1
|
Fakhar-I-Adil M, Angel-Velez D, Araftpoor E, Amin QA, Hedia M, Bühler M, Gevaert K, Menten B, Van Soom A, Chuva de Sousa Lopes SM, Stoop D, De Roo C, Smits K, Heindryckx B. Biphasic CAPA-IVM Improves Equine Oocyte Quality and Subsequent Embryo Development Without Inducing Genetic Aberrations. Int J Mol Sci 2025; 26:5495. [PMID: 40564960 PMCID: PMC12192595 DOI: 10.3390/ijms26125495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2025] [Revised: 06/04/2025] [Accepted: 06/05/2025] [Indexed: 06/28/2025] Open
Abstract
In vitro maturation (IVM) of oocytes retrieved from ovum pick-up (OPU) or ovarian tissue (OT) is a standard approach for patients with specific conditions where prior hormonal stimulation is contraindicated. However, the developmental competence of oocytes matured in vitro is still inferior to that of oocytes matured in vivo. Capacitation IVM (CAPA-IVM) includes an extra step of pre-maturation culture (PMC) with c-type natriuretic peptide (CNP) as a meiotic arrestor to better synchronize cytoplasmic and nuclear maturity in oocytes by allowing the cytoplasm additional time to acquire essential components critical for optimal competency. This study aims to evaluate the effect of CAPA-IVM on equine oocyte quality and developmental competence. Immature cumulus-oocyte complexes (COCs) were retrieved from slaughterhouse ovaries and matured in vitro either in CAPA-IVM (short 6 h, long 24 h pre-maturation) or standard IVM. Mature oocytes from each group were analyzed for calcium-releasing potential (n = 52) and single-oocyte proteomics (n = 44), and embryo development (n = 229) was assessed after fertilization with piezo-drilled intracytoplasmic sperm injection (ICSI). Genetic analysis of developed blastocysts (n = 41) was performed to detect chromosomal aberrations. Our findings demonstrate that CAPA-IVM of equine COCs yields significantly higher maturation rates than controls. Moreover, short CAPA-IVM with six hours pre-maturation culture showed substantially higher embryo development potential than the control group (20/69 vs. 9/63, respectively). Genetic analysis revealed a high euploidy rate in equine blastocysts regardless of the maturation conditions. Live calcium imaging of the fertilized oocytes demonstrated that the majority of oocytes displayed non-continuous calcium oscillation patterns, irrespective of maturation conditions. Single-oocyte proteomics reveals a comparable proteomic landscape between mature oocytes subjected to short CAPA-IVM and standard IVM. However, we identified four enriched gene sets with positive enrichment scores after short CAPA-IVM, related to cytoskeleton regulation, ribosomal function, and cytosolic components. Our findings indicate that CAPA-IVM holds the potential to improve oocyte quality and competence in horses. However, further fine-tuning of culture conditions would benefit the effective use of these IVM systems. Moreover, given that the mare serves as an excellent model for human reproduction, the molecular trends identified in this study could provide valuable insights for advancing human artificial reproductive technologies.
Collapse
Affiliation(s)
- Muhammad Fakhar-I-Adil
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Daniel Angel-Velez
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium; (D.A.-V.); (Q.A.A.); (M.H.); (A.V.S.); (K.S.)
| | - Emin Araftpoor
- VIB-UGent Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; (E.A.); (M.B.); (K.G.)
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Qurratul Ain Amin
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium; (D.A.-V.); (Q.A.A.); (M.H.); (A.V.S.); (K.S.)
| | - Mohamed Hedia
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium; (D.A.-V.); (Q.A.A.); (M.H.); (A.V.S.); (K.S.)
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Marcel Bühler
- VIB-UGent Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; (E.A.); (M.B.); (K.G.)
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; (E.A.); (M.B.); (K.G.)
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium; (D.A.-V.); (Q.A.A.); (M.H.); (A.V.S.); (K.S.)
| | | | - Dominic Stoop
- Department for Reproductive Medicine, Women’s Clinic, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (D.S.); (C.D.R.)
| | - Chloë De Roo
- Department for Reproductive Medicine, Women’s Clinic, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (D.S.); (C.D.R.)
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium; (D.A.-V.); (Q.A.A.); (M.H.); (A.V.S.); (K.S.)
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| |
Collapse
|
2
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
3
|
Conti Nibali S, Battiato G, Pappalardo XG, De Pinto V. Voltage-Dependent Anion Channels in Male Reproductive Cells: Players in Healthy Fertility? Biomolecules 2024; 14:1290. [PMID: 39456223 PMCID: PMC11506323 DOI: 10.3390/biom14101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Male infertility affects nearly 50% of infertile couples, with various underlying causes, including endocrine disorders, testicular defects, and environmental factors. Spermatozoa rely on mitochondrial oxidative metabolism for motility and fertilization, with mitochondria playing a crucial role in sperm energy production, calcium regulation, and redox balance. Voltage-dependent anion channels (VDACs), located on the outer mitochondrial membrane, regulate energy and metabolite exchange, which are essential for sperm function. This review offers an updated analysis of VDACs in the male reproductive system, summarizing recent advances in understanding their expression patterns, molecular functions, and regulatory mechanisms. Although VDACs have been widely studied in other tissues, their specific roles in male reproductive physiology still remain underexplored. Special attention is given to the involvement of VDAC2/3 isoforms, which may influence mitochondrial function in sperm cells and could be implicated in male fertility disorders. This update provides a comprehensive framework for future research in reproductive biology, underscoring the significance of VDACs as a molecular link between mitochondrial function and male fertility.
