1
|
Wang Y, Chen S, Wang C, Guo F. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives. Biomed Pharmacother 2023; 166:115348. [PMID: 37639743 DOI: 10.1016/j.biopha.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is the second-most lethal global disease, as per health reports, and is responsible for around 70% of deaths in low- and middle-income countries. Endometrial cancer is one of the emerging malignancies and has been predicted as a public health challenge for the future. Insulin resistance, obesity, and diabetes mellitus are the key metabolic factors that promote risks for the development of endometrial cancer. Various signaling pathways and associated genes are involved in the genesis of endometrial cancer, and any mutation or deletion in such related factors leads to the induction of endometrial cancer. The conventional way of drug delivery has been used for ages but is associated with poor management of cancer due to non-targeting of the endometrial cancer cells, low efficacy of the therapy, and toxicity issues as well. In this context, nanocarrier-based therapy for the management of endometrial cancer is an effective alternate choice that overcomes the problems associated with conventional therapy. In this review article, we highlighted the nanocarrier-based targeting of endometrial cancer, with a special focus on targeting various metabolic signaling pathways. Furthermore, the future perspectives of nanocarrier-based targeting of metabolic pathways in endometrial cancer were also underpinned. It is concluded that targeting metabolic signaling pathways in endometrial cancer via nanocarrier scaffolds is the future of pharmaceutical design for the significant management and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun 130000, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Fan L, Wang C, Zhan P, Liu Y. LncRNA RBAT1 reduces chemosensitivity of cancer cells to carboplatin/paclitaxel by sponging miR‑27b in endometrial carcinoma. J Ovarian Res 2023; 16:147. [PMID: 37501162 PMCID: PMC10375650 DOI: 10.1186/s13048-023-01235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/02/2022] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND A recent study reported the role of long non-coding RNA (lncRNA) RBAT1 in promoting the development of retinoblastoma and bladder cancer. However, its function in other cancers is unclear. We then studied the role of RBAT1 in endometrial carcinoma (EC). METHODS The expression of RBAT1 and miR-27b in EC and paired non-tumor samples from advanced EC patients, as well as in plasma samples of EC patients and healthy controls were detected by RT-qPCR. The direct interaction between RBAT1 and miR-27b, and the subcellular location of RBAT1 were determined by RNA-RNA pulldown assay and subcellular fractionation assay, respectively. RESULTS EC tissues showed increased expression levels of RBAT1 and decreased expression levels of miR-27b compared to that in non-tumor tissues. Moreover, EC patients showed higher plasma expression levels of RBAT1 and lower plasma expression levels of miR-27b compared to that in the controls. Drug-resistant (DR) patients showed higher expression levels of RBAT1 and lower expression levels of miR-27b in both EC tissues and plasma samples. RBAT1 was detected in both nuclear and cytoplasm and it directly interacted with miR-27b. RBAT1 and miR-27b did not affect the expression of each other. Upregulation of RBAT1 promoted the expression of multidrug-resistant-related protein (P-gp, MRP1, and BCRP). Overexpression of RBAT1 and inhibition of miR-27b promoted cell viability and impeded cell apoptosis and cell cycle arrest at G0-G1 phase, while knockdown of RBAT1 and overexpression of miR-27b inhibited cell viability and induced cell apoptosis and cell cycle arrest at G0-G1 phase. Moreover, miR-27b could abolish RBAT1-induced effects on cell viability, apoptosis and cell cycle. CONCLUSION RBAT1 may reduce the chemosensitivity of EC cells to carboplatin/paclitaxel by sponging miR-27b in EC.
Collapse
Affiliation(s)
- Lingye Fan
- Department of Gynaecology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, P.R. China
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Gynaecology), Luzhou City, Sichuan Province, 646000, P.R. China
| | - Chunyan Wang
- Department of Gynaecology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, P.R. China
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Gynaecology), Luzhou City, Sichuan Province, 646000, P.R. China
| | - Ping Zhan
- Department of Gynaecology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, P.R. China
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Gynaecology), Luzhou City, Sichuan Province, 646000, P.R. China
| | - Yaofang Liu
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Luzhou City, Sichuan Province, 646000, P.R. China.
| |
Collapse
|
3
|
Devis‐Jauregui L, Vidal A, Plata‐Peña L, Santacana M, García‐Mulero S, Bonifaci N, Noguera‐Delgado E, Ruiz N, Gil M, Dorca E, Llobet FJ, Coll‐Iglesias L, Gassner K, Martinez‐Iniesta M, Rodriguez‐Barrueco R, Barahona M, Marti L, Viñals F, Ponce J, Sanz‐Pamplona R, Piulats JM, Vivancos A, Matias‐Guiu X, Villanueva A, Llobet‐Navas D. Generation and Integrated Analysis of Advanced Patient-Derived Orthoxenograft Models (PDOX) for the Rational Assessment of Targeted Therapies in Endometrial Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204211. [PMID: 36373729 PMCID: PMC9811454 DOI: 10.1002/advs.202204211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/18/2022] [Indexed: 05/19/2023]
Abstract
Clinical management of endometrial cancer (EC) is handicapped by the limited availability of second line treatments and bona fide molecular biomarkers to predict recurrence. These limitations have hampered the treatment of these patients, whose survival rates have not improved over the last four decades. The advent of coordinated studies such as The Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA_UCEC) has partially solved this issue, but the lack of proper experimental systems still represents a bottleneck that precludes translational studies from successful clinical testing in EC patients. Within this context, the first study reporting the generation of a collection of endometrioid-EC-patient-derived orthoxenograft (PDOX) mouse models is presented that is believed to overcome these experimental constraints and pave the way toward state-of-the-art precision medicine in EC. The collection of primary tumors and derived PDOXs is characterized through an integrative approach based on transcriptomics, mutational profiles, and morphological analysis; and it is demonstrated that EC tumors engrafted in the mouse uterus retain the main molecular and morphological features from analogous tumor donors. Finally, the molecular properties of these tumors are harnessed to assess the therapeutic potential of trastuzumab, a human epidermal growth factor receptor 2 (HER2) inhibitor with growing interest in EC, using patient-derived organotypic multicellular tumor spheroids and in vivo experiments.
Collapse
|
4
|
Zhao J, Zhao T. A functional polymorphism in the poly(ADP-ribose) polymerase-1 gene increases the risk of endometrial carcinoma. J OBSTET GYNAECOL 2022; 42:3299-3303. [PMID: 36006023 DOI: 10.1080/01443615.2022.2114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this study was to investigate the effects of two functional genetic polymorphisms in the poly(ADP-ribose) polymerase-1 (PARP-1) gene on the risk of endometrial carcinoma (EC). Genotypes of the rs1136410 and rs8679 polymorphisms were determined by polymerase chain reaction and ligase detection reaction in 327 EC patients and 329 controls. The results showed that there were significant differences in the genotype distributions of rs1136410 between cases and controls. Women carrying the rs1136410 CC genotype had a significantly increased risk of EC compared to those with the rs1136410 TT genotype (OR = 1.73, 95% CI = 1.10-2.72, p = .018). After adjustment for clinical characteristics, the rs1136410 CC genotype still significantly increased the risk of EC (adjusted OR = 1.83, 95% CI = 1.09-3.07, p = .021). However, no significant difference was observed in the genotype frequencies of rs8679 between cases and controls. This study indicated that rs1136410 was related to the risk of developing EC, and the CC genotype of rs1136410 may be a risk factor for EC in the northern Chinese population.IMPACT STATEMENTWhat is already known on this subject? Genetic variations in the PARP-1 gene may affect protein function and hence reduce DNA repair capacity, leading to the accumulation of DNA damage and a subsequent increased probability of tumorigenesis. Previous studies have shown that polymorphisms of the PARP-1 gene are associated with the risk of various carcinomas, including breast cancer, lung cancer, thyroid cancer, colorectal cancer, and oral squamous cell carcinoma.What do the results of this study add? Our results suggest that the rs1136410 polymorphism of PARP-1 was related to the risk of developing endometrial carcinoma, and the CC genotype of rs1136410 may be a risk factor for endometrial carcinoma in the northern Chinese population.What are the implications of these findings for clinical practice and/or further research? The new genetic marker may help to identify genetic basis of endometrial carcinoma, and develop gene-targeted therapies for endometrial carcinoma.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Gynecology, the People's Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, P.R. China
| | - Tao Zhao
- Department of Gynecology, the People's Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
5
|
Ion Channels in Endometrial Cancer. Cancers (Basel) 2022; 14:cancers14194733. [PMID: 36230654 PMCID: PMC9564232 DOI: 10.3390/cancers14194733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Uterine or endometrial cancer is one of the most common types of cancer among the female population. Different alterations of molecules are related to many types of cancer. Some molecules called ion channels have been described as involved in the development of cancer, including endometrial cancer. We review the scientific evidence about the involvement of the ion channels in endometrial cancer and how some treatments can be developed with these molecules as a target. Even though they are involved in the progression of endometrial cancer, since they are present throughout the whole body, some possible treatments based on these could be studied. Abstract Uterine or endometrial cancer (EC) is the sixth most common neoplasia among women worldwide. Cancer can originate from a myriad of causes, and increasing evidence suggests that ion channels (IC) play an important role in the process of carcinogenesis, taking part in many pathways such as self-sufficiency in growth signals, proliferation, evasion of programmed cell death (apoptosis), angiogenesis, cell differentiation, migration, adhesion, and metastasis. Hormones and growth factors are well-known to be involved in the development and/or progression of many cancers and can also regulate some ion channels and pumps. Since the endometrium is responsive and regulated by these factors, the ICs could make an important contribution to the development and progression of endometrial cancer. In this review, we explore what is beyond (ion) flow regulation by investigating the role of the main families of ICs in EC, including as possible targets for EC treatment.
Collapse
|
6
|
Lin Z, Sui X, Jiao W, Chen C, Zhang X, Zhao J. Mechanism investigation and experiment validation of capsaicin on uterine corpus endometrial carcinoma. Front Pharmacol 2022; 13:953874. [PMID: 36210802 PMCID: PMC9532580 DOI: 10.3389/fphar.2022.953874] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Using bioinformatics analysis and experimental operations, we intend to analyze the potential mechanism of action of capsaicin target gene GATA1 in the treatment of uterine corpus endometrial carcinoma (UCEC) and develop a prognostic model for the disease to validate this model. Methods: By obtaining capsaicin and UCEC-related DR-DEGs, the prognosis-related gene GATA1 was screened. The survival analysis was conducted via establishing high and low expression groups of GATA1. Whether the GATA1 could be an independent prognostic factor for UCEC, it was also validated. The therapeutic mechanism of capsaicin-related genes in UCEC was further investigated using enrichment analysis and immune methods as well as in combination with single-cell sequencing data. Finally, it was validated by cell experiments. Results: GATA1, a high-risk gene associated with prognosis, was obtained by screening. Kaplan-Meier analysis showed that the survival of the high expression group was lower than that of low expression group. ROC curves showed that the prediction effect of the model was good and stable (1-year area under curve (AUC): 0.601; 2-years AUC: 0.575; 3-years AUC: 0.610). Independent prognosis analysis showed that the GATA1 can serve as an independent prognostic factor for UCEC. Enrichment analysis showed that “neuroactive Ligand - receptor interaction and TYPE I DIABETES MELLITUS” had a significant enrichment effect. Single-cell sequencing showed that the GATA1 was significantly expressed in mast cells. Cell experiments showed that the capsaicin significantly reduced the UCEC cell activity and migration ability, as well as inhibited the expression of GATA1. Conclusion: This study suggests that the capsaicin has potential value and application prospect in the treatment of UCEC. It provides new genetic markers for the prognosis of UCEC patients.
