj N, Bitan G. Examination of SOD1 aggregation modulators and their effect on SOD1 enzymatic activity as a proxy for potential toxicity. FASEB J 2020; 34:11957-11969. [PMID: 32701214 DOI: 10.1096/fj.202000948r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
Abstract
Small-molecule inhibitors of abnormal protein self-assembly are promising candidates for developing therapy against proteinopathies. Such compounds have been examined primarily as inhibitors of amyloid β-protein (Aβ), whereas testing of inhibitors of other amyloidogenic proteins has lagged behind. An important issue with screening compound libraries is that although an inhibitor suitable for therapy must be both effective and nontoxic, typical screening focuses on efficacy, whereas safety typically is tested at a later stage using cells and/or animals. In addition, typical thioflavin T (ThT)-fluorescence-based screens use the final fluorescence value as a readout, potentially missing important kinetic information. Here, we examined potential inhibitors of superoxide dismutase 1 (SOD1) using ThT-fluorescence including the different phases of fluorescence change and added a parallel screen of SOD1 activity as a potential proxy for compound toxicity. Some compounds previously reported to inhibit other amyloidogenic proteins also inhibited SOD1 aggregation at low micromolar concentrations, whereas others were ineffective. Analysis of the lag phase and exponential slope added important information that could help exclude false-positive or false-negative results. SOD1 was highly resistant to inhibition of its activity, and therefore, did not have the necessary sensitivity to serve as a proxy for examining potential toxicity.
Collapse
Affiliation(s)
- Ravinder Malik
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - Christian Corrales
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - Miriam Linsenmeier
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - Huda Alalami
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - Niki Sepanj
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
35
|
Micale N, Citarella A, Molonia MS, Speciale A, Cimino F, Saija A, Cristani M. Hydrogels for the Delivery of Plant-Derived (Poly)Phenols. Molecules 2020; 25:E3254. [PMID: 32708833 PMCID: PMC7397257 DOI: 10.3390/molecules25143254] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
This review deals with hydrogels as soft and biocompatible vehicles for the delivery of plant-derived (poly)phenols, compounds with low general toxicity and an extraordinary and partially unexplored wide range of biological properties, whose use presents some major issues due to their poor bioavailability and water solubility. Hydrogels are composed of polymeric networks which are able to absorb large amounts of water or biological fluids while retaining their three-dimensional structure. Apart from this primary swelling capacity, hydrogels may be easily tailored in their properties according to the chemical structure of the polymeric component in order to obtain smart delivery systems that can be responsive to various internal/external stimuli. The functionalization of the polymeric component of hydrogels may also be widely exploited to facilitate the incorporation of bioactive compounds with different physicochemical properties into the system. Several prototype hydrogel systems have been designed for effective polyphenol delivery and potential employment in the treatment of human diseases. Therefore, the inherent features of hydrogels have been the focus of considerable research efforts over the past few decades. Herein, we review the most recent advances in (poly)phenol-loaded hydrogels by analyzing them primarily from the therapeutic perspective and highlighting the innovative aspects in terms of design and chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.M.); (A.C.); (M.S.M.); (A.S.); (F.C.); (M.C.)