Collapse
Affiliation(s)
| | | | | | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (S.C.N.); (G.B.); (X.G.P.)
| |
Collapse
|
4
|
Christodoulaki A, He H, Zhou M, De Roo C, Baetens M, De Pretre T, Fakhar-I-Adil M, Menten B, Van Soom A, Stoop D, Boel A, Heindryckx B. Pronuclear transfer rescues poor embryo development of in vitro-grown secondary mouse follicles. Hum Reprod Open 2024; 2024:hoae009. [PMID: 38425578 PMCID: PMC10904147 DOI: 10.1093/hropen/hoae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
STUDY QUESTION Is pronuclear transfer (PNT) capable of restoring embryo developmental arrest caused by cytoplasmic inferiority of in vitro-grown (IVG) mouse oocytes? SUMMARY ANSWER PNT to in vivo matured cytoplasm significantly improved embryo development of IVG mouse oocytes, leading to living, fertile offspring. WHAT IS KNOWN ALREADY In vitro follicle culture has been considered as a fertility preservation option for cancer patients. Studies describing the culture of human follicles remain scarce, owing to low availability of tissue. Mouse models have extensively been used to study and optimize follicle culture. Although important achievements have been accomplished, including the production of healthy offspring in mice, IVG oocytes are of inferior quality when compared to in vivo-grown oocytes, likely because of cytoplasmic incompetence. STUDY DESIGN SIZE DURATION The study was carried out from September 2020 to February 2022. In total, 120 15-day-old B6D2 mice were used to perform secondary follicle culture and assess the quality of IVG oocytes. In vivo-grown control oocytes were obtained from 85 8- to 12-week-old B6D2 mice, following ovarian stimulation. For sperm collection, four B6D2 males between 10 and 14 weeks old were used. For embryo transfer, 14 8- to 12-week-old CD1 females served as surrogate mothers and 10 CD1 vasectomized males 10-24 weeks old were used to generate pseudo-pregnant females. Finally, for mating, four B6D2 female mice aged 8-10 weeks and two B6D2 male mice aged 10 weeks old were used to confirm the fertility of nuclear transfer (NT)-derived pups. PARTICIPANTS/MATERIALS SETTING METHODS Secondary follicles from 15-day-old B6D2 mice were isolated from the ovaries and cultured for 9 days, before a maturation stimulus was given. Following 16-18 h of maturation, oocytes were collected and evaluated on maturation rate, oocyte diameter, activation rate, spindle morphology, calcium-releasing ability, and mitochondrial membrane potential. For every experiment, in vivo-grown oocytes were used as a control for comparison. When cytoplasmic immaturity and poor embryo development were confirmed in IVG oocytes, PNT was performed. For this, the pronuclei from IVG oocytes, created following parthenogenetic activation and IVF, were transferred to the cytoplasm of fertilized, in vivo-grown oocytes. Genetic analysis and embryo transfer of the generated embryos were implemented to confirm the safety of the technique. MAIN RESULTS AND THE ROLE OF CHANCE Following 9 days of follicle culture, 703 oocytes were collected, of which 76% showed maturation to the metaphase II stage. Oocyte diameters were significantly lower in IVG oocytes, measuring 67.4 μm versus 73.1 μm in controls (P < 0.001). Spindle morphology did not differ significantly between IVG and control oocytes, but calcium-releasing ability was compromised in the IVG group. An average calcium release of 1.62 arbitrary units was observed in IVG oocytes, significantly lower than 5.74 in control oocytes (P < 0.001). Finally, mitochondrial membrane potential was inferior in IVG compared to the control group, reaching an average value of 0.95 versus 2.27 (P < 0.001). Developmental potential of IVG oocytes was assessed following parthenogenetic activation with strontium chloride (SrCl2). Only 59.4% of IVG oocytes cleaved to two cells and 36.3% reached the blastocyst stage, significantly lower than 89.5% and 88.2% in control oocytes, respectively (P < 0.001 and 0.001). Both PNT and spindle transfer (ST) were explored in pilot experiments with parthenogenetically activated oocytes, as a means to overcome poor embryo development. After the added value of NT was confirmed, we continued with the generation of biparental embryos by PNT. For this purpose, IVG and control oocytes first underwent IVF. Only 15.5% of IVG oocytes were normally fertilized, in contrast to 45.5% in controls (P < 0.001), with resulting failure of blastocyst formation in the IVG group (0 versus 86.2%, P < 0.001). When the pronuclei of IVG zygotes were transferred to the cytoplasm of control zygotes, the blastocyst rate was restored to 86.9%, a similar level as the control. Genetic analysis of PNT embryos revealed a normal chromosomal profile, to a rate of 80%. Finally, the generation of living, fertile offspring from PNT was possible following embryo transfer to surrogate mothers. LARGE-SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Genetic profiles of analysed embryos from PNT originate from groups that are too small to draw concrete conclusions, whilst ST, which would be the preferred NT approach, could not be used for the generation of biparental embryos owing to technical limitations. Even though promising, the use of PNT should be considered as experimental. Furthermore, results were acquired in a mouse model, so validation of the technique in human IVG oocytes needs to be performed to evaluate the clinical relevance of the technology. The genetic profiles from IVG oocytes, which would be the ultimate characterization for chromosomal abnormalities, were not analysed owing to limitations in the reliable analysis of single cells. WIDER IMPLICATIONS OF THE FINDINGS PNT has the ability to overcome the poor cytoplasmic quality of IVG mouse oocytes. Considering the low maturation efficiency of human IVG oocytes and potential detrimental effects following long-term in vitro culture, NT could be applied to rescue embryo development and could lead to an increased availability of good quality embryos for transfer. STUDY FUNDING/COMPETING INTERESTS A.C. is a holder of FWO (Fonds voor Wetenschappelijk Onderzoek) grants (1S80220N and 1S80222N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) 2018000504 (GOA030-18 BOF) funding. B.H. has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest.