Collapse
Affiliation(s)
- Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Sui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjian Jiao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chong Chen
- Obstetrics Department of Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Xiaodan Zhang
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Junde Zhao, ; Xiaodan Zhang,
| | - Junde Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University Cheeloo College of Medicine Laboratory of Basic Medical Sciences, Jinan, China
- *Correspondence: Junde Zhao, ; Xiaodan Zhang,
| |
Collapse
|
7
|
Sahoo SS, Ramanand SG, Gao Y, Abbas A, Kumar A, Cuevas IC, Li HD, Aguilar M, Xing C, Mani RS, Castrillon DH. FOXA2 suppresses endometrial carcinogenesis and epithelial-mesenchymal transition by regulating enhancer activity. J Clin Invest 2022; 132:157574. [PMID: 35703180 PMCID: PMC9197528 DOI: 10.1172/jci157574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 01/23/2023] Open
Abstract
FOXA2 encodes a transcription factor mutated in 10% of endometrial cancers (ECs), with a higher mutation rate in aggressive variants. FOXA2 has essential roles in embryonic and uterine development. However, FOXA2’s role in EC is incompletely understood. Functional investigations using human and mouse EC cell lines revealed that FOXA2 controls endometrial epithelial gene expression programs regulating cell proliferation, adhesion, and endometrial-epithelial transition. In live animals, conditional inactivation of Foxa2 or Pten alone in endometrial epithelium did not result in ECs, but simultaneous inactivation of both genes resulted in lethal ECs with complete penetrance, establishing potent synergism between Foxa2 and PI3K signaling. Studies in tumor-derived cell lines and organoids highlighted additional invasion and cell growth phenotypes associated with malignant transformation and identified key mediators, including Myc and Cdh1. Transcriptome and cistrome analyses revealed that FOXA2 broadly controls gene expression programs through modification of enhancer activity in addition to regulating specific target genes, rationalizing its tumor suppressor functions. By integrating results from our cell lines, organoids, animal models, and patient data, our findings demonstrated that FOXA2 is an endometrial tumor suppressor associated with aggressive disease and with shared commonalities among its roles in endometrial function and carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development.,Department of Bioinformatics.,Department of Population and Data Sciences
| | - Ram S Mani
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Urology, and
| | - Diego H Castrillon
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
The Role of mTOR and eIF Signaling in Benign Endometrial Diseases. Int J Mol Sci 2022; 23:ijms23073416. [PMID: 35408777 PMCID: PMC8998789 DOI: 10.3390/ijms23073416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Adenomyosis, endometriosis, endometritis, and typical endometrial hyperplasia are common non-cancerous diseases of the endometrium that afflict many women with life-impacting consequences. The mammalian target of the rapamycin (mTOR) pathway interacts with estrogen signaling and is known to be dysregulated in endometrial cancer. Based on this knowledge, we attempt to investigate the role of mTOR signaling in benign endometrial diseases while focusing on how the interplay between mTOR and eukaryotic translation initiation factors (eIFs) affects their development. In fact, mTOR overactivity is apparent in adenomyosis, endometriosis, and typical endometrial hyperplasia, where it promotes endometrial cell proliferation and invasiveness. Recent data show aberrant expression of various components of the mTOR pathway in both eutopic and ectopic endometrium of patients with adenomyosis or endometriosis and in hyperplastic endometrium as well. Moreover, studies on endometritis show that derangement of mTOR signaling is linked to the establishment of endometrial dysfunction caused by chronic inflammation. This review shows that inhibition of the mTOR pathway has a promising therapeutic effect in benign endometrial conditions, concluding that mTOR signaling dysregulation plays a critical part in their pathogenesis.
Collapse
|
9
|
Mota A, Oltra SS, Selenica P, Moiola CP, Casas-Arozamena C, López-Gil C, Diaz E, Gatius S, Ruiz-Miro M, Calvo A, Rojo-Sebastián A, Hurtado P, Piñeiro R, Colas E, Gil-Moreno A, Reis-Filho JS, Muinelo-Romay L, Abal M, Matias-Guiu X, Weigelt B, Moreno-Bueno G. Intratumor genetic heterogeneity and clonal evolution to decode endometrial cancer progression. Oncogene 2022; 41:1835-1850. [PMID: 35145232 PMCID: PMC8956509 DOI: 10.1038/s41388-022-02221-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Analyzing different tumor regions by next generation sequencing allows the assessment of intratumor genetic heterogeneity (ITGH), a phenomenon that has been studied widely in some tumor types but has been less well explored in endometrial carcinoma (EC). In this study, we sought to characterize the spatial and temporal heterogeneity of 9 different ECs using whole-exome sequencing, and by performing targeted sequencing validation of the 42 primary tumor regions and 30 metastatic samples analyzed. In addition, copy number alterations of serous carcinomas were assessed by comparative genomic hybridization arrays. From the somatic mutations, identified by whole-exome sequencing, 532 were validated by targeted sequencing. Based on these data, the phylogenetic tree reconstructed for each case allowed us to establish the tumors’ evolution and correlate this to tumor progression, prognosis, and the presence of recurrent disease. Moreover, we studied the genetic landscape of an ambiguous EC and the molecular profile obtained was used to guide the selection of a potential personalized therapy for this patient, which was subsequently validated by preclinical testing in patient-derived xenograft models. Overall, our study reveals the impact of analyzing different tumor regions to decipher the ITGH in ECs, which could help make the best treatment decision.
Collapse
Affiliation(s)
- Alba Mota
- MD Anderson International Foundation, 28033, Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, 28029, Madrid, Spain
| | - Sara S Oltra
- MD Anderson International Foundation, 28033, Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Cristian P Moiola
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Carlos López-Gil
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Eva Diaz
- MD Anderson International Foundation, 28033, Madrid, Spain
| | - Sonia Gatius
- Department of Pathology, Hospital U Arnau de Vilanova, University of Lleida, IRBLLEIDA, Lleida, Spain
| | | | - Ana Calvo
- Department of Gynecology, Hospital U Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Alejandro Rojo-Sebastián
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain.,MD Anderson Cancer Center, Madrid, Spain
| | - Pablo Hurtado
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Eva Colas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Antonio Gil-Moreno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain.,Gynaecological Department, Vall Hebron University Hospital, 08035, Barcelona, Spain
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Miguel Abal
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Xavier Matias-Guiu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Department of Pathology, Hospital U Arnau de Vilanova, University of Lleida, IRBLLEIDA, Lleida, Spain.,Departments of Pathology, Hospital U. de Bellvitge, Universities of Lleida and Barcelona, IDIBELL Lleida and Barcelona, Spain
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gema Moreno-Bueno
- MD Anderson International Foundation, 28033, Madrid, Spain. .,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
10
|
Zheng ZM, Wang YY, Chen M, Yang HL, Lai ZZ, Li MQ, Shao J. FBXO17 Inhibits the Wnt/β-Catenin Pathway and Proliferation of Ishikawa Cells. Int J Med Sci 2022; 19:1430-1441. [PMID: 36035375 PMCID: PMC9413558 DOI: 10.7150/ijms.60335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common types of cancer in women, and the incidence is rapidly increasing. Studies have shown that various signaling pathways serve crucial roles in the tumorigenesis of UCEC, amongst which the Wnt/β-catenin pathway is of great interest due to its crucial role in cell proliferation and the huge potential as a therapeutic target. In the present study, it was shown that FBXO17, which is a member of the F-box family, is abnormally downregulated in UCEC tissues compared with non-tumor endometrial tissues, and this was significantly associated with the clinical histological grade, as well as the abnormal proliferation of the UCEC cell line, Ishikawa, both in vitro and in vivo. Besides, the results suggested that FBXO17 may inhibit the Wnt/β-catenin signaling pathway and influence the expression of adhesion molecules, such as E-cadherin and N-cadherin in Ishikawa cells. In conclusion, these findings indicate that FBXO17 is a novel inhibitor of endometrial tumor development and it likely exerts effects via regulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zi-Meng Zheng
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China
| | - Ying-Ying Wang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang 262500, People's Republic of China
| | - Min Chen
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China
| | - Hui-Li Yang
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China
| | - Zhen-Zhen Lai
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China
| | - Ming-Qing Li
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| | - Jun Shao
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200082, People's Republic of China
| |
Collapse
|
11
|
Lu Y, Tang W, Wang X, Kang X, You J, Chen L. Development of Potential Prognostic Biomarkers Based on DNA Methylation-Driven Genes for Patients with Endometrial Cancer. Int J Gen Med 2021; 14:10541-10555. [PMID: 35002309 PMCID: PMC8725853 DOI: 10.2147/ijgm.s341771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 12/03/2022] Open
Abstract
Background Endometrial cancer (EC) is a multifactorial disease, and its progression may be driven by abnormal genetic methylation. To clarify the underlying molecular mechanisms and sensitive biomarkers for EC, this study used an integrated bioinformatic analysis to explore the methylation-driven genes of EC. Methods The mRNA expression data, methylation data and corresponding clinical information of EC samples were downloaded from The Cancer Genome Atlas (TCGA) database. MethylMix algorithm was used to screen out methylation-driven genes in EC. Functional and pathway enrichment analysis and the protein–protein interaction (PPI) analysis were conducted to demonstrate the functions and interactions between these genes. Then, prognosis-related methylated genes were screened out by using univariate and multivariate Cox analyses, and a prognostic risk assessment model for EC was constructed. The methylation sites and expression profiles of candidate genes were further investigated. Results A total of 127 methylated genes were identified in EC. Four genes (RP11-968O1.5, DCAF12L1, MSX1 and ALS2CR11) were selected as candidate genes to construct a reliable prognostic risk model. The univariate and multivariate Cox proportional hazards regression analyses showed that the risk score based on four genes was an independent prognostic indicator for OS among EC patients. A nomogram was established and the calibration plot analysis indicated the good performance and clinical utility of the nomogram. In addition, the methylation and expression of MSX1 and DCAF12L1 were significantly associated with EC survival rate. The joint ROC analysis revealed that the AUC of DCAF12L1-MSX1 was 0.867, which suggested both have a good EC-diagnosing efficiency. We then coped DCAF12L1 and MSX1 with GESA analysis, finding both were mainly associated with the KRAS signaling pathway. Conclusion This bioinformatic study combs the methylated genes involved in EC development for the first time, finding that MSX1 and DCAF12L1 could serve as EC prognostic markers and drug targets.