| | | |
Collapse
|
36
|
Fernandes L, Messias B, Pereira-Neves A, Azevedo EP, Araújo J, Foguel D, Palhano FL. Green Tea Polyphenol Microparticles Based on the Oxidative Coupling of EGCG Inhibit Amyloid Aggregation/Cytotoxicity and Serve as a Platform for Drug Delivery. ACS Biomater Sci Eng 2020; 6:4414-4423. [PMID: 33455167 DOI: 10.1021/acsbiomaterials.0c00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of cross-β-sheet amyloid fibrils is a hallmark of all human amyloid diseases. The compound epigallocatechin-3-gallate (EGCG), the main polyphenol present in green tea, has been described to have beneficial effects in several pathologies, including amyloidogenic diseases. This polyphenol blocks amyloidogenesis and disaggregates a broad range of amyloidogenic peptides comprising amyloid fibrils in vitro. The mechanism by which EGCG acts in the context of amyloid aggregation is not clear. Most of the biological effects of EGCG are attributable to its antioxidant activity. However, EGCG-oxidized products appear to be sufficient for the majority of EGCG amyloid remodeling observed against some polypeptides. If controlled, EGCG oxidation can afford homogenous microparticles (MPs) and can serve as drug delivery agents. Herein, we produced EGCG MPs by oxidative coupling and analyzed their activity during the aggregation of the protein α-synuclein (α-syn), the main protein related to Parkinson's disease. The MPs modestly remodeled mature amyloid fibrils and efficiently inhibited the amyloidogenic aggregation of α-syn. The MPs showed low cytotoxicity against both dopaminergic cells and microglial cells. The MPs reduced the cytotoxic effects of α-syn oligomers. Interestingly, the MPs were loaded with another antiamyloidogenic compound, increasing their activity against amyloid aggregation. We propose the use of EGCG MPs as a bifunctional strategy, blocking amyloid aggregation directly and carrying a molecule that can act synergistically to alleviate the symptoms caused by the amyloidogenic pathway.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Beatriz Messias
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Antonio Pereira-Neves
- Fiocruz Pernambuco, Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Pernambuco 50740-465, Brazil
| | - Estefania P Azevedo
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Júlia Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| |
Collapse
|
37
|
Dawn A, Deep S. Thinking beyond tradition: Polyphenols as effective refolding modulators. Int J Biol Macromol 2020; 148:969-978. [PMID: 31945435 DOI: 10.1016/j.ijbiomac.2020.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/30/2022]
Abstract
Despite polyphenols having had proven roles as amyloid alleviators their service has rarely been made use of in protein refolding/renaturation thus far, where aggregation can be a major competing pathway. TGFβ3, expressed in inclusion bodies, is a classical example of a protein prone to high rate of aggregation severely limiting its refolding yield owing to its large cysteine content and structural complexity. Here, we have used various polyphenols (EGCG, baicalein, myricetin) either alone or in combination with the pseudo-chaperone beta cyclodextrin, in the refolding buffer. With the help of non-reducing SDS PAGE and size exclusion chromatography, we showed that refolding in the presence of baicalein or EGCG along with βCD indeed increase the yield of the native protein in a time dependent manner. EGCG expedites the refolding process giving a maximum increase of the refolding yield within 24 h while baicalein takes as long as 48 h for the same. The mechanism of mode of actions of polyphenols during refolding was further delineated by ITC. The effect of polyphenols on the aggregation kinetics and stability of native TGFβ3 were also explored. Thus these small molecules provide a promising alternate route in increasing the yield of aggregation prone proteins during refolding.
Collapse
Affiliation(s)
- Amrita Dawn
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
38
|
Marcinko TM, Drews T, Liu T, Vachet RW. Epigallocatechin-3-gallate Inhibits Cu(II)-Induced β-2-Microglobulin Amyloid Formation by Binding to the Edge of Its β-Sheets. Biochemistry 2020; 59:1093-1103. [PMID: 32100530 DOI: 10.1021/acs.biochem.0c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is a catechin found in green tea that can inhibit the amyloid formation of a wide variety of proteins. EGCG's ability to prevent or redirect the amyloid formation of so many proteins may reflect a common mechanism of action, and thus, greater molecular-level insight into how it exerts its effect could have broad implications. Here, we investigate the molecular details of EGCG's inhibition of the protein β-2-microglobulin (β2m), which forms amyloids in patients undergoing long-term dialysis treatment. Using size-exclusion chromatography and a collection of mass spectrometry-based techniques, we find that EGCG prevents Cu(II)-induced β2m amyloid formation by diverting the normal progression of preamyloid oligomers toward the formation of spherical, redissolvable aggregates. EGCG exerts its effect by binding with a micromolar affinity (Kd ≈ 5 μM) to the β2m monomer on the edge of two β-sheets near the N-terminus. This interaction destabilizes the preamyloid dimer and prevents the formation of a tetramer species previously shown to be essential for Cu(II)-induced β2m amyloid formation. EGCG's binding at the edge of the β-sheets in β2m is consistent with a previous hypothesis that EGCG generally prevents amyloid formation by binding cross-β-sheet aggregation intermediates.