Collapse
Affiliation(s)
- Antonia Christodoulaki
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Haitang He
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Chloë De Roo
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Machteld Baetens
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Tine De Pretre
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Muhammad Fakhar-I-Adil
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Faculty of Veterinary Medicine, Department of Reproduction, Obstetrics and Herd Health, University of Ghent, Merelbeke, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
5
|
Abstract
Abstract
This volume is the natural follow-up to Arthur Reber’s 2019 book, The First Minds: Caterpillars, ‘Karyotes, and Consciousness (TFM). In that earlier work, the Cellular Basis of Consciousness (CBC) theory was developed based on a number of earlier efforts published in a variety of journals between 1997 and 2019 as well as in talks, colloquia, and presentations at conferences. The core proposition in TFM was that life and mind are co-terminous. All organisms, all species extant and extinct, are sentient. All have an existentially secure consciousness—without which they would have been evolutionary dead-ends, unable to survive in the chaotic, dangerous environment in which life first appeared. And, importantly, all forms of sentience, all forms of cognitive functioning right up to and including those expressed by humans, evolved from the original expression of consciousness at the birth of life in prokaryotes. The proposition that all life forms evolved from those first unicellular species is a widely accepted, foundational principle of the biological and social sciences. The CBC simply applies that same proposition to sentience.
Collapse
|
6
|
Kirat D, Alahwany AM, Arisha AH, Abdelkhalek A, Miyasho T. Role of Macroautophagy in Mammalian Male Reproductive Physiology. Cells 2023; 12:cells12091322. [PMID: 37174722 PMCID: PMC10177121 DOI: 10.3390/cells12091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Physiologically, autophagy is an evolutionarily conserved and self-degradative process in cells. Autophagy carries out normal physiological roles throughout mammalian life. Accumulating evidence shows autophagy as a mechanism for cellular growth, development, differentiation, survival, and homeostasis. In male reproductive systems, normal spermatogenesis and steroidogenesis need a balance between degradation and energy supply to preserve cellular metabolic homeostasis. The main process of autophagy includes the formation and maturation of the phagophore, autophagosome, and autolysosome. Autophagy is controlled by a group of autophagy-related genes that form the core machinery of autophagy. Three types of autophagy mechanisms have been discovered in mammalian cells: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy is classified as non-selective or selective. Non-selective macroautophagy randomly engulfs the cytoplasmic components in autophagosomes that are degraded by lysosomal enzymes. While selective macroautophagy precisely identifies and degrades a specific element, current findings have shown the novel functional roles of autophagy in male reproduction. It has been recognized that dysfunction in the autophagy process can be associated with male infertility. Overall, this review provides an overview of the cellular and molecular basics of autophagy and summarizes the latest findings on the key role of autophagy in mammalian male reproductive physiology.
Collapse
Affiliation(s)
- Doaa Kirat
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohamed Alahwany
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
7
|
Ding ZM, Wang SK, Zhang SX, Chen YW, Wang YS, Yang SJ, Cao YX, Miao YL, Huo LJ. Acute exposure of triclocarban affects early embryo development in mouse through disrupting maternal-to-zygotic transition and epigenetic modifications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114572. [PMID: 36706524 DOI: 10.1016/j.ecoenv.2023.114572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Triclocarban (TCC) is a broad-spectrum antibacterial agent used globally, and high concentrations of this harmful chemical exist in the environment. The human body is directly exposed to TCC through skin contact. Moreover, TCC is also absorbed through diet and inhaled through breathing, which results in its accumulation in the body. The safety profile of TCC and its potential impact on human health are still not completely clear; therefore, it becomes imperative to evaluate the reproductive toxicity of TCC. Here, we explored the effect of TCC on the early embryonic development of mice and its associated mechanisms. We found that acute exposure of TCC affected the early embryonic development of mice in a dose-dependent manner. Approximately 7600 differentially expressed genes (DEGs) were obtained by sequencing the transcriptome of 2-cell mouse embryos; of these, 3157 genes were upregulated and 4443 genes were downregulated in the TCC-treated embryos. GO and KEGG analysis revealed that the enriched genes were mainly involved in redox processes, RNA synthesis, DNA damage, apoptosis, mitochondria, endoplasmic reticulum, Golgi apparatus, cytoskeleton, peroxisome, RNA polymerase, and other components or processes. Moreover, the Venn analysis showed that the zygotic genome activation (ZGA) was affected and the degradation of maternal effector genes was inhibited. TCC induced changes in the epigenetic modification of 2-cell embryos. The level of DNA methylation increased significantly. Further, the levels of H3K27ac, H3K9ac, and H3K27me3 histone modifications decreased significantly, whereas those of H3K4me3 and H3K9me3 modifications increased significantly. Additionally, TCC induced oxidative stress and DNA damage in the 2-cell embryos. In conclusion, acute exposure of TCC affected early embryo development, destroyed early embryo gene expression, interfered with ZGA and maternal gene degradation, induced changes in epigenetic modification of early embryos, and led to oxidative stress and DNA damage in mouse early embryos.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Shang-Ke Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Medical Laboratory Animal Center, Weifang Medical University, Weifang 261000, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Biochip Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; Biochip Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China; Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; . Hubei Province's Engineering Research Center in Buffalo Breeding & Products, Wuhan 430070, China
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China.