Collapse
Affiliation(s)
- Yiling Lu
- Department of Obstetrics and Gynecology, Nantong First People’s Hospital, Nantong, Jiangsu, 226001, People’s Republic of China
| | - Weichun Tang
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, 211166, People’s Republic of China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People’s Republic of China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, Nantong First People’s Hospital, Nantong, Jiangsu, 226001, People’s Republic of China
| | - Xinyi Kang
- Department of Obstetrics and Gynecology, Nantong First People’s Hospital, Nantong, Jiangsu, 226001, People’s Republic of China
| | - Jun You
- Department of Obstetrics and Gynecology, Nantong First People’s Hospital, Nantong, Jiangsu, 226001, People’s Republic of China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Nantong First People’s Hospital, Nantong, Jiangsu, 226001, People’s Republic of China
- Correspondence: Liping Chen Department of Gynecology and Obstetrics, Nantong First People’s Hospital, Nantong, Jiangsu, 226001, People’s Republic of China Email
| |
Collapse
|
12
|
Zakrzewski PK. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. J Clin Med 2021; 10:3900. [PMID: 34501347 PMCID: PMC8432036 DOI: 10.3390/jcm10173900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Endometrial cancer is one of the leading gynecological cancers diagnosed among women in their menopausal and postmenopausal age. Despite the progress in molecular biology and medicine, no efficient and powerful diagnostic and prognostic marker is dedicated to endometrial carcinogenesis. The canonical TGFβ pathway is a pleiotropic signaling cascade orchestrating a variety of cellular and molecular processes, whose alterations are responsible for carcinogenesis that originates from different tissue types. This review covers the current knowledge concerning the canonical TGFβ pathway (Smad-dependent) induced by prototypical TGFβ isoforms and the involvement of pathway alterations in the development and progression of endometrial neoplastic lesions. Since Smad-dependent signalization governs opposed cellular processes, such as growth arrest, apoptosis, tumor cells growth and differentiation, as well as angiogenesis and metastasis, TGFβ cascade may act both as a tumor suppressor or tumor promoter. However, the final effect of TGFβ signaling on endometrial cancer cells depends on the cancer disease stage. The multifunctional role of the TGFβ pathway indicates the possible utilization of alterations in the TGFβ cascade as a potential target of novel anticancer strategies.
Collapse
Affiliation(s)
- Piotr K Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
13
|
Yu J, Fan Q, Li L. The MCM3AP-AS1/miR-126/VEGF axis regulates cancer cell invasion and migration in endometrioid carcinoma. World J Surg Oncol 2021; 19:213. [PMID: 34256796 PMCID: PMC8278665 DOI: 10.1186/s12957-021-02316-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) MCM3AP-AS1 plays an oncogenic role in several malignancies, but its role in endometrioid carcinoma (EC) is unclear. This study was carried out to explore the role of MCM3AP-AS1 in EC. METHODS A total of 60 EC patients were enrolled in this study. Expression levels of MCM3AP Antisense RNA 1 (MCM3AP-AS1), microRNA-126 (miR-126), and vascular endothelial growth factor (VEGF) in tissues and transfetced cells were measured by RT-qPCR. Cell transfections were performed to explore the interaction among MCM3AP-AS1, miR-126 and VEGF. Transwell assays were perfromed to evaluate the invasion and migration abilities of HEC-1 cells after transfection. RESULTS MCM3AP-AS1 was upregulated in EC and predicted poor survival. MCM3AP-AS1 directly interacted with miR-126. In EC cells, overexpression of MCM3AP-AS1 and miR-126 did not significantly affect the expression of each other. In addition, overexpression of MCM3AP-AS1 increased the expression levels of VEGF, a target of miR-126. Moreover, overexpression of MCM3AP-AS1 and VEGF increased the migration and invasion rates of EC cells, while overexpression of miR-126 suppressed these cell behaviors. Overexpression of MCM3AP-AS1 attenuated the role of miR-126 in cell invasion and migration. CONCLUSIONS Therefore, MCM3AP-AS1 may serve as a competing endogenous RNA (ceRNA) of miR-126 to upregulate VEGF, thereby regulating cancer cell behaviors in EC.
Collapse
Affiliation(s)
- Jie Yu
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, People's Republic of China
| | - Qiqi Fan
- Department of Liver Diseases, The Sixth People's Hospital of Qingdao, Qingdao City, Shandong Province, 266000, People's Republic of China
| | - Lingling Li
- Department of Reproductive Medicine, Qingdao Municipal Hospital, No.5 Donghai Road Shinan District, Qingdao City, Shandong Province, 266071, People's Republic of China.
| |
Collapse
|
14
|
Shang W, Zhang J, Song H, Zhu S, Zhang A, Hua Y, Han S, Fu Y. Mechanism of Tetrandrine Against Endometrial Cancer Based on Network Pharmacology. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2907-2919. [PMID: 34262258 PMCID: PMC8275110 DOI: 10.2147/dddt.s307670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/09/2021] [Indexed: 01/25/2023]
Abstract
Background Endometrial cancer (EC) is one of the most common gynaecological malignancies, and its incidence has been rising over the past decade. Tetrandrine, a bisbenzylisoquinoline alkaloid, has been isolated from a vine used in traditional Chinese medicine, Stephania tetrandra. However, the key mechanism of tetrandrine in EC is still unclear. Purpose This research was designed to predict the molecular mechanisms of tetrandrine against EC based on network pharmacology and to further verify these predictions by in vitro experiments. Methods The potential therapeutic targets of tetrandrine against EC were predicted by using public databases. Afterwards, the protein–protein interaction (PPI) network of the common targets was constructed, and the key gene targets were obtained. Biological function and pathway enrichment analyses were performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Furthermore, molecular docking and in vitro experiments were carried out to verify the predictions. The cell counting kit‑8 (CCK‑8) assay, Hoechst 33258 staining, flow cytometry analysis, qRT-PCR, Western blot analysis and an immunofluorescence assay were performed. Results Our findings identified 111 potential therapeutic targets of tetrandrine against EC. We obtained 7 key gene targets from the PPI network analysis. Furthermore, GO enrichment analysis indicated that these targets were mainly associated with metabolic processes, responses to stimulus, and biological regulation. The KEGG pathway analysis showed that the common targets were mainly distributed in the PI3K/Akt signalling pathway. A potential interaction of tetrandrine with Akt1 was revealed by molecular docking. In addition, in vitro experiments showed that tetrandrine significantly inhibited cell proliferation and induced apoptosis in Ishikawa and HEC-1-B cells in dose- and time-dependent manners. The results also revealed that tetrandrine can downregulate the expression of Bcl-2 and upregulate the expression of Bax at the mRNA level. The mRNA levels of Akt were not significantly different in the various tetrandrine (0, 10 and 20µM) groups. However, Western blot analysis demonstrated that the protein expression ratios of p-Akt/Akt decreased at the protein level. The results were further confirmed by immunofluorescence assays. Conclusion Based on bioinformatic analysis and experimental verification, our findings demonstrated that tetrandrine exerted tumour-suppressive effects on EC by regulating the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Wenqian Shang
- Department of Traditional Chinese Medicine, Zibo Maternal and Child Health Hospital, Zibo, Shandong, 255000, People's Republic of China
| | - Jing Zhang
- Translational Medicine Center, Zibo Maternal and Child Health Hospital, Zibo, Shandong, 255000, People's Republic of China
| | - Haibo Song
- Translational Medicine Center, Zibo Maternal and Child Health Hospital, Zibo, Shandong, 255000, People's Republic of China
| | - Shunfei Zhu
- Clinical Laboratory, Zibo Maternal and Child Health Hospital, Zibo, Shandong, 255000, People's Republic of China
| | - Aimin Zhang
- Department of Traditional Chinese Medicine, Zibo Maternal and Child Health Hospital, Zibo, Shandong, 255000, People's Republic of China
| | - Yushuang Hua
- Department of Traditional Chinese Medicine, Zibo Maternal and Child Health Hospital, Zibo, Shandong, 255000, People's Republic of China
| | - Shujun Han
- Surgical Department, Zhangdian District Hospital of Traditional Chinese Medicine, Zibo, 255000, Shandong, People's Republic of China
| | - Yan Fu
- Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China
| |
Collapse
|
15
|
Ishikawa M, Nakayama K, Razia S, Ishida A, Yamashita H, Ishibashi T, Sato S, Sawada K, Sasamori H, Kurose S, Ishikawa N, Kyo S. Neutropenic enterocolitis-induced sepsis and disseminated intravascular coagulation after chemotherapy: a case report. BMC WOMENS HEALTH 2021; 21:187. [PMID: 33941182 PMCID: PMC8091778 DOI: 10.1186/s12905-021-01302-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/13/2021] [Indexed: 12/30/2022]
Abstract
Background Neutropenic enterocolitis (NE) is a potentially life-threatening disease that primarily occurs in cancer patients treated with chemotherapy. NE has substantial morbidity and mortality, and its incidence has increased with the widespread use of chemotherapeutic agents such as taxanes, gemcitabine, and leucovorin in patients with lung, breast, gastric, and ovarian cancers. Sometimes NE can be a possible cause of death. Although, conservative approaches are often successful, there are currently no standardized treatment guidelines for NE and it is unclear when such strategies should be implemented. Therefore, we present this report to provide a greater insight into the possible treatment of NE. Case presentation We report the case of a 72-year-old woman with endometrial cancer who was undergoing treatment for hypertension, obesity and diabetes mellitus. The patient initially developed paralytic ileus on the 6th postoperative day (POD) after surgery for endometrial serous carcinoma. Complete recovery was achieved after 4 days of fasting and fluid replacement therapy. On the 27th POD, she received the first cycle of combination chemotherapy consisting of paclitaxel and carboplatin. On day 5 of chemotherapy, she developed the systemic inflammatory response syndrome including febrile neutropenia and sepsis. She then developed disseminated intravascular coagulation (DIC) and septic shock. The patient was subsequently moved to the intensive care unit (ICU). Despite initiating the standard treatment for septic shock and DIC, her overall status worsened. It was assumed that gut distention had led to bowel damage, subsequently leading to bacterial translocation. Thus, she developed NE with severe DIC and septic shock. We decided to reduce the intestinal pressure using an ileus tube to suction the additional air and fluid, even though doing so had a risk of worsening her general condition. The inflammatory reaction subsided, and her general condition improved. The patient recovered after 18 days in the ICU and was discharged alive. Conclusions Herein, we describe a patient with suspected chemotherapy-associated NE. Our observations suggest that postoperative ileus may be one of the possible causes of NE. Patients who experience postoperative ileus must be carefully monitored while undergoing chemotherapy.