Collapse
Affiliation(s)
- Tyler M Marcinko
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Thomas Drews
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
39
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
40
|
The Environment Is a Key Factor in Determining the Anti-Amyloid Efficacy of EGCG. Biomolecules 2019; 9:biom9120855. [PMID: 31835741 PMCID: PMC6995563 DOI: 10.3390/biom9120855] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Millions of people around the world suffer from amyloid-related disorders, including Alzheimer's and Parkinson's diseases. Despite significant and sustained efforts, there are still no disease-modifying drugs available for the majority of amyloid-related disorders, and the overall failure rate in clinical trials is very high, even for compounds that show promising anti-amyloid activity in vitro. In this study, we demonstrate that even small changes in the chemical environment can strongly modulate the inhibitory effects of anti-amyloid compounds. Using one of the best-established amyloid inhibitory compounds, epigallocatechin-3-gallate (EGCG), as an example, and two amyloid-forming proteins, insulin and Parkinson's disease-related α -synuclein, we shed light on the previously unexplored sensitivity to solution conditions of the action of this compound on amyloid fibril formation. In the case of insulin, we show that the classification of EGCG as an amyloid inhibitor depends on the experimental conditions select, on the method used for the evaluation of the efficacy, and on whether or not EGCG is allowed to oxidise before the experiment. For α -synuclein, we show that a small change in pH value, from 7 to 6, transforms EGCG from an efficient inhibitor to completely ineffective, and we were able to explain this behaviour by the increased stability of EGCG against oxidation at pH 6.
Collapse
|
41
|
Janitschke D, Nelke C, Lauer AA, Regner L, Winkler J, Thiel A, Grimm HS, Hartmann T, Grimm MOW. Effect of Caffeine and Other Methylxanthines on Aβ-Homeostasis in SH-SY5Y Cells. Biomolecules 2019; 9:E689. [PMID: 31684105 PMCID: PMC6920871 DOI: 10.3390/biom9110689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Methylxanthines (MTX) are alkaloids derived from the purine-base xanthine. Whereas especially caffeine, the most prominent known MTX, has been formerly assessed to be detrimental, this point of view has changed substantially. MTXs are discussed to have beneficial properties in neurodegenerative diseases, however, the mechanisms of action are not completely understood. Here we investigate the effect of the naturally occurring caffeine, theobromine and theophylline and the synthetic propentofylline and pentoxifylline on processes involved in Alzheimer's disease (AD). All MTXs decreased amyloid-β (Aβ) level by shifting the amyloid precursor protein (APP) processing from the Aβ-producing amyloidogenic to the non-amyloidogenic pathway. The α-secretase activity was elevated whereas β-secretase activity was decreased. Breaking down the molecular mechanism, caffeine increased protein stability of the major α-secretase ADAM10, downregulated BACE1 expression and directly decreased β-secretase activity. Additionally, APP expression was reduced. In line with literature, MTXs reduced oxidative stress, decreased cholesterol and a decreased in Aβ1-42 aggregation. In conclusion, all MTXs act via the pleiotropic mechanism resulting in decreased Aβ and show beneficial properties with respect to AD in neuroblastoma cells. However, the observed effect strength was moderate, suggesting that MTXs should be integrated in a healthy diet rather than be used exclusively to treat or prevent AD.