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; . Hubei Province's Engineering Research Center in Buffalo Breeding & Products, Wuhan 430070, China.
| |
Collapse
|
8
|
Wang T, Cao B, Cai Y, Chen S, Wang B, Yuan Y, Zhang Q. Plcz1 Deficiency Decreased Fertility in Male Mice Which Is Associated with Sperm Quality Decline and Abnormal Cytoskeleton in Epididymis. Int J Mol Sci 2022; 24:314. [PMID: 36613757 PMCID: PMC9820195 DOI: 10.3390/ijms24010314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Phospholipase C zeta1 (Plcz1) was known to be a physiological factor in sperm that activates oocytes to complete meiosis by triggering Ca2+ oscillations after fertilisation. However, the role of male Plcz1 in spermatogenesis and early embryo development in progeny has been controversial. Plcz1 knockout (Plcz1-/-) mouse model (Plcz1m3 and Plcz1m5) was generated by using the CRISPR-Cas9 system. The fertility of Plcz1-/- mice was evaluated by analysing the number of offsprings, sperm quality, pathological changes in the testis and epididymis. RNA-seq and RT-PCR were performed to screen differentially expressed genes and signalling pathways related to fertility in Plcz1-/- mice. Further mechanism was explored by using Plcz1-/- cells. Plcz1 knockout led to hypofertility in male mice. In particular, a significant time delay in development and polyspermy was found in eggs fertilized by both Plcz1m3 and Plcz1m5 sperm. Interestingly, a decline in sperm quality combined with pathological changes in epididymis was found in Plcz1m3 mice but not in Plcz1m5 mice. Notably, abnormal cytoskeleton appears in epididymis of Plcz1m3 mice and Plcz1-/- cells. Cytoskeleton damage of epididymis is involved in fertility decline of males upon Plcz1 deficiency in this model.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Binbin Cao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Yao Cai
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Si Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Baozhu Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Yan Yuan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
9
|
Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos. Cell Stem Cell 2022; 29:1051-1066.e8. [DOI: 10.1016/j.stem.2022.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
|
10
|
Shafqat A, Kashir J, Alsalameh S, Alkattan K, Yaqinuddin A. Fertilization, Oocyte Activation, Calcium Release and Epigenetic Remodelling: Lessons From Cancer Models. Front Cell Dev Biol 2022; 10:781953. [PMID: 35309905 PMCID: PMC8931327 DOI: 10.3389/fcell.2022.781953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Oocyte activation deficiency (OAD) is the basis of Total Fertilisation Failure (TFF) and is attributed to mutations in the PLCζ gene—termed male factor infertility. This derives abnormal Ca2+ oscillations and could be the main cause of primary disruptions in the gene expression of Ca2+-related proteins. Epigenetic mechanisms are universally accepted as key regulators of gene expression. However, epigenetic dysregulations have not been considered as potential mechanisms of oocyte-borne OAD. Herein, we discuss changes in the DNA methylome during oogenesis and embryogenesis. We further highlight key pathways comprising the oocyte Ca2+ toolkit, which could be targets of epigenetic alterations, especially aberrations in DNA methylation. Considering that the vast majority of epigenetic modifications examined during fertilization revolve around alterations in DNA methylation, we aim in this article to associate Ca2+-specific mechanisms with these alterations. To strengthen this perspective, we bring evidence from cancer research on the intricate link between DNA methylation and Ca2+ signaling as cancer research has examined such questions in a lot more detail. From a therapeutic standpoint, if our hypothesis is proven to be correct, this will explain the cause of TFF in idiopathic cases and will open doors for novel therapeutic targets.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Ahmed Yaqinuddin,
| |
Collapse
|
11
|
Kashir J, Ganesh D, Jones C, Coward K. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac003. [PMID: 35261925 PMCID: PMC8894871 DOI: 10.1093/hropen/hoac003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oocyte activation deficiency (OAD) is attributed to the majority of cases underlying failure of ICSI cycles, the standard treatment for male factor infertility. Oocyte activation encompasses a series of concerted events, triggered by sperm-specific phospholipase C zeta (PLCζ), which elicits increases in free cytoplasmic calcium (Ca2+) in spatially and temporally specific oscillations. Defects in this specific pattern of Ca2+ release are directly attributable to most cases of OAD. Ca2+ release can be clinically mediated via assisted oocyte activation (AOA), a combination of mechanical, electrical and/or chemical stimuli which artificially promote an increase in the levels of intra-cytoplasmic Ca2+. However, concerns regarding safety and efficacy underlie potential risks that must be addressed before such methods can be safely widely used. OBJECTIVE AND RATIONALE Recent advances in current AOA techniques warrant a review of the safety and efficacy of these practices, to determine the extent to which AOA may be implemented in the clinic. Importantly, the primary challenges to obtaining data on the safety and efficacy of AOA must be determined. Such questions require urgent attention before widespread clinical utilization of such protocols can be advocated. SEARCH METHODS A literature review was performed using databases including PubMed, Web of Science, Medline, etc. using AOA, OAD, calcium ionophores, ICSI, PLCζ, oocyte activation, failed fertilization and fertilization failure as keywords. Relevant articles published until June 2019 were analysed and included in the review, with an emphasis on studies assessing large-scale efficacy and safety. OUTCOMES Contradictory studies on the safety and efficacy of AOA do not yet allow for the establishment of AOA as standard practice in the clinic. Heterogeneity in study methodology, inconsistent sample inclusion criteria, non-standardized outcome assessments, restricted sample size and animal model limitations render AOA strictly experimental. The main scientific concern impeding AOA utilization in the clinic is the non-physiological method of Ca2+ release mediated by most AOA agents, coupled with a lack of holistic understanding regarding the physiological mechanism(s) underlying Ca2+ release at oocyte activation. LIMITATIONS, REASONS FOR CAUTION The number of studies with clinical relevance using AOA remains significantly low. A much wider range of studies examining outcomes using multiple AOA agents are required. WIDER IMPLICATIONS In addition to addressing the five main challenges of studies assessing AOA safety and efficacy, more standardized, large-scale, multi-centre studies of AOA, as well as long-term follow-up studies of children born from AOA, would provide evidence for establishing AOA as a treatment for infertility. The delivery of an activating agent that can more accurately recapitulate physiological fertilization, such as recombinant PLCζ, is a promising prospect for the future of AOA. Further to PLCζ, many other avenues of physiological oocyte activation also require urgent investigation to assess other potential physiological avenues of AOA. STUDY FUNDING/COMPETING INTERESTS D.G. was supported by Stanford University’s Bing Overseas Study Program. J.K. was supported by a Healthcare Research Fellowship Award (HF-14-16) made by Health and Care Research Wales (HCRW), alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST). The authors have no competing interests to declare.