Collapse
Affiliation(s)
- Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan.
| | - Sultana Razia
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan
| | - Akiko Ishida
- Shimane University Hospital Postgraduate Clinical Training Center, Izumo, Shimane, Japan
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan
| | - Seiya Sato
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan
| | - Kiyoka Sawada
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan
| | - Hiroki Sasamori
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan
| | - Sonomi Kurose
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan
| | - Noriyoshi Ishikawa
- Department of Organ Pathology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Enyacho 89-1, Izumo, Shimane, 6938501, Japan
| |
Collapse
|
16
|
Devis-Jauregui L, Eritja N, Davis ML, Matias-Guiu X, Llobet-Navàs D. Autophagy in the physiological endometrium and cancer. Autophagy 2021; 17:1077-1095. [PMID: 32401642 PMCID: PMC8143243 DOI: 10.1080/15548627.2020.1752548] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved catabolic process and a major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles. An increasing body of evidence has unveiled autophagy as an indispensable biological function that helps to maintain normal tissue homeostasis and metabolic fitness that can also lead to severe consequences for the normal cellular functioning when altered. Recent accumulating data point to autophagy as a key player in a wide variety of physiological and pathophysiological conditions in the human endometrium, one of the most proficient self-regenerating tissues in the human body and an instrumental player in placental species reproductive function. The current review highlights the most recent findings regarding the process of autophagy in the normal and cancerous endometrial tissue. Current research efforts aiming to therapeutically exploit autophagy and the methodological approaches used are discussed.Abbreviations: 3-MA: 3-methyladenine; ACACA (acetyl-CoA carboxylase alpha); AICAR: 5-aminoimidazole-4-carboximide riboside; AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; ATG3: autophagy related 3; ATG4C: autophagy related 4C cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG9: autophagy related 9; Baf A1: bafilomycin A1; BAX: BCL2 associated X, apoptosis regulator; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; CACNA1D: calcium voltage-gated channel subunit alpha1 D; CASP3: caspase 3; CASP7: caspase 7; CASP8: caspase 8; CASP9: caspase 9; CD44: CD44 molecule (Indian blood group); CDH1: cadherin 1; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; CMA: chaperone-mediated autophagy; CQ: chloroquine; CTNNB1: catenin beta 1; DDIT3: DNA damage inducible transcript 3; EC: endometrial cancer; EGFR: epidermal growth factor receptor; EH: endometrial hyperplasia; EIF4E: eukaryotic translation initiation factor 4E; EPHB2/ERK: EPH receptor B2; ER: endoplasmic reticulum; ERBB2: er-b2 receptor tyrosine kinase 2; ERVW-1: endogenous retrovirus group W member 1, envelope; ESR1: estrogen receptor 1; FSH: follicle-stimulating hormone; GCG/GLP1: glucagon; GFP: green fluorescent protein; GIP: gastric inhibitory polypeptide; GLP1R: glucagon-like peptide-1 receptor; GLS: glutaminase; H2AX: H2A.X variant histone; HIF1A: hypoxia inducible factor 1 alpha; HMGB1: high mobility group box 1; HOTAIR: HOX transcript antisense RNA; HSPA5: heat shock protein family A (HSP70) member 5; HSPA8: heat shock protein family A (HSP70) member 8; IGF1: insulin like growth factor 1; IL27: interleukin 27; INS: insulin; ISL: isoliquiritigenin; KRAS: KRAS proto-oncogene, GTPase; LAMP2: lysosomal-associated membrane protein 2; lncRNA: long-non-coding RNA; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPK8: mitogen-activated protein kinase 8; MAPK9: mitogen-activated protein kinase 9; MPA: medroxyprogesterone acetate; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; MYCBP: MYC-binding protein; NFE2L2: nuclear factor, erythroid 2 like 2; NFKB: nuclear factor kappa B; NFKBIA: NFKB inhibitor alpha; NK: natural killer; NR5A1: nuclear receptor subfamily 5 group A member 1; PARP1: poly(ADP-ribose) polymerase 1; PAX2: paired box 2; PDK1: pyruvate dehydrogenase kinase 1; PDX: patient-derived xenograft; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PIK3R1: phosphoinositide-3-kinase regulatory subunit 1; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PPD: protopanaxadiol; PRKCD: protein kinase C delta; PROM1/CD133: prominin 1; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PTEN: phosphatase and tensin homolog; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RFP: red fluorescent protein; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; RSV: resveratrol; SGK1: serum/glucocorticoid regulated kinase 1; SGK3: serum/glucocorticoid regulated kinase family member 3; SIRT: sirtuin; SLS: stone-like structures; SMAD2: SMAD family member 2; SMAD3: SMAD family member 3; SQSTM1: sequestosome 1; TALEN: transcription activator-like effector nuclease; TGFBR2: transforming growth factor beta receptor 2; TP53: tumor protein p53; TRIB3: tribbles pseudokinase 3; ULK1: unc-51 like autophagy activating kinase 1; ULK4: unc-51 like kinase 4; VEGFA: vascular endothelial growth factor A; WIPI2: WD repeat domain, phosphoinositide interacting 2; XBP1: X-box binding protein 1; ZFYVE1: zinc finger FYVE domain containing 1.
Collapse
Affiliation(s)
- Laura Devis-Jauregui
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet, Barcelona, Spain
| | - Núria Eritja
- Department of Pathology-Hospital Universitari Arnau De Vilanova, Universitat De Lleida, IRBLLEIDA, CIBERONC, Lleida, Spain
| | - Meredith Leigh Davis
- Institute of Genetic Medicine-International Centre for Life, Newcastle University. Central Parkway, Newcastle upon Tyne, UK
| | - Xavier Matias-Guiu
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet, Barcelona, Spain
- Department of Pathology-Hospital Universitari Arnau De Vilanova, Universitat De Lleida, IRBLLEIDA, CIBERONC, Lleida, Spain
- Department of Pathology-Hospital, Universitari De Bellvitge, Barcelona, Spain
| | - David Llobet-Navàs
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet, Barcelona, Spain
| |
Collapse
|
17
|
Lu Y, Lu H, Yang X, Song W. BarH-like homeobox 1 induces the progression of cell malignant phenotype in endometrial carcinoma through the regulation of ERK/MEK signaling pathway. Reprod Biol 2021; 21:100502. [PMID: 33784561 DOI: 10.1016/j.repbio.2021.100502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 01/04/2023]
Abstract
The aim of this article was to assess whether and how BARX1 affects the progression of malignant phenotype of endometrial carcinoma (EC) cells. BARX1 levels and its prognostic value were evaluated using the EC-related RNA sequence dataset from The Cancer Genome Atlas (TCGA) database. Functional experiments were performed to evaluate the biological roles of BARX1 in EC HEC-1-A and KLE cells by silencing BARX1. BARX1 was upregulated in EC tissues according to the public database and in EC cells. High expression of BARX1 led to a poor prognosis and significantly related to clinical stage, pathological grade, death, histological subtypes, and menopause status in patients with EC. Silencing BARX1 notably suppressed the aggressive phenotypes of EC cells, as evidenced by inhibiting cells viability, growth, invasion and migration. Furthermore, depletion of BARX1 decreased the phosphorylation (p) levels of ERK and MEK, also reinforced the suppressive effects of ERK/MEK pathway blocker PD98059 on the p-ERK and p-MEK levels. Together, our results demonstrated that BARX1 functions as a carcinogen by regulating the cell viability, invasion, and migration at least partly through the ERK/MEK pathway.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, 255000, PR China
| | - Hongyan Lu
- Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, 255000, PR China
| | - Xin Yang
- Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, 255000, PR China
| | - Wenjun Song
- Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, 255000, PR China.
| |
Collapse
|
18
|
Mycoplasma and Chlamydia Infection Can Increase Risk of Endometrial Cancer by Pro-inflammatory Cytokine Enlargement. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-020-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Li Y, Liu J, Piao J, Ou J, Zhu X. Circ_0109046 promotes the malignancy of endometrial carcinoma cells through the microRNA-105/SOX9/Wnt/β-catenin axis. IUBMB Life 2020; 73:159-176. [PMID: 33220169 DOI: 10.1002/iub.2415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests the important involvements of circular RNAs (circRNAs) in cancer progression. This study focuses on the function of Circ_0109046 on the malignancy of endometrial carcinoma (EC) cells and the molecules involved. First, high expression of Circ_0109046 was found in EC tissues compared to the adjacent tissues, and it predicted unfavorable prognosis in patients. Similarly, high expression of Circ_0109046 was confirmed in EC cells relative to that in normal endometrial epithelial cells. Silencing of Circ_0109046 in AN3-CA cells inhibited proliferation and aggressiveness but increased apoptosis of cells. Circ_0109046 was mainly sub-localized in cytoplasm, and it mediated SOX9 expression through sponging microRNA (miR)-105. The proliferation and aggressiveness of EC cells suppressed by Circ_0109046 downregulation was recovered upon SOX9 overexpression. SOX9 activated the Wnt/β-catenin pathway. Furthermore, downregulation of Circ_0109046 reduced the growth of xenograft tumors in nude mice. This study evidenced that Circ_0109046 upregulates SOX9 expression through sponging miR105, leading to activation of Wnt/β-catenin signaling and the malignant growth of EC. This study may offer novel understanding in EC treatment.
Collapse
Affiliation(s)
- Yanyan Li
- Department 1 of Gynecological Oncology, Jilin Cancer Hospital, Changchun, China
| | - Jinyu Liu
- Department 1 of Gynecological Oncology, Jilin Cancer Hospital, Changchun, China
| | - Jinxia Piao
- Department 1 of Gynecological Oncology, Jilin Cancer Hospital, Changchun, China
| | - Jian Ou
- Department of Radiotherapy of Gynecologic Oncology, Jilin Cancer Hospital, Changchun, China
| | - Xiaoyan Zhu
- Department 1 of Gynecological Oncology, Jilin Cancer Hospital, Changchun, China
| |
Collapse
|
20
|
Key factors mediated by PI3K signaling pathway and related genes in endometrial carcinoma. J Bioenerg Biomembr 2020; 52:465-473. [PMID: 33159265 DOI: 10.1007/s10863-020-09854-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
By analyzing the gene expression of endometrial carcinoma (EC) patients, the key factors in PI3K signaling pathway and its related genes mediating EC were explored. The EC samples and normal endometrial samples were downloaded from TCGA database and GTEx database. The R language "limma" package was used for differential analysis, and the expression level of genes in each tissue was analyzed by "gganatogram" package. Functional enrichment analysis of differential genes was carried out by KOBAS, an online bioinformatics website. The correlation between key genes and differential genes was evaluated using TCGA data and GTEx combined gene expression data. The corresponding clinical data were downloaded from TCGA database and GTEx database, and the R language "survival" package was used to assess the potential of candidate differential genes as a key factor of EC. Based on the combined differential analysis of TCGA and GTEx databases, 299 genes with significant differential in expression were finally got. Functional enrichment analysis revealed that genes were predominantly enriched in the entry of "Pathways in cancer", including RAC2 and PIK3R3 genes which were related with the abnormal PI3K pathway in cancer. PIK3R3, a key gene in the PI3K signaling pathway, was highly-expressed in EC. SPDEF, GCNT2, KIAA1324, C9orf152, MARVELD3, and APEX2 genes were found to be positively correlated with PIK3R3 in EC, all of which were highly expressed in EC. KM survival analysis showed that SPDEF, GCNT2, KIAA1324 and C9orf152 were significantly correlated with patients' survival. ROC analysis showed that SPDEF, GCNT2, KIAA1324 and C9orf152 gene could be used as potential markers for prognosis and survival of EC patients. It was found that PIK3R3, a key gene in the PI3K signaling pathway, was highly expressed in EC. The SPDEF, GCNT2, KIAA1324 and C9orf152 genes were also highly expressed in EC, and were positively correlated with PIK3R3 in EC. Moreover, they are significantly correlated with the patients' survival, suggesting that they may be potential markers for the prognosis of patients with EC.
Collapse
|
21
|
Sun H, Wang Q, Yuan G, Quan J, Dong D, Lun Y, Sun B. Hsa_circ_0001649 restrains gastric carcinoma growth and metastasis by downregulation of miR-20a. J Clin Lab Anal 2020; 34:e23235. [PMID: 32212290 PMCID: PMC7307365 DOI: 10.1002/jcla.23235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Background Gastric carcinoma (GC) is a familiar carcinoma and serious threat to human health. We investigated the efficacy and mechanism of circular RNA hsa_circ_0001649 on the growth, migration, and invasion of GC cells. Methods microRNA (miR)‐20a and hsa_circ_0001649 expression was investigated by RT‐qPCR and was changed by cell transfection. CCK‐8, flow cytometry, and BrdU assays were, respectively, used to investigate the efficacies of hsa_circ_0001649 and miR‐20a on cell viability, apoptosis, and proliferation. Transwell assay was used to investigate the efficacies of hsa_circ_0001649 and miR‐20a on cell migration and invasion. Moreover, the levels of cyclin D1, Bax, cleaved caspase‐3, and signal pathway‐related proteins were investigated by Western blot. Results Hsa_circ_0001649 was downregulated in GC cells and tissues. Upregulation of hsa_circ_0001649 restrained viability, proliferation, migration, and invasion, while promoted apoptosis. Furthermore, miR‐20a was negatively regulated by hsa_circ_0001649 and miR‐20a overexpression reversed the efficacy of hsa_circ_0001649 upregulation. Finally, upregulation of hsa_circ_0001649 restrained ERK and Wnt/β‐catenin pathways while miR‐20a overexpression reversed these progresses. Conclusion Upregulation of hsa_circ_0001649 restrained GC cell growth and metastasis by downregulating miR‐20a and thereby inactivated ERK and Wnt/β‐catenin pathways.
Collapse
Affiliation(s)
- Haiyuan Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Qunying Wang
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Gang Yuan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Jingzi Quan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Dongfang Dong
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Yue Lun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| | - Bo Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, China
| |
Collapse
|
22
|
PI3K Pathway Effectors pAKT and FOXO1 as Novel Markers of Endometrioid Intraepithelial Neoplasia. Int J Gynecol Pathol 2020; 38:503-513. [PMID: 30256235 DOI: 10.1097/pgp.0000000000000549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The diagnosis of endometrioid intraepithelial neoplasia (EIN) is challenging owing to limited sampling, hormonal status, and other confounding histologic variables. Markers such as PTEN or PAX2 can delineate EIN in some cases, but are not wholly reliable. Clearly, new markers of EIN are needed. We explored several potential markers of EIN based rationally on molecular pathways most frequently misregulated in endometrial cancer: the 3-phosphoinositide kinase (PI3K)/AKT, β-catenin, and mismatch repair pathways. We studied PTEN, PAX2, β-catenin, and MLH1, in conjunction with 2 new markers-FOXO1 and phosphorylated AKT (pAKT)-not previously investigated in EIN. Benign (n=14) and EIN (n=35) endometria were analyzed by immunohistochemistry. Staining patterns were interpreted, tabulated, and scored by "clonal distinctiveness" in neoplastic lesions; that is, pattern alterations relative to normal glands. In normal endometria, FOXO1 was cytoplasmic in proliferative phase, but nuclear in secretory phase, showing that PI3K/FOXO1 participates in endometrial cycling and that FOXO1 is a readout of PI3K status. pAKT expression was low across normal endometria. FOXO1 or pAKT expression was altered in the majority of EINs (27/35, 77%), with FOXO1 and pAKT being co-altered only in some (20/35, 57%). β-catenin or MLH1 also exhibited clonal distinctiveness in EINs, showing that these are also useful markers in some cases. This is the first study to demonstrate the potential of pAKT and FOXO1 as biomarkers in the histopathologic evaluation of EIN. However, variability in expression poses challenges in interpretation.
Collapse
|
23
|
Lv S, Xu X, Wu Z. Identification of key candidate genes and pathways in endometrial cancer: Evidence from bioinformatics analysis. Oncol Lett 2019; 18:6679-6689. [PMID: 31807178 PMCID: PMC6876294 DOI: 10.3892/ol.2019.11040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/24/2019] [Indexed: 01/03/2023] Open
Abstract
Endometrial cancer (EC) is the fourth most common cancer in women worldwide. Although researchers are exploring the biological processes of tumorigenesis and development of EC, the gene interactions and biological pathways of EC are not accurately verified. In the present study, bioinformatics methods were used to screen for key candidate genes and pathways that were associated with EC and to reveal the possible mechanisms at molecular level. Microarray datasets (GSE63678, GSE17025 and GSE3013) from the Gene Expression Omnibus database were downloaded and 118 differentially expressed genes (DEGs) were selected using a Venn diagram. Functional enrichment analyses were performed on the DEGs. A protein-protein interaction network was constructed, including the module analysis. A total of 11 hub genes were identified from the DEGs, and functional enrichment analyses were performed to clarify their possible biological processes. A total of 118 DEGs were selected from three mRNA datasets. Functional enrichment demonstrated 27 downregulated genes that were primarily involved in the positive regulation of transcription from RNA polymerase II promoter, protein binding and the nucleus. A total of 91 upregulated DEGs were mainly associated with cell division, protein binding and the nucleus. Pathway analysis indicated that the downregulated DEGs were mainly enriched in pathways associated with cancer, and the upregulated DEGs were mainly enriched in the cell cycle. The 11 hub genes were primarily enriched in the cell cycle, oocyte meiosis, progesterone-mediated oocyte maturation, the p53 signaling pathway and viral carcinogenesis. The integrated analysis showed that cyclin B1, ubiquitin conjugating enzyme E2 C and cell division cycle 20 may participate in the tumorigenesis, development and invasion of EC. In conclusion, the hub genes and pathways identified in the present study contributed to the understanding of carcinogenesis and progression of EC at the mechanistic and molecular-biological level. As candidate targets for the diagnosis and treatment of EC, these genes deserve further investigation.
Collapse
Affiliation(s)
- Sha Lv
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Xiaoxiao Xu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Zhangying Wu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
24
|
Fbxw7 is a driver of uterine carcinosarcoma by promoting epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2019; 116:25880-25890. [PMID: 31772025 PMCID: PMC6926017 DOI: 10.1073/pnas.1911310116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Uterine carcinosarcoma (UCS) is an aggressive endometrial cancer variant distinguished from endometrial adenocarcinoma (EC) by admixed malignant epithelial and mesenchymal components (carcinoma and sarcoma). The molecular events underlying UCS are enigmatic, as cancer gene mutations are generally shared among UCS/EC. We take advantage of genetic approaches in mice to show that inactivation of Fbxw7 and Pten results in UCS through spontaneous acquisition of mutations in a third gene (Tp53), arguing for strong biological selection and synergism in UCS. We used this UCS model including tumor-derived cell lines to show that Fbxw7 loss drives epithelial–mesenchymal transition, explaining Fbxw7’s role in UCS. This model system argues that simultaneous genetic defects in 3 distinct pathways (Fbxw7, Pten/PI3K, Tp53) converge in UCS genesis. Uterine carcinosarcoma is an aggressive variant of endometrial carcinoma characterized by unusual histologic features including discrete malignant epithelial and mesenchymal components (carcinoma and sarcoma). Recent studies have confirmed a monoclonal origin, and comprehensive genomic characterizations have identified mutations such as Tp53 and Pten. However, the biological origins and specific combination of driver events underpinning uterine carcinosarcoma have remained mysterious. Here, we explored the role of the tumor suppressor Fbxw7 in endometrial cancer through defined genetic model systems. Inactivation of Fbxw7 and Pten resulted in the formation of precancerous lesions (endometrioid intraepithelial neoplasia) and well-differentiated endometrioid adenocarcinomas. Surprisingly, all adenocarcinomas eventually developed into definitive uterine carcinosarcomas with carcinomatous and sarcomatous elements including heterologous differentiation, yielding a faithful genetically engineered model of this cancer type. Genomic analysis showed that most tumors spontaneously acquired Trp53 mutations, pointing to a triad of pathways (p53, PI3K, and Fbxw7) as the critical combination underpinning uterine carcinosarcoma, and to Fbxw7 as a key driver of this enigmatic endometrial cancer type. Lineage tracing provided formal genetic proof that the uterine carcinosarcoma cell of origin is an endometrial epithelial cell that subsequently undergoes a prominent epithelial–mesenchymal transition underlying the attainment of a highly invasive phenotype specifically driven by Fbxw7.
Collapse
|
25
|
Wang J, Song T, Zhou S, Kong X. YAP promotes the malignancy of endometrial cancer cells via regulation of IL-6 and IL-11. Mol Med 2019; 25:32. [PMID: 31299894 PMCID: PMC6624931 DOI: 10.1186/s10020-019-0103-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emerging evidence shows that Hippo signal pathways can regulate the progression of various cancer. While the roles of Yes-associated protein (YAP), the key transducer of Hippo signals, in the development of endometrial cancer (EC) are rarely investigated. METHODS The expression of YAP in endometrial cancer cells and tissues was measured. Its roles in proliferation and expression of interleukins (ILs) were investigated by use of its specific siRNA or inhibitor (verteporfin, VP). RESULTS YAP was upregulated in endometrial cancer cells and tissues. Knockdown of YAP or VP can suppress the proliferation while increase its chemo-sensitivity of EC cells. We found that targeted inhibition of YAP can decrease the expression of interleukin-6 (IL-6) and IL-11 in EC cells. Recombinant IL-6 or IL-11 can attenuate si-YAP suppressed proliferation of EC cells. Chromatin immunoprecipitation (ChIP) assay suggested that YAP can directly bind with the promoter of IL-6 and induce its transcription. As to IL-11, inhibitor of NF-κB (BAY 11-7082) can significantly down regulate the mRNA expression of IL-11. Over expression of p65 abolished si-YAP suppressed transcription of IL-11. It suggested that NF-κB was involved in the YAP regulated expression of IL-11. CONCLUSIONS YAP can regulate the proliferation and progression of EC cells. It suggested that targeted inhibition of YAP might be a potent potential approach for EC therapy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150081 Heilongjiang People’s Republic of China
| | - Tiefang Song
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150081 Heilongjiang People’s Republic of China
| | - Suiyang Zhou
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150081 Heilongjiang People’s Republic of China
| | - Xianchao Kong
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150081 Heilongjiang People’s Republic of China
| |
Collapse
|
26
|
Remmerie M, Janssens V. PP2A: A Promising Biomarker and Therapeutic Target in Endometrial Cancer. Front Oncol 2019; 9:462. [PMID: 31214504 PMCID: PMC6558005 DOI: 10.3389/fonc.2019.00462] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the use of targeted therapies has immensely increased in the treatment of cancer. However, treatment for endometrial carcinomas (ECs) has lagged behind, although potential molecular markers have been identified. This is particularly problematic for the type II ECs, since these aggressive tumors are usually not responsive toward the current standard therapies. Therefore, type II ECs are responsible for most EC-related deaths, indicating the need for new treatment options. Interestingly, molecular analyses of type II ECs have uncovered frequent genetic alterations (up to 40%) in PPP2R1A, encoding the Aα subunit of the tumor suppressive heterotrimeric protein phosphatase type 2A (PP2A). PPP2R1A mutations were also reported in type I ECs and other common gynecologic cancers, albeit at much lower frequencies (0-7%). Nevertheless, PP2A inactivation in the latter cancer types is common via other mechanisms, in particular by increased expression of Cancerous Inhibitor of PP2A (CIP2A) and PP2A Methylesterase-1 (PME-1) proteins. In this review, we discuss the therapeutic potential of direct and indirect PP2A targeting compounds, possibly in combination with other anti-cancer drugs, in EC. Furthermore, we investigate the potential of the PP2A status as a predictive and/or prognostic marker for type I and II ECs.
Collapse
Affiliation(s)
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Liu T, Jiang L, Yu L, Ge T, Wang J, Gao H. Association of TNFAIP8 gene polymorphisms with endometrial cancer in northern Chinese women. Cancer Cell Int 2019; 19:105. [PMID: 31043860 PMCID: PMC6480735 DOI: 10.1186/s12935-019-0827-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Tumor necrosis factor-a-induced protein 8 (TNFAIP8) presented a elevated expression in endometrial cancer (EC). However, the relationship of TNFAIP8 gene polymorphisms with EC risk remains unclear. This case–control study aimed to investigate the effect of single nucleotide polymorphisms (SNPs) in TNFAIP8 on northern Chinese women with EC. Methods SNP rs11064, rs1045241, and rs1045242 in TNFAIP8 were successfully genotyped in 248 cancer-free controls and 226 ECs by SNaPshot method, respectively. Logistic regression was performed to assess relationship of SNPs with EC risk. The relationships of SNPs with clinicopathological variables were evaluated by Chi-square test or Student’s t-test or Fisher’s text. Results The minor alleles of rs11064 in TNFAIP8 were strongly associated with EC risk, with adjust odds ratio (OR) of 1.719 (95% CI 1.180–2.506, P = 0.005). The minor allele of rs1045242 in the TNFAIP8 gene was strongly associated with with EC risk (adjust OR: 1.636, 95% CI 1.107–2.417, P = 0.014). rs11064 SNPs correlated with TNFAIP8 protein expression in EC (P = 0.015). For rs1045242, patients with AG + GG presented higher TNFAIP8 protein expression than that with AA (P = 0.020). It also showed that SNP rs11064 was associated with advanced FIGO stage (P = 0.001), deep myometrial invasion (P = 0.047), and lymph node metastasis (P = 0.048) under the codominant model in ECs. Conclusions SNP rs11064 in TNFAIP8 increased EC risk and significantly related with its protein expression in northern Chinese women. Electronic supplementary material The online version of this article (10.1186/s12935-019-0827-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianbo Liu
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Liangliang Jiang
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Libo Yu
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Tingting Ge
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Jing Wang
- 1Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| | - Hongyu Gao
- 2Department of Gastroenterologic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, 150081 China
| |
Collapse
|
28
|
Chiu HC, Li CJ, Yiang GT, Tsai APY, Wu MY. Epithelial to Mesenchymal Transition and Cell Biology of Molecular Regulation in Endometrial Carcinogenesis. J Clin Med 2019; 8:E439. [PMID: 30935077 PMCID: PMC6518354 DOI: 10.3390/jcm8040439] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Endometrial carcinogenesis is involved in several signaling pathways and it comprises multiple steps. The four major signaling pathways-PI3K/AKT, Ras/Raf/MEK/ERK, WNT/β-catenin, and vascular endothelial growth factor (VEGF)-are involved in tumor cell metabolism, growth, proliferation, survival, and angiogenesis. The genetic mutation and germline mitochondrial DNA mutations also impair cell proliferation, anti-apoptosis signaling, and epithelial⁻mesenchymal transition by several transcription factors, leading to endometrial carcinogenesis and distant metastasis. The PI3K/AKT pathway activates the ransforming growth factor beta (TGF-β)-mediated endothelial-to-mesenchymal transition (EMT) and it interacts with downstream signals to upregulate EMT-associated factors. Estrogen and progesterone signaling in EMT also play key roles in the prognosis of endometrial carcinogenesis. In this review article, we summarize the current clinical and basic research efforts regarding the detailed molecular regulation in endometrial carcinogenesis, especially in EMT, to provide novel targets for further anti-carcinogenesis treatment.
Collapse
Affiliation(s)
- Hsiao-Chen Chiu
- Department of Obstetrics and Gynecology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Andy Po-Yi Tsai
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
29
|
Felip I, Moiola CP, Megino-Luque C, Lopez-Gil C, Cabrera S, Solé-Sánchez S, Muñoz-Guardiola P, Megias-Roda E, Pérez-Montoyo H, Alfon J, Yeste-Velasco M, Santacana M, Dolcet X, Reques A, Oaknin A, Rodríguez-Freixinos V, Lizcano JM, Domènech C, Gil-Moreno A, Matias-Guiu X, Colas E, Eritja N. Therapeutic potential of the new TRIB3-mediated cell autophagy anticancer drug ABTL0812 in endometrial cancer. Gynecol Oncol 2019; 153:425-435. [PMID: 30853360 DOI: 10.1016/j.ygyno.2019.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The PI3K/AKT/mTOR pathway is frequently overactivated in endometrial cancer (EC). We assessed the efficacy of ABTL0812, a novel first-in-class molecule presenting a unique mechanism of action inhibiting this pathway. METHODS We investigated the effects of ABTL0812 on proliferation, cell death and modulation of intracellular signaling pathways in a wide panel of endometrioid and non-endometrioid cell lines, an inducible PTEN knock-out murine model, and two patient-derived xenograft murine models of EC. Then, TRIB3 expression was evaluated as potential ABTL0812 pharmacodynamic biomarker in a Phase 1b/2a clinical trial. RESULTS ABTL0812 induced an upregulation of TRIB3 expression, resulting in the PI3K/AKT/mTOR axis inhibition and autophagy cell death induction on EC cells but not in healthy endometrial cells. ABTL0812 treatment also impaired PTEN knock-out cells to progress from hyperplasia to cancer. The therapeutic effects of ABTL0812 were demonstrated in vivo. ABTL0812 increased TRIB3 mRNA levels in whole blood samples of eight EC patients, demonstrating that TRIB3 mRNA could be used as a pharmacodynamic biomarker to monitor the ABTL0812 treatment. CONCLUSIONS ABTL0812 may represent a novel and highly effective therapeutic agent by inducing TRIB3 expression and autophagy in EC patients, including those with poorer prognosis.
Collapse
Affiliation(s)
- Isidre Felip
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Cristian Pablo Moiola
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain; Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Cristina Megino-Luque
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Carlos Lopez-Gil
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Silvia Cabrera
- Gynecological Oncology Department, Vall Hebron University Hospital, CIBERONC, Barcelona, Spain
| | | | - Pau Muñoz-Guardiola
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain; Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elisabet Megias-Roda
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain; Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - José Alfon
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | | | - María Santacana
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Armando Reques
- Pathology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Victor Rodríguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - José Miguel Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Carles Domènech
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain; Gynecological Oncology Department, Vall Hebron University Hospital, CIBERONC, Barcelona, Spain.
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain; Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain.
| | - Nuria Eritja
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain.
| |
Collapse
|
30
|
Wang Y, Yu M, Yang JX, Cao DY, Zhang Y, Zhou HM, Yuan Z, Shen K. Genomic Comparison of Endometrioid Endometrial Carcinoma and Its Precancerous Lesions in Chinese Patients by High-Depth Next Generation Sequencing. Front Oncol 2019; 9:123. [PMID: 30886832 PMCID: PMC6410638 DOI: 10.3389/fonc.2019.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Endometrial intraepithelial neoplasia (EIN), also known as endometrial atypical hyperplasia (EAH) is believed to be the precursor lesion of endometrioid endometrial carcinoma (EEC). Many genetic factors play important roles in the process of carcinogenesis, however, the key genetic alterations from dysplasia to endometrial cancer remains poorly understood. Germline mutations in Lynch syndrome genes are associated with hereditary endometrial carcinoma. The role of other cancer susceptibility genes is unclear. The aim of this study was to investigate the genomic alterations of premalignant endometrial lesion and EEC, and to determine the prevalence of cancer predisposition gene mutations in an unselected endometrial carcinoma patient cohort. Here, we applied a comprehensive cancer gene panel (363 cancer-related genes) to capture the exomes of cancer-related genes. Samples were collected from 79 patients with EEC and 36 patients with EIN. Our results demonstrate that EIN harbors most of the driver events reported in EEC and for the first time we reported a high frequency of the amplification of VEGFB gene in endometrial cancer. Moreover, we identified four novel candidate cancer-associated genes (CTCF, ARHGAP35, NF1, and KDR) which may be crucial in the carcinogenesis of EEC. In addition, we identified 2 patients who had a deleterious germline mutation in Lynch syndrome genes (MLH1 and MLH2), and another 8 patients harbored germline mutations of 6 non-Lynch syndrome genes (MUTYH, GALNT12, POLE, MPL, ATM, and ERCC4) which may be associated with endometrial cancer. Larger series will have to be investigated to assess the risks and the proportion of endometrial cancers attributable to other genes.