Collapse
Affiliation(s)
- Daniel Janitschke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Christopher Nelke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Liesa Regner
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Andrea Thiel
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| |
Collapse
|
42
|
Dong C, Garen CR, Mercier P, Petersen NO, Woodside MT. Characterizing the inhibition of α-synuclein oligomerization by a pharmacological chaperone that prevents prion formation by the protein PrP. Protein Sci 2019; 28:1690-1702. [PMID: 31306510 DOI: 10.1002/pro.3684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Aggregation of the disordered protein α-synuclein into amyloid fibrils is a central feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease. Small, pre-fibrillar oligomers of misfolded α-synuclein are thought to be the key toxic entities, and α-synuclein misfolding can propagate in a prion-like way. We explored whether a compound with anti-prion activity that can bind to unfolded parts of the protein PrP, the cyclic tetrapyrrole Fe-TMPyP, was also active against α-synuclein aggregation. Observing the initial stages of aggregation via fluorescence cross-correlation spectroscopy, we found that Fe-TMPyP inhibited small oligomer formation in a dose-dependent manner. Fe-TMPyP also inhibited the formation of mature amyloid fibrils in vitro, as detected by thioflavin T fluorescence. Isothermal titration calorimetry indicated Fe-TMPyP bound to monomeric α-synuclein with a stoichiometry of 2, and two-dimensional heteronuclear single quantum coherence NMR spectra revealed significant interactions between Fe-TMPyP and the C-terminus of the protein. These results suggest commonalities among aggregation mechanisms for α-synuclein and the prion protein may exist that can be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Chunhua Dong
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Pascal Mercier
- National High Field Nuclear Magnetic Resonance Centre (NANUC), Edmonton, Alberta, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
43
|
Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int J Mol Sci 2019; 20:ijms20102451. [PMID: 31108962 PMCID: PMC6566187 DOI: 10.3390/ijms20102451] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
In aging and neurodegenerative diseases, loss of distinct type of neurons characterizes disease-specific pathological and clinical features, and mitochondria play a pivotal role in neuronal survival and death. Mitochondria are now considered as the organelle to modulate cellular signal pathways and functions, not only to produce energy and reactive oxygen species. Oxidative stress, deficit of neurotrophic factors, and multiple other factors impair mitochondrial function and induce cell death. Multi-functional plant polyphenols, major groups of phytochemicals, are proposed as one of most promising mitochondria-targeting medicine to preserve the activity and structure of mitochondria and neurons. Polyphenols can scavenge reactive oxygen and nitrogen species and activate redox-responsible transcription factors to regulate expression of genes, coding antioxidants, anti-apoptotic Bcl-2 protein family, and pro-survival neurotrophic factors. In mitochondria, polyphenols can directly regulate the mitochondrial apoptosis system either in preventing or promoting way. Polyphenols also modulate mitochondrial biogenesis, dynamics (fission and fusion), and autophagic degradation to keep the quality and number. This review presents the role of polyphenols in regulation of mitochondrial redox state, death signal system, and homeostasis. The dualistic redox properties of polyphenols are associated with controversial regulation of mitochondrial apoptosis system involved in the neuroprotective and anti-carcinogenic functions. Mitochondria-targeted phytochemical derivatives were synthesized based on the phenolic structure to develop a novel series of neuroprotective and anticancer compounds, which promote the bioavailability and effectiveness. Phytochemicals have shown the multiple beneficial effects in mitochondria, but further investigation is required for the clinical application.