Collapse
Affiliation(s)
| | | | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, UK
| | - Kevin Coward
- Correspondence address. Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, OS3 9DU, UK. E-mail: https://orcid.org/0000-0003-3577-4041
| |
Collapse
|
12
|
Yin M, Yu W, Li W, Zhu Q, Long H, Kong P, Lyu Q. DNA methylation and gene expression changes in mouse pre- and post-implantation embryos generated by intracytoplasmic sperm injection with artificial oocyte activation. Reprod Biol Endocrinol 2021; 19:163. [PMID: 34732215 PMCID: PMC8567642 DOI: 10.1186/s12958-021-00845-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The application of artificial oocyte activation (AOA) after intracytoplasmic sperm injection (ICSI) is successful in mitigating fertilization failure problems in assisted reproductive technology (ART). Nevertheless, there is no relevant study to investigate whether AOA procedures increase developmental risk by disturbing subsequent gene expression at different embryonic development stages. METHODS We used a mouse model to explore the influence of AOA treatment on pre- and post-implantation events. Firstly, the developmental potential of embryos with or without AOA treatment were assessed by the rates of fertilization and blastocyst formation. Secondly, transcriptome high-throughput sequencing was performed among the three groups (ICSI, ICSI-AOA and dICSI-AOA groups). The hierarchical clustering and Principal Component Analysis (PCA) analysis were used. Subsequently, Igf2r/Airn methylation analysis were detected using methylation-specific PCR sequencing following bisulfite treatment. Finally, birth rate and birth weight were examined following mouse embryo transfer. RESULTS The rates of fertilization and blastocyst formation were significantly lower in oocyte activation-deficient sperm injection group (dICSI group) when compared with the ICSI group (30.8 % vs. 84.4 %, 10.0 % vs. 41.5 %). There were 133 differentially expressed genes (DEGs) between the ICSI-AOA group and ICSI group, and 266 DEGs between the dICSI-AOA group and ICSI group. In addition, the imprinted gene, Igf2r is up regulated in AOA treatment group compared to control group. The Igf2r/Airn imprinted expression model demonstrates that AOA treatment stimulates maternal allele-specific mehtylation spreads at differentially methylated region 2, followed by the initiation of paternal imprinted Airn long non-coding (lnc) RNA, resulting in the up regulated expression of Igf2r. Furthermore, the birth weight of newborn mice originating from AOA group was significantly lower compared to that of ICSI group. The pups born following AOA treatment did not show any other abnormalities during early development. All offspring mated successfully with fertile controls. CONCLUSIONS AOA treatment affects imprinted gene Igf2r expression and mehtylation states in mouse pre- and post-implantation embryo, which is regulated by the imprinted Airn. Nevertheless, no significant differences were found in post-natal growth of the pups in the present study. It is hoped that this study could provide valuable insights of AOA technology in assisted reproduction biology.