Collapse
Affiliation(s)
- Yao Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Xin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong-Yan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Mei Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Yuan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Affiliation(s)
- Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| |
Collapse
|
32
|
Exploring lncRNA-Mediated Regulatory Networks in Endometrial Cancer Cells and the Tumor Microenvironment: Advances and Challenges. Cancers (Basel) 2019; 11:cancers11020234. [PMID: 30781521 PMCID: PMC6406952 DOI: 10.3390/cancers11020234] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies have revealed both the promise and challenges of targeting long non-coding RNAs (lncRNAs) to diagnose and treat endometrial cancer (EC). LncRNAs are upregulated or downregulated in ECs compared to normal tissues and their dysregulation has been linked to tumor grade, FIGO stage, the depth of myometrial invasion, lymph node metastasis and patient survival. Tumor suppressive lncRNAs (GAS5, MEG3, FER1L4 and LINC00672) and oncogenic lncRNAs (CCAT2, BANCR, NEAT1, MALAT1, H19 and Linc-RoR) have been identified as upstream modulators or downstream effectors of major signaling pathways influencing EC metastasis, including the PTEN/PI3K/AKT/mTOR, RAS/RAF/MEK/ERK, WNT/β-catenin and p53 signaling pathways. TUG1 and TDRG1 stimulate the VEGF-A pathway. PCGEM1 is implicated in activating the JAK/STAT3 pathway. Here, we present an overview of the expression pattern, prognostic value, biological function of lncRNAs in EC cells and their roles within the tumor microenvironment, focusing on the influence of lncRNAs on established EC-relevant pathways. We also describe the emerging classification of EC subtypes based on their lncRNA signature and discuss the clinical implications of lncRNAs as valuable biomarkers for EC diagnosis and potential targets for EC treatment.
Collapse
|
33
|
Li X, Liu M, Ji JY. Understanding Obesity as a Risk Factor for Uterine Tumors Using Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:129-155. [PMID: 31520353 DOI: 10.1007/978-3-030-23629-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple large-scale epidemiological studies have identified obesity as an important risk factor for a variety of human cancers, particularly cancers of the uterus, gallbladder, kidney, liver, colon, and ovary, but there is much uncertainty regarding how obesity increases the cancer risks. Given that obesity has been consistently identified as a major risk factor for uterine tumors, the most common malignancies of the female reproductive system, we use uterine tumors as a pathological context to survey the relevant literature and propose a novel hypothesis: chronic downregulation of the cyclin-dependent kinase 8 (CDK8) module, composed of CDK8 (or its paralog CDK19), Cyclin C, MED12 (or MED12L), and MED13 (or MED13L), by elevated insulin or insulin-like growth factor signaling in obese women may increase the chances to dysregulate the activities of transcription factors regulated by the CDK8 module, thereby increasing the risk of uterine tumors. Although we focus on endometrial cancer and uterine leiomyomas (or fibroids), two major forms of uterine tumors, our model may offer additional insights into how obesity increases the risk of other types of cancers and diseases. To illustrate the power of model organisms for studying human diseases, here we place more emphasis on the findings obtained from Drosophila melanogaster.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
34
|
Wang F, Chen Q, Huang G, Guo X, Li N, Li Y, Li B. BKCa participates in E2 inducing endometrial adenocarcinoma by activating MEK/ERK pathway. BMC Cancer 2018; 18:1128. [PMID: 30445932 PMCID: PMC6240221 DOI: 10.1186/s12885-018-5027-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background The large-conductance, voltage-gated, calcium (Ca (2+))-activated potassium channel (BKCa) plays an important role in regulating Ca (2+) signaling and cell physiological function, and is aberrantly expressed in some types of cancers. The present study focuses on identifying the oncogenic potential and clinical significance of BKCa in endometrial adenocarcinoma, as well as exploring the mechanistic relevance by 17β -estradiol (E2) inducing aberrant activation of MEK1/2 and ERK1/2 via BKCa. Methods The expression of BKCa, ERK1/2 and p-ERK1/2 were examined by immunohistochemical staining in 263 cases, including 185 primary types I endometrial cancer tissues, 38 atypical endometrial hyperplasia tissues and 40 normal endometrium tissues. Cell growth, cycle, apoptosis rate, migration and invasion was separately tested in Ishikawa cells using siRNA-BKCa and/or E2 treatment, as well as the expression of these interested proteins by western blot analysis. Results We showed that expression of BKCa is significantly elevated in 185 types I endometrial adenocarcinoma tissues compared to those of the normal endometrium and atypical endometrial hyperplasia tissues. Furthermore, in vitro observations revealed that down-regulation of BKCa expression inhibited cell growth by both enhancing apoptosis and blocking G1/S transition, suppressed cell migration and invasion in Ishakiwa cells, and decreased the expression of p-MEK1/2 and p-ERK1/2. Additionally, RNAi-mediated knockdown of BKCa attenuated the increased cellular growth and invasion, as well as the elevated expression of p-MEK1/2 and p-ERK1/2 proteins, induced by E2 stimulation. More importantly, the aberrant expression of BKCa and p-ERK1/2 were closely related with poor prognostic factors in type I endometrial cancer, and up-regulated expression of p-ERK1/2 was significantly associated with shorter disease-free survival (DFS) and overall survival (OS) and was an independent prognostic factor in type I endometrial cancer patients. Conclusion Our results demonstrated that BKCa and the key downstream effectors p-ERK1/2 could be involved in important signaling pathways in initiation and development of endometrial adenocarcinoma and may provide a new therapeutic approach for women with endometrial cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-5027-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Qin Chen
- Department of Pathology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Genping Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xuedong Guo
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Na Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yang Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Baohua Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
35
|
Dysregulation of Krüppel-like factor 12 in the development of endometrial cancer. Gynecol Oncol 2018; 152:177-184. [PMID: 30482501 DOI: 10.1016/j.ygyno.2018.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Endometrial cancer (EC) remains a malignancy with poor survival outcome. To investigate the role of Krüppel-like factor 12 (KLF12), a transcription factor, in the progression of human EC. METHODS Immunohistochemistry, real time-PCR and western blot analysis of KLF12 expression in EC patients' tissues. Bioinformatics analysis revealed the clinical importance of KLF12 expression and survival ratio. Overexpression of KLF12 was generated using the ViraPower Adenoviral Expression System in EC cell lines. Cell viability assay, cell apoptosis assay and cell migration assay were used to determine cell proliferation, cell apoptosis and cell migration, respectively. Western blot analysis was carried out to determine the protein levels in cell lines and animal tissues. RESULTS The expression of KLF12 was observed to be much higher in human EC tissues compared with normal endometrium. Moreover, KLF12 expression was correlated positively with disease recurrence and was also associated with decreased survival probability. The overexpression of KLF12 in EC cell lines resulted in increased cell proliferation, decreased cell apoptosis and enhanced cell migration. Furthermore, overexpression of KLF12 also increased tumor size in vivo. Moreover, up-regulation of KLF12 dramatically increased the expression levels of MMP2, MMP9, pAKT S473 and CCND1. Our research reveals that overexpressed KLF12 contributes the growth of EC tumor by activating AKT signaling and increasing CCND1expression level. CONCLUSIONS To our knowledge, this is the first study to explore the significance of KLF12 in the development of EC, and KLF12 is expected to provide a novel potential therapeutic target for EC treatment.
Collapse
|
36
|
Remmerie M, Janssens V. Targeted Therapies in Type II Endometrial Cancers: Too Little, but Not Too Late. Int J Mol Sci 2018; 19:E2380. [PMID: 30104481 PMCID: PMC6121653 DOI: 10.3390/ijms19082380] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023] Open
Abstract
Type II endometrial carcinomas (ECs) are responsible for most endometrial cancer-related deaths due to their aggressive nature, late stage detection and high tolerance for standard therapies. However, there are no targeted therapies for type II ECs, and they are still treated the same way as the clinically indolent and easily treatable type I ECs. Therefore, type II ECs are in need of new treatment options. More recently, molecular analysis of endometrial cancer revealed phosphorylation-dependent oncogenic signalling in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways to be most frequently altered in type II ECs. Consequently, clinical trials tested pharmacologic kinase inhibitors targeting these pathways, although mostly with rather disappointing results. In this review, we highlight the most common genetic alterations in type II ECs. Additionally, we reason why most clinical trials for ECs using targeted kinase inhibitors had unsatisfying results and what should be changed in future clinical trial setups. Furthermore, we argue that, besides kinases, phosphatases should no longer be ignored in clinical trials, particularly in type II ECs, where the tumour suppressive phosphatase protein phosphatase type 2A (PP2A) is frequently mutated. Lastly, we discuss the therapeutic potential of targeting PP2A for (re)activation, possibly in combination with pharmacologic kinase inhibitors.
Collapse
Affiliation(s)
- Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| |
Collapse
|
37
|
Bai J, Luo X. 5-Hydroxy-4'-Nitro-7-Propionyloxy-Genistein Inhibited Invasion and Metastasis via Inactivating Wnt/b-Catenin Signal Pathway in Human Endometrial Carcinoma Ji Endometrial Cells. Med Sci Monit 2018; 24:3230-3243. [PMID: 29769480 PMCID: PMC5985707 DOI: 10.12659/msm.909472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Chemotherapy has been assuring more important roles in the treatment of carcinoma. Developing new types of drugs with less adverse effects and low drug resistance has become an important researching focus. The present study aimed to investigate the anticancer effects of 5-hydroxy-4′-nitro-7-propionyloxy-genistein (HNPG) and to elucidate its underlying molecular mechanism. Material/Methods The inhibitory effects of cell viability of HNPG were detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, flat plate clone formation method, and Transwell assay. The distribution of cell cycle was analyzed using flow cytometry (FCM) method. The morphological alteration, root-mean-squared roughness (Rq), average roughness (Ra), Young’s modulus, and adhesive force were measured by atomic force microscope (AFM) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were used to explore the possible molecular mechanism. Results We found that HNPG had dramatic activity against Ji Endometrial cells (JEC) in vitro, inhibited the proliferation and colony formation, attenuated invasion and migration ability, and arrested cell cycle in G1 phase, all in a dose-dependent manner. Simultaneously, cell bodies shrunk, pseudopod structures retracted, Rq and Ra were reduced, and Young’s modulus and adhesive force increased, accompanied by downregulation of β-catenin, C-Myc, Cyclin D1, matrix metalloprotease 2 (MMP-2), matrix metalloprotease 7 (MMP-7), and matrix metalloprotease 9 (MMP-9). Conclusions HNPG dramatically inhibited invasion and metastasis of JEC cells in vitro. Its molecular mechanism might be related to inactivation of the wnt/β-catenin signal pathway, accumulated cells in G1/S phase, inhibited cell proliferation, improved adhesive force between cells, and reduced cell plasticity and elasticity.
Collapse
Affiliation(s)
- Jun Bai
- Department of Obstetrics and Gynecology, The First Clinical School of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xin Luo
- Department of Obstetrics and Gynecology, The First Clinical School of Jinan University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
38
|
Wan J, Liu H, Feng Q, Liu J, Ming L. HOXB9 promotes endometrial cancer progression by targeting E2F3. Cell Death Dis 2018; 9:509. [PMID: 29724991 PMCID: PMC5938704 DOI: 10.1038/s41419-018-0556-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022]
Abstract
HOXB9, as a HOX family transcription factor, playing a significant role in embryonic development and cancer progression. However, the function of HOXB9 and its precise mechanism in regulating endometrial cancer progression remains unknown. Here, we demonstrated that the expression of HOXB9 was increased in endometrial cancer, and associated with histological grade and lymph node metastasis. In addition, elevated HOXB9 predicts a poor prognosis in endometrial cancer patients. Interestingly, bioinformatics analysis of TCGA cancer database showed that HOXB9 expression is positively correlated with E2F3 expression. Moreover, HOXB9 promoted E2F3 expression by directly targeting to its promoter. Furthermore, we found that knocking down E2F3 abolished the ability of HOXB9 in enhancing cell migration. Taken together, for the first, we demonstrated the function and mechanism of HOXB9 in regulating endometrial cancer progression, and indicated HOXB9 may be a novel prognostic marker of endometrial cancer.
Collapse
Affiliation(s)
- Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quanling Feng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Jun Liu
- Department of General Surgery, Zhecheng People's Hospital, 476000, Shangqiu, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
39
|
Suh DS, Park SE, Jin H, Lee K, Bae J. LRIG2 is a growth suppressor of Hec-1A and Ishikawa endometrial adenocarcinoma cells by regulating PI3K/AKT- and EGFR-mediated apoptosis and cell-cycle. Oncogenesis 2018; 7:3. [PMID: 29358688 PMCID: PMC5833696 DOI: 10.1038/s41389-017-0019-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/22/2017] [Indexed: 01/07/2023] Open
Abstract
Although endometrial cancer is the most common type of gynecological malignancy in developed countries, its molecular etiology is not well understood. Leucine-rich repeat and immunoglobulin-like domain 2 (LRIG2) is an evolutionarily conserved gene, but its functions in the endometrium are unknown. In this study, we found that LRIG2 is highly downregulated in endometrial adenocarcinoma patients and that it functions as a tumor suppressor. LRIG2 induced the mitochondrion-mediated apoptotic pathways by regulating stoichiometric balance among BCL-2 family proteins, whereby pro-survival members, MCL-1 and BCL-xL, were downregulated and pro-apoptotic BAK and BAX were upregulated. LRIG2 also inhibited proliferation of the Hec-1A and Ishikawa endometrial adenocarcinoma cells by upregulating p21. LRIG2 induced BAX- and BAK-dependent cell death that was efficiently prevented by MCL-1 overexpression. Furthermore, we found that LRIG2 unexpectedly phosphor-activates phosphoinositide 3-kinase (PI3K)/AKT and epidermal growth factor receptor (EGFR), which are conventionally accepted as survival signaling cues in diverse types of cancer. We observed that PI3K/AKT and EGFR serve as key kinases that have roles as growth suppressors of Hec-1A endometrial cancer cells by mediating the LRIG2-induced modulation of the BCL-2 family of proteins and p21. In vivo delivery of antisense DNAs against LRIG2 promoted the Hec-1A endometrial tumor growth in a xenograft mouse model, and immunoblotting of these tumor extracts showed consistent modulation of AKT, EGFR, the BCL-2 family members, and p21. Thus, our results demonstrated that LRIG2 is a growth suppressor of endometrial adenocarcinoma cells.
Collapse
Affiliation(s)
- Dae-Shik Suh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - Si Eun Park
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Hanyong Jin
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
40
|
Eritja N, Jové M, Fasmer KE, Gatius S, Portero-Otin M, Trovik J, Krakstad C, Sol J, Pamplona R, Haldorsen IS, Matias-Guiu X. Tumour-microenvironmental blood flow determines a metabolomic signature identifying lysophospholipids and resolvin D as biomarkers in endometrial cancer patients. Oncotarget 2017; 8:109018-109026. [PMID: 29312587 PMCID: PMC5752500 DOI: 10.18632/oncotarget.22558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We aimed to study the potential influence of tumour blood flow -obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)- in the metabolomic profiles of endometrial tumours. METHODS Liquid chromatography coupled to mass spectrometry established the metabolomic profile of endometrial cancer lesions exhibiting high (n=12) or low (n=14) tumour blood flow at DCE-MRI. Univariate and multivariate statistics (ortho-PLS-DA, a random forest (RF) classifier and hierarchical clustering) and receiver operating characteristic (ROC) curves were used to establish a panel for potentially discriminating tumours with high versus low blood flow. RESULTS Tumour blood flow is associated with specific metabolomic signatures. Ortho-PLS-DA and RF classifier resulted in well-defined clusters with an out-of-bag error lower than 8%. We found 28 statistically significant molecules (False Discovery Rate corrected p<0.05). Based on exact mass, retention time and isotopic distribution we identified 9 molecules including resolvin D and specific lysophospholipids associated with blood flow, and hence with a potentially regulatory role relevant in endometrial cancer. CONCLUSIONS Tumour flow parameters at DCE-MRI quantifying vascular tumour characteristics are reflected in corresponding metabolomics signatures and highlight disease mechanisms that may be targetable by novel therapies.
Collapse
Affiliation(s)
- Núria Eritja
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Arnau de Vilanova University Hospital, University of Lleida, IRBLleida, Lleida, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Kristine Eldevik Fasmer
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Sònia Gatius
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Arnau de Vilanova University Hospital, University of Lleida, IRBLleida, Lleida, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Jone Trovik
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Camilla Krakstad
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Ingfrid S. Haldorsen
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Arnau de Vilanova University Hospital, University of Lleida, IRBLleida, Lleida, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalonia, Spain
| |
Collapse
|
41
|
Makker V, Green AK, Wenham RM, Mutch D, Davidson B, Miller DS. New therapies for advanced, recurrent, and metastatic endometrial cancers. GYNECOLOGIC ONCOLOGY RESEARCH AND PRACTICE 2017; 4:19. [PMID: 29214032 PMCID: PMC5712183 DOI: 10.1186/s40661-017-0056-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Endometrial cancer is the most common gynecologic malignancy in the United States, accounting for 6% of cancers in women. In 2017, an estimated 61,380 women were diagnosed with endometrial cancer, and approximately 11,000 died from this disease. From 1987 to 2008, there was a 50% increase in the incidence of endometrial cancer, with an approximate 300% increase in the number of associated deaths. Although there are many chemotherapeutic and targeted therapy agents approved for ovarian, fallopian tube and primary peritoneal cancers, since the 1971 approval of megestrol acetate for the palliative treatment of advanced endometrial cancer, only pembrolizumab has been Food and Drug Administration (FDA)-approved for high microsatellite instability (MSI-H) or mismatch repair deficient (dMMR) endometrial cancer; this highlights the need for new therapies to treat advanced, recurrent, metastatic endometrial cancer. In this review, we discuss current and emerging treatment options for endometrial cancer, including chemotherapy, targeted therapy, and immunotherapy. The National Cancer Institute (NCI) and others are now focusing their efforts on the design of scientifically rational targeted therapy and immunotherapy trials for specific molecular phenotypes of endometrial cancer. This is essential for the advancement of cancer care for women, which is threatened by a severe enrollment decline of approximately 80% for gynecologic oncology clinical trials.
Collapse
Affiliation(s)
- Vicky Makker
- Gynecologic Medical Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 1275 York Avenue, New York, TX 10065 USA
| | - Angela K Green
- Gynecologic Medical Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 1275 York Avenue, New York, TX 10065 USA
| | - Robert M Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL USA
| | - David Mutch
- Division of Gynecologic Oncology, Washington University School of Medicine, St Louis, MO USA
| | - Brittany Davidson
- Division of Gynecologic Oncology, Duke University Medical Center, Duke Cancer Institute, Durham, NC USA
| | - David Scott Miller
- Division of Gynecologic Oncology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
42
|
Gao Y, Lin P, Lydon JP, Li Q. Conditional abrogation of transforming growth factor-β receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice. J Pathol 2017; 243:89-99. [PMID: 28657664 DOI: 10.1002/path.4930] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/10/2017] [Accepted: 05/28/2017] [Indexed: 12/16/2022]
Abstract
Although a putative role for transforming growth factor-β (TGFB) signalling in the pathogenesis of human endometrial cancer has long been proposed, the precise function of TGFB signalling in the development and progression of endometrial cancer remains elusive. Depletion of phosphatase and tensin homologue (PTEN) in the mouse uterus causes endometrial cancer. To identify the potential role of TGFB signalling in endometrial cancer, we simultaneously deleted TGFB receptor 1 (Tgfbr1) and Pten in the mouse uterus by using Cre-recombinase driven by the progesterone receptor (termed Ptend/d ;Tgfbr1d/d ). We found that Ptend/d ;Tgfbr1d/d mice developed severe endometrial lesions that progressed more rapidly than those resulting from conditional deletion of Pten alone, suggesting that TGFB signalling synergizes with PTEN to suppress endometrial cancer progression. Remarkably, Ptend/d ;Tgfbr1d/d mice developed distant pulmonary metastases, leading to a significantly reduced lifespan. The development of metastasis and accelerated tumour progression in Ptend/d ;Tgfbr1d/d mice are associated with increased production of proinflammatory chemokines, enhanced cancer cell motility, as shown by myometrial invasion and disruption, and an altered tumour microenvironment characterized by recruitment of tumour-associated macrophages. Thus, conditional deletion of Tgfbr1 in PTEN-inactivated endometrium leads to a disease that recapitulates invasive and lethal human endometrial cancer. This mouse model may be valuable for preclinical testing of new cancer therapies, particularly those targeting metastasis, one of the hallmarks of cancer and a major cause of death in endometrial cancer patients. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yang Gao
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Pengfei Lin
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|