Collapse
|
44
|
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson's Disease Models. Front Pharmacol 2019; 9:1555. [PMID: 30941047 PMCID: PMC6433754 DOI: 10.3389/fphar.2018.01555] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (α-syn) is a presynaptic protein that regulates the release of neurotransmitters from synaptic vesicles in the brain. α-Syn aggregates, including Lewy bodies, are features of both sporadic and familial forms of Parkinson's disease (PD). These aggregates undergo several key stages of fibrillation, oligomerization, and aggregation. Therapeutic benefits of drugs decline with disease progression and offer only symptomatic treatment. Novel therapeutic strategies are required which can either prevent or delay the progression of the disease. The link between α-syn and the etiopathogenesis and progression of PD are well-established in the literature. Studies indicate that α-syn is an important therapeutic target and inhibition of α-syn aggregation, oligomerization, and fibrillation are an important disease modification strategy. However, recent studies have shown that plant extracts and phytochemicals have neuroprotective effects on α-syn oligomerization and fibrillation by targeting different key stages of its formation. Although many reviews on the antioxidant-mediated, neuroprotective effect of plant extracts and phytochemicals on PD symptoms have been well-highlighted, the antioxidant mechanisms show limited success for translation to clinical studies. The identification of specific plant extracts and phytochemicals that target α-syn aggregation will provide selective molecules to develop new drugs for PD. The present review provides an overview of plant extracts and phytochemicals that target α-syn in PD and summarizes the observed effects and the underlying mechanisms. Furthermore, we provide a synopsis of current experimental models and techniques used to evaluate plant extracts and phytochemicals. Plant extracts and phytochemicals were found to inhibit the aggregation or fibril formation of oligomers. These also appear to direct α-syn oligomer formation into its unstructured form or promote non-toxic pathways and suggested to be valuable drug candidates for PD and related synucleinopathy. Current evidences from in vitro studies require confirmation in the in vivo studies. Further studies are needed to ascertain their potential effects and safety in preclinical studies for pharmaceutical/nutritional development of these phytochemicals or dietary inclusion of the plant extracts in PD treatment.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Kumar Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
45
|
Puscalau-Girtu I, Scheller JS, Claus S, Fändrich M. Cell assay for the identification of amyloid inhibitors in systemic AA amyloidosis. Amyloid 2019; 26:24-33. [PMID: 30739503 DOI: 10.1080/13506129.2019.1568978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Systemic AA amyloidosis is still, up to this day, a life-threatening complication of chronic inflammatory diseases. Despite the success of anti-inflammatory treatment, the prognosis of some AA patients is still poor, which is why therapies directed at the amyloidogenic pathway in AA amyloidosis are being sought after. The cell culture model of amyloid formation from serum amyloid A1 (SAA1) protein remodels crucial features of AA amyloid deposit formation in vivo. We here demonstrate how the cell model can be utilized for the identification of compounds with amyloid inhibitory activity. Out of five compounds previously reported to inhibit self-assembly of various amyloidogenic proteins, we found that epigallocatechin gallate (EGCG) inhibited the formation of SAA1-derived fibrils in cell culture. From a series of compounds targeting the protein quality control machinery, the autophagy inhibitor wortmannin reduced amyloid formation, while the other tested compounds did not lead to a substantial reduction of the amyloid load. These data suggest that amyloid formation can be targeted not only via the protein self-assembly pathway directly, but also by treatment with compounds that impact the cellular protein machinery.
Collapse
Affiliation(s)
| | | | - Stephanie Claus
- a Institute of Protein Biochemistry, Ulm University , Ulm , Germany
| | - Marcus Fändrich
- a Institute of Protein Biochemistry, Ulm University , Ulm , Germany
| |
Collapse
|
46
|
Lee YH, Lin Y, Cox SJ, Kinoshita M, Sahoo BR, Ivanova M, Ramamoorthy A. Zinc boosts EGCG's hIAPP amyloid Inhibition both in solution and membrane. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:529-536. [PMID: 30468883 DOI: 10.1016/j.bbapap.2018.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Amyloid aggregation of human islet amyloid polypeptide (hIAPP) is linked to insulin-producing islet cell death in type II diabetes. Previous studies have shown that zinc (Zn(II)) and insulin, co-secreted with hIAPP, have an inhibition effect on hIAPP aggregation. Lipid membranes have also been shown to significantly influence the aggregation kinetics of hIAPP. An increasing number of studies report the importance of developing small molecule inhibitors to suppress the hIAPP's aggregation and subsequent toxicity. The ability of epigallocatechin-gallate (EGCG) to inhibit aggregation of a variety of amyloid peptide/proteins initiated numerous studies as well as the development of derivative compounds to potentially treat amyloid diseases. In this study, a combination of Thioflavin-T fluorescence kinetics, transmission electron microscopy, isothermal titration calorimetery, circular dicrosim and nucelar magnetic resonance experiments were used to demonstrate a significant enhancement in EGCG's efficiency when complexed with Zn(II). We demonstrate that the Zn-EGCG complex is able to significantly suppress hIAPP's amyloid aggregation both in presence and absence of lipid membrane. Circular dichroism experiments indicate the formation and stabilization of a helical structure of hIAPP in presence of the EGCG:Zn(II) complex. Our results also reveal the ability of EGCG or EGCG:Zn(II) to efficiently suppress hIAPP's cellular toxicity. We believe that the reported results could be useful to develop strategies to trap hIAPP intermediates for further biophysical and structural studies, and also to devise approaches to abolish amyloid aggregation and cellular toxicity.