Collapse
Affiliation(s)
- Mingru Yin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Weina Yu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Wenzhi Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hui Long
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Pengcheng Kong
- Department of Assisted Reproduction, First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
13
|
Shan MM, Sun SC. The multiple roles of RAB GTPases in female and male meiosis. Hum Reprod Update 2021; 27:1013-1029. [PMID: 34227671 DOI: 10.1093/humupd/dmab019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND RAB GTPases constitute the largest family of small GTPases and are found in all eukaryotes. RAB GTPases regulate components of the endomembrane system, the nucleus and the plasma membrane, and are involved in intracellular actin/tubulin-dependent vesicle movement, membrane fusion and cell growth in mitosis. OBJECTIVE AND RATIONALE RAB GTPases play multiple critical roles during both female and male meiosis. This review summarizes the progress made in our understanding of the role of RAB GTPases in female and male meiosis in different species. We also discuss the potential relationship between RAB GTPases and oocyte/sperm quality, which may help in understanding the mechanisms underlying oogenesis and spermatogenesis and potential genetic causes of infertility. SEARCH METHODS The PubMed database was searched for articles published between 1991 and 2020 using the following terms: 'RAB', 'RAB oocyte', 'RAB sperm' and 'RAB meiosis'. OUTCOMES An analysis of 126 relevant articles indicated that RAB GTPases are present in all eukaryotes, and ten subfamilies (almost 70 members) are expressed in human cells. The roles of 25 RAB proteins and orthologues in female meiosis and 12 in male meiosis have been reported. RAB proteins are essential for the accurate continuity of genetic material, successful fertilization and the normal growth of offspring. Distinct and crucial functions of RAB GTPases in meiosis have been reported. In oocytes, RAB GTPases are involved in spindle organization, kinetochore-microtubule attachment, chromosome alignment, actin filament-mediated spindle migration, cytokinesis, cell cycle and oocyte-embryo transition. RAB GTPases function in mitochondrial processes and Golgi-mediated vesicular transport during female meiosis, and are critical for cortical granule transport during fertilization and oocyte-embryo transition. In sperm, RAB GTPases are vital for cytoskeletal organization and successful cytokinesis, and are associated with Golgi-mediated acrosome formation, membrane trafficking and morphological changes of sperm cells, as well as the exocytosis-related acrosome reaction and zona reaction during fertilization. WIDER IMPLICATIONS Abnormal expression of RAB GTPases disrupts intracellular systems, which may induce diverse diseases. The roles of RAB proteins in female and male reproductive systems, thus, need to be considered. The mechanisms underlying the function of RAB GTPases and the binding specificity of their effectors during oogenesis, spermatogenesis and fertilization remain to be studied. This review should contribute to our understanding of the molecular mechanisms of oogenesis and spermatogenesis and potential genetic causes of infertility.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Mu J, Zhang Z, Wu L, Fu J, Chen B, Yan Z, Li B, Zhou Z, Wang W, Zhao L, Dong J, Kuang Y, Sun X, He L, Wang L, Sang Q. The identification of novel mutations in PLCZ1 responsible for human fertilization failure and a therapeutic intervention by artificial oocyte activation. Mol Hum Reprod 2021; 26:80-87. [PMID: 31953539 DOI: 10.1093/molehr/gaaa003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Fertilization involves a series of molecular events immediately following egg-sperm fusion; Ca2+ oscillations are the earliest signaling event, and they initiate the downstream reactions including pronucleus formation. Successful human reproduction requires normal fertilization. In clinical IVF or ICSI attempts, some infertile couples suffer from recurrent fertilization failure. However, the genetic reasons for fertilization failure are largely unknown. Here, we recruited several couples diagnosed with fertilization failure even though their gametes are morphologically normal. Through whole-exome sequencing and Sanger sequencing, we identified biallelic mutations in gene-encoding phospholipase C zeta 1 (PLCZ1) in four independent males in couples diagnosed with fertilization failure. Western blotting showed that missense mutations decreased the level of PLCZ1 and that nonsense or frameshift mutations resulted in undetectable or truncated proteins. Expression of these mutations in mice significantly reduced the levels of oocyte activation. Artificial oocyte activation in patient oocytes could rescue the phenotype of fertilization failure and help establish pregnancy and lead to live birth. Our findings expand the spectrum of PLCZ1 mutations that are responsible for human fertilization failure and provide a potentially feasible therapeutic treatment for these patients.
Collapse
Affiliation(s)
- Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Biaobang Chen
- Institute of Pediatrics, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032
| | - Lin Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032.,Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, China.,Shanghai Center for Women and Children's Health, Shanghai, 200062, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University; Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032.,Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, China
| |
Collapse
|
15
|
Abstract
Within the reproductive tract, distinct cell types must have precisely controlled communication for complex processes such as gamete production, fertilisation and implantation. Intercellular communication in many physiological processes involves extracellular vesicles (EVs). In reproductive systems, EVs have been implicated in many aspects, from gamete maturation to embryo development. Sperm develop within the testis and then exit into the epididymis in an immature form, lacking motility and fertilising capabilities. Due to their small size, compact nature of the nucleus and the lack of specific organelles, sperm are unable to perform de novo protein synthesis, and thus rely on extrinsic signals delivered from the external milieu to gain full function. Mounting evidence points to EVs as being a major provider of these signals, not just within the male reproductive tract but also within the female as the sperm make their way through a seemingly hostile environment to the oocyte. In this chapter, we review the current knowledge on EVs as mediators of sperm maturation and function and highlight their potential roles in male fertility.
Collapse
Affiliation(s)
- Natalie J Foot
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
16
|
James ER, Carrell DT, Aston KI, Jenkins TG, Yeste M, Salas-Huetos A. The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction. Int J Mol Sci 2020; 21:E5377. [PMID: 32751076 PMCID: PMC7432785 DOI: 10.3390/ijms21155377] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
It is well-established that testicular spermatozoa are immature and acquire motility and fertilization capabilities during transit throughout the epididymis. The epididymis is a duct-like organ that connects the testis to the vas deferens and is comprised of four anatomical regions: the initial segment, caput, corpus, and cauda. Sperm maturation occurs during epididymal transit by the interaction of sperm cells with the unique luminal environment of each epididymal region. In this review we discuss the epididymis as an essential reproductive organ responsible for sperm concentration, maturation (including sperm motility acquisition and fertilizing ability), protection and storage. Importantly, we also discuss specific characteristics and roles of epididymal-derived exosomes (epididymosomes) in establishing sperm competency within the intricate process of reproduction. This review suggests that an increasing body of evidence is working to develop a complete picture of the role of the epididymis in male reproduction, offspring health, and disease susceptibility.
Collapse
Affiliation(s)
- Emma R. James
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; (E.R.J.); (D.T.C.); (K.I.A.)
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Douglas T. Carrell
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; (E.R.J.); (D.T.C.); (K.I.A.)
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kenneth I. Aston
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; (E.R.J.); (D.T.C.); (K.I.A.)
| | - Timothy G. Jenkins
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA;
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; (E.R.J.); (D.T.C.); (K.I.A.)
| |
Collapse
|
17
|
Abstract
Mammalian fertilization begins with the fusion of two specialized gametes, followed by major epigenetic remodeling leading to the formation of a totipotent embryo. During the development of the pre-implantation embryo, precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality, but the underlying molecular mechanisms remain elusive. For the past few years, unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development, taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies. The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals, including DNA methylation, histone modifications, chromatin accessibility and 3D chromatin organization.
Collapse
|
18
|
Kashir J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 2020; 37:1273-1293. [PMID: 32285298 PMCID: PMC7311621 DOI: 10.1007/s10815-020-01748-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oocyte activation is a fundamental event at mammalian fertilization. In mammals, this process is initiated by a series of characteristic calcium (Ca2+) oscillations, induced by a sperm-specific phospholipase C (PLC) termed PLCzeta (PLCζ). Dysfunction/reduction/deletion of PLCζ is associated with forms of male infertility where the sperm is unable to initiate Ca2+ oscillations and oocyte activation, specifically in cases of fertilization failure. This review article aims to systematically summarize recent advancements and controversies in the field to update expanding clinical associations between PLCζ and various male factor conditions. This article also discusses how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic PLCζ approaches, aiming to direct future research efforts to utilize such knowledge clinically. METHODS An extensive literature search was performed using literature databases (PubMed/MEDLINE/Web of Knowledge) focusing on phospholipase C zeta (PLCzeta; PLCζ), oocyte activation, and calcium oscillations, as well as specific male factor conditions. RESULTS AND DISCUSSION Defective PLCζ or PLCζ-induced Ca2+ release can be linked to multiple forms of male infertility including abnormal sperm parameters and morphology, sperm DNA fragmentation and oxidation, and abnormal embryogenesis/pregnancies. Such sperm exhibit absent/reduced levels, and abnormal localization patterns of PLCζ within the sperm head. CONCLUSIONS Defective PLCζ and abnormal patterns of Ca2+ release are increasingly suspected a significant causative factor underlying abnormalities or insufficiencies in Ca2+ oscillation-driven early embryogenic events. Such cases could potentially strongly benefit from relevant therapeutic and diagnostic applications of PLCζ, or even alternative mechanisms, following further focused research efforts.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia. .,School of Biosciences, Cardiff University, Cardiff, UK. .,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
19
|
Ding D, Wang Q, Li X, Chen B, Zou W, Ji D, Hao Y, Xue R, Zou H, Wei Z, Zhou P, Cao Y, Zhang Z. Effects of different polyvinylpyrrolidone concentrations on intracytoplasmic sperm injection. ZYGOTE 2020; 28:1-6. [PMID: 31933453 DOI: 10.1017/s0967199419000820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To explore whether different polyvinylpyrrolidone (PVP) concentrations affect the results of intracytoplasmic sperm injection (ICSI), a prospective study was conducted for 194 couples undergoing 210 ICSI therapy cycles. These cycles were divided into three groups (10, 7 and 5% groups) using the corresponding concentration of PVP for sperm immobilization. The main outcome measures were analyzed. Results indicated that, with a decrease in PVP concentrations, all of the main outcome measures increased. In particular, the high-quality cleavage embryo rate in the 7% group was significantly lower than in the 5% group (P < 0.01), and the cleavage, high-quality cleavage embryo, and high-quality blastocyst rates in the 5% group were significantly higher than those in the 10% group (all P < 0.001). For high-/intermediate-quality semen, all of the main outcome measures were significantly increased with 5% PVP. For the poor-quality semen, only the high-quality cleavage embryo and high-quality blastocyst rates were significantly higher in the 5% group. Therefore, lowering PVP concentrations greatly promoted the development of embryos in ICSI cycles, with an optimal concentration of 5% for ICSI.
Collapse
Affiliation(s)
- Ding Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No. 81 Meishan Road, Hefei230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Qiushuang Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No. 81 Meishan Road, Hefei230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Xinyuan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Yan Hao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No. 81 Meishan Road, Hefei230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei230032, Anhui, China
| |
Collapse
|
20
|
Chen HL, Cheng JY, Yang YF, Li Y, Jiang XH, Yang L, Wu L, Shi M, Liu B, Duan J, Li X, Li QW. Phospholipase C inhibits apoptosis of porcine oocytes cultured in vitro. J Cell Biochem 2020; 121:3547-3559. [DOI: 10.1002/jcb.29636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Hua Li Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Jian Yong Cheng
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - You Fu Yang
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Yuan Li
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Xiao Han Jiang
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Li Yang
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Lin Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Meihong Shi
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Boyang Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Jiaxin Duan
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Xiaoya Li
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Qing Wang Li
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| |
Collapse
|
21
|
Dai J, Dai C, Guo J, Zheng W, Zhang T, Li Y, Lu C, Gong F, Lu G, Lin G. Novel homozygous variations in PLCZ1 lead to poor or failed fertilization characterized by abnormal localization patterns of PLCζ in sperm. Clin Genet 2019; 97:347-351. [PMID: 31463947 DOI: 10.1111/cge.13636] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/30/2022]
Abstract
Total fertilization failure (TFF), which is the failure of fertilization in all oocytes, occurs in 1%-3% of intracytoplasmic sperm injection (ICSI) cycles. However, the sperm-related factors that cause fertilization failure in humans are still largely unknown. Here, we identified three novel homozygous variations in the PLCZ1 gene in a recessive inheritance pattern in three consanguineous families, which all located in a key catalytic domain, and predicted to modify its secondary structure and thus impair its hydrolytic activity. Moreover, immunofluorescent staining revealed that PLCζ in mutant sperm exhibited abnormal localization patterns. ICSI-AOA resulted in an increased rate of normal fertilization compared with previous ICSI cycles (75.0% vs 2.2%, P < .001). In summary, we identified three novel homozygous variations in PLCZ1 that led to poor or failed fertilization that could be overcame by ICSI-AOA.
Collapse
Affiliation(s)
- Jing Dai
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Can Dai
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Guo
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Wei Zheng
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Tianlei Zhang
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Yuan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Changfu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Guangxiu Lu
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
22
|
Camargo LSA, Costa FQ, Munk M, Wohlres-Viana S, Serapião RV, Carvalho BC, Campos PH, Vieira AC, Nogueira LAG, Viana JHM. Contrasting effects of heat shock during in vitro maturation on development of in vitro-fertilized and parthenogenetic bovine embryos. Reprod Domest Anim 2019; 54:1357-1365. [PMID: 31368591 DOI: 10.1111/rda.13544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022]
Abstract
This study investigated the influence of heat shock during in vitro maturation on embryo development following in vitro fertilization (IVF) or parthenogenesis (Part). Immature bovine cumulus-oocyte complexes were exposed to heat shock (41.0°C) during the first 12 hr of in vitro maturation (IVM), followed by 12 hr at 38.5°C. Control group consisted of in vitro maturation for 24 hr at 38.5°C. Oocytes were in vitro-fertilized or activated with ionomycin and cultured in vitro for 192 hr post-in vitro insemination or parthenogenetic activation (hpia). There was an interaction (p < .01) between temperature of IVM and method of oocyte activation (IVF or Part) for cleavage at 48 hpia. Heat shock had a negative impact (p < .01) on cleavage of IVF embryos, whereas no (p > .05) effect was found in the Part embryos. Embryo development towards blastocyst stage at 168 and 192 hpia decreased in both IVF and Part embryos derived from heat-shocked oocytes. Heat shock increased (p < .05) the apoptotic index in Part blastocysts, but no effect (p > .05) was found in IVF counterparts. Heat shock also down-regulated the expression of AQP3 (p < .01) and up-regulated the expression of HSP70.1 (p < .01) in Part blastocysts, whereas it down-regulated the expression of ATP1A1 (p < .05) in IVF blastocysts. In conclusion, the effects of heat shock during IVM on early embryo cleavage and blastocyst apoptosis are influenced by the method of oocyte activation and expression of some genes can be disturbed in embryos derived from heat-shocked oocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruno Campos Carvalho
- Brazilian Agricultural Research Corporation (Embrapa), Dairy Cattle, Juiz de Fora, Brazil
| | | | | | | | | |
Collapse
|
23
|
Moreau J, Fargeon S, Gatimel N, Parinaud J, Léandri RD. Expression of phospholipase PLC Zeta in human spermatozoa: impact of cryopreservation. Andrology 2019; 7:315-318. [PMID: 30779311 DOI: 10.1111/andr.12593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cryopreservation is used for infertility treatment and for fertility preservation. The results of the use of frozen spermatozoa for ART (Assisted Reproductive Technology) are lower than those of fresh spermatozoa. The phospholipase C Zeta (PLCζ) protein is involved in oocyte activation. OBJECTIVES The aim of this study was to compare the percentage of spermatozoa expressing phospholipase C Zeta protein before and after a frozen-thawing cycle. MATERIALS AND METHODS Samples were provided after at least 2 days of sexual abstinence. A part of the fresh ejaculate (200 μL) was recovered for the study. Fifty microliters was necessary to carry out the technique before freezing. The remaining 150 μl was frozen according to a slow manual freezing technique. The samples were treated based on the procedure described by Yelumalai et al. (Fertil. Steril., 104, 2015, 561-568.e4) and Grasa et al. (Hum. Reprod. Oxf. Engl. 23, 2008, 2513-2522). RESULTS Freezing was associated with a decrease in the percentage of spermatozoa exhibiting PLCζ (44 ± 22% before vs 31 ± 19% after, p < 0.05). The percentage of spermatozoa exhibiting PLCζ at post-acrosomal position was significantly greater before freezing (8% vs 5%, p < 0.05). There was no significant difference for the percentage of spermatozoa exhibiting PLCζ at equatorial position (15% before freezing versus 12% after thawing, NS). DISCUSSION The results of the present study show that the presence of PLCζ on spermatozoa is decreased after freezing-thawing procedures. PLCζ is a soluble cytosolic protein (Nomikos et al., ), so it can be lost during cryopreservation. These membrane alterations are probably multifactorial. CONCLUSION Our results, in agreement with other studies, raise the hypothesis that cryopreservation reduces spermatic PLCζ expression.
Collapse
Affiliation(s)
- J Moreau
- Department of Reproductive Medicine, Toulouse University Hospital, Toulouse, France.,EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| | - S Fargeon
- EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| | - N Gatimel
- Department of Reproductive Medicine, Toulouse University Hospital, Toulouse, France.,EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| | - J Parinaud
- Department of Reproductive Medicine, Toulouse University Hospital, Toulouse, France.,EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| | - R D Léandri
- Department of Reproductive Medicine, Toulouse University Hospital, Toulouse, France.,EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
24
|
Ferrer-Buitrago M, Dhaenens L, Lu Y, Bonte D, Vanden Meerschaut F, