1
|
Farahinia A, Khani M, Morhart TA, Wells G, Badea I, Wilson LD, Zhang W. A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2024; 24:6031. [PMID: 39338775 PMCID: PMC11436177 DOI: 10.3390/s24186031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Milad Khani
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler A Morhart
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Ildiko Badea
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
2
|
Voronin DV, Abalymov AA, Svenskaya YI, Lomova MV. Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. Int J Mol Sci 2021; 22:9149. [PMID: 34502059 PMCID: PMC8430748 DOI: 10.3390/ijms22179149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The increased research activity aiming at improved delivery of pharmaceutical molecules indicates the expansion of the field. An efficient therapeutic delivery approach is based on the optimal choice of drug-carrying vehicle, successful targeting, and payload release enabling the site-specific accumulation of the therapeutic molecules. However, designing the formulation endowed with the targeting properties in vitro does not guarantee its selective delivery in vivo. The various biological barriers that the carrier encounters upon intravascular administration should be adequately addressed in its overall design to reduce the off-target effects and unwanted toxicity in vivo and thereby enhance the therapeutic efficacy of the payload. Here, we discuss the main parameters of remote-controlled drug delivery systems: (i) key principles of the carrier selection; (ii) the most significant physiological barriers and limitations associated with the drug delivery; (iii) major concepts for its targeting and cargo release stimulation by external stimuli in vivo. The clinical translation for drug delivery systems is also described along with the main challenges, key parameters, and examples of successfully translated drug delivery platforms. The essential steps on the way from drug delivery system design to clinical trials are summarized, arranged, and discussed.
Collapse
Affiliation(s)
- Denis V. Voronin
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Leninsky Prospekt 65, 119991 Moscow, Russia
| | - Anatolii A. Abalymov
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| | - Yulia I. Svenskaya
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| | - Maria V. Lomova
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| |
Collapse
|
3
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
5
|
Zhu L, Huang W, Yang F, Yin L, Liang S, Zhao W, Mao L, Yu X(J, Qiao R, Zhao Y. Manipulation of Single Cells Using a Ferromagnetic Nanorod Cluster Actuated by Weak AC Magnetic Fields. ACTA ACUST UNITED AC 2018; 3:e1800246. [DOI: 10.1002/adbi.201800246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/26/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Lu Zhu
- School of Chemical Materials and Biomedical Engineering College of Engineering University of Georgia Athens GA 30602 USA
| | - Weijie Huang
- Department of Physics and Astronomy University of Georgia Athens GA 30602 USA
| | - Fengchang Yang
- Department of Mechanical Engineering Virginia Tech Blacksburg VA 24061 USA
- JENSEN HUGHES, Inc. Blacksburg VA 24060 USA
| | - Lei Yin
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Shenxuan Liang
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Wujun Zhao
- School of Electrical and Computer Engineering College of Engineering University of Georgia Athens GA 30602 USA
| | - Leidong Mao
- School of Electrical and Computer Engineering College of Engineering University of Georgia Athens GA 30602 USA
| | | | - Rui Qiao
- Department of Mechanical Engineering Virginia Tech Blacksburg VA 24061 USA
| | - Yiping Zhao
- Department of Physics and Astronomy University of Georgia Athens GA 30602 USA
| |
Collapse
|
6
|
Amin R, Knowlton S, Dupont J, Bergholz JS, Joshi A, Hart A, Yenilmez B, Yu CH, Wentworth A, Zhao JJ, Tasoglu S. 3D-printed smartphone-based device for label-free cell separation. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2016-0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To assess several fabrication metrics of a 3D-printed smartphone-attachable continuous-flow magnetic focusing device for real-time separation and detection of different cell types based on their volumetric mass density in high-volume samples. Method: The smartphone apparatus has been designed and fabricated using three different 3D printing method. Several 3D printing metrics including cost, printing time, and resolution have been evaluated to propose a cost-efficient and high-performance platform for low-resource settings. Results: To apply the magnetic focusing technique on large sample volumes, a heterogeneous mixture of sample (e.g., containing blood cells and cancer cells) suspended in paramagnetic medium is pumped through a magnetic field at an optimum flow rate. The performance of the 3D-printed device has been investigated by demonstrating separation of microspheres, breast, lung, ovarian and prostate cancer cells mixed with blood cells. The separation distance of cancer and blood cells is around 100 μm, allowing the two cell types to be easily distinguished. Conclusion: This device could be useful for clinical centers in low-income countries where expensive infrastructure, equipment (e.g., FACS) and technical expertise are lacking. This device could ultimately be applied to rare cell separation and purification.
Collapse
Affiliation(s)
- Reza Amin
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Stephanie Knowlton
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Joshua Dupont
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Johann S Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Joshi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Alexander Hart
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Bekir Yenilmez
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Chu Hsiang Yu
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Adam Wentworth
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Savas Tasoglu
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Institute for Collaboration on Health, Intervention, & Policy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|