Collapse
Affiliation(s)
- Young-Ho Lee
- Institute for Protein research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan; Protein Structure Research Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Chungcheongbuk-do 28119, South Korea
| | - Yuxi Lin
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea
| | - Sarah J Cox
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Misaki Kinoshita
- Institute for Protein research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Magdalena Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
47
|
Du X, Yu J, Sun X, Qu S, Zhang H, Hu M, Yang S, Zhou P. Impact of epigallocatechin‑3‑gallate on expression of nuclear factor erythroid 2‑related factor 2 and γ‑glutamyl cysteine synthetase genes in oxidative stress‑induced mouse renal tubular epithelial cells. Mol Med Rep 2018; 17:7952-7958. [PMID: 29620178 DOI: 10.3892/mmr.2018.8798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the antioxidant response mechanism of epigallocatechin‑3‑gallate (EGCG) in H2O2‑induced mouse renal tubular epithelial cells (MRTECs). The cultured MRTECs were divided into normal, H2O2 (control) and EGCG treatment groups. The MTT assay was used to assess cell viability, and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), immunocytochemical and western blot analyses were performed to detect the expression of nuclear factor erythroid 2‑related factor 2 (Nrf2) and γ‑glutamyl cysteine synthetase (γ‑GCS). EGCG was able to mitigate H2O2‑mediated cell damage. The RT‑qPCR results demonstrated that EGCG was able to upregulate the gene expression of Nrf2 and γ‑GCS in MRTECs in a dose‑dependent manner. The immunocytochemistry and western blot analyses demonstrated that EGCG was able to increase the protein expression of Nrf2 and γ‑GCS in MRTECs in a dose‑dependent manner. Oxidative stress may lead to a decrease in the viability of MRTECs, while EGCG was able to promote the expression of Nrf2 and γ‑GCS in MRTECs, thereby improving the antioxidant capacity of the cells and promoting the repair of oxidative stress injury.
Collapse
Affiliation(s)
- Xuanyi Du
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinfeng Yu
- Department of Pediatrics, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaohan Sun
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shaochuan Qu
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haitao Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mengying Hu
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shufen Yang
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ping Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
48
|
Abstract
Several studies have indicated that certain misfolded amyloids composed of tau, β-amyloid or α-synuclein can be transferred from cell to cell, suggesting the contribution of mechanisms reminiscent of those by which infective prions spread through the brain. This process of a 'prion-like' spreading between cells is also relevant as a novel putative therapeutic target that could block the spreading of proteinaceous aggregates throughout the brain which may underlie the progressive nature of neurodegenerative diseases. The relevance of β-amyloid oligomers and cellular prion protein (PrPC) binding has been a focus of interest in Alzheimer's disease (AD). At the molecular level, β-amyloid/PrPC interaction takes place in two differently charged clusters of PrPC. In addition to β-amyloid, participation of PrPC in α-synuclein binding and brain spreading also appears to be relevant in α-synucleopathies. This review summarizes current knowledge about PrPC as a putative receptor for amyloid proteins and the physiological consequences of these interactions.
Collapse
Affiliation(s)
- José A Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain; Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Visentin C, Pellistri F, Natalello A, Vertemara J, Bonanomi M, Gatta E, Penco A, Relini A, De Gioia L, Airoldi C, Regonesi ME, Tortora P. Epigallocatechin-3-gallate and related phenol compounds redirect the amyloidogenic aggregation pathway of ataxin-3 towards non-toxic aggregates and prevent toxicity in neural cells and Caenorhabditis elegans animal model. Hum Mol Genet 2018. [PMID: 28633380 DOI: 10.1093/hmg/ddx211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protein ataxin-3 (ATX3) triggers an amyloid-related neurodegenerative disease when its polyglutamine stretch is expanded beyond a critical threshold. We formerly demonstrated that the polyphenol epigallocatechin-3-gallate (EGCG) could redirect amyloid aggregation of a full-length, expanded ATX3 (ATX3-Q55) towards non-toxic, soluble, SDS-resistant aggregates. Here, we have characterized other related phenol compounds, although smaller in size, i.e. (-)-epigallocatechin gallate (EGC), and gallic acid (GA). We analysed the aggregation pattern of ATX3-Q55 and of the N-terminal globular Josephin domain (JD) by assessing the time course of the soluble protein, as well its structural features by FTIR and AFM, in the presence and the absence of the mentioned compounds. All of them redirected the aggregation pattern towards soluble, SDS-resistant aggregates. They also prevented the appearance of ordered side-chain hydrogen bonding in ATX3-Q55, which is the hallmark of polyQ-related amyloids. Molecular docking analyses on the JD highlighted three interacting regions, including the central, aggregation-prone one. All three compounds bound to each of them, although with different patterns. This might account for their capability to prevent amyloidogenesis. Saturation transfer difference NMR experiments also confirmed EGCG and EGC binding to monomeric JD. ATX3-Q55 pre-incubation with any of the three compounds prevented its calcium-influx-mediated cytotoxicity towards neural cells. Finally, all the phenols significantly reduced toxicity in a transgenic Caenorhabditis elegans strain expressing an expanded ATX3. Overall, our results show that the three polyphenols act in a substantially similar manner. GA, however, might be more suitable for antiamyloid treatments due to its simpler structure and higher chemical stability.
Collapse
Affiliation(s)
- Cristina Visentin
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | | | - Antonino Natalello
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Marcella Bonanomi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Elena Gatta
- Department of Physics, University of Genoa, 16146 Genoa, Italy
| | - Amanda Penco
- Department of Physics, University of Genoa, 16146 Genoa, Italy.,Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Annalisa Relini
- Department of Physics, University of Genoa, 16146 Genoa, Italy.,National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | - Luca De Gioia
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| | - Maria E Regonesi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| | - Paolo Tortora
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| |
Collapse
|
50
|
Epigallocatechin-3-gallate preferentially induces aggregation of amyloidogenic immunoglobulin light chains. Sci Rep 2017; 7:41515. [PMID: 28128355 PMCID: PMC5269747 DOI: 10.1038/srep41515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Antibody light chain amyloidosis is a rare disease caused by fibril formation of secreted immunoglobulin light chains (LCs). The huge variety of antibody sequences puts a serious challenge to drug discovery. The green tea polyphenol epigallocatechin-3-gallate (EGCG) is known to interfere with fibril formation in general. Here we present solution- and solid-state NMR studies as well as MD simulations to characterise the interaction of EGCG with LC variable domains. We identified two distinct EGCG binding sites, both of which include a proline as an important recognition element. The binding sites were confirmed by site-directed mutagenesis and solid-state NMR analysis. The EGCG-induced protein complexes are unstructured. We propose a general mechanistic model for EGCG binding to a conserved site in LCs. We find that EGCG reacts selectively with amyloidogenic mutants. This makes this compound a promising lead structure, that can handle the immense sequence variability of antibody LCs.
Collapse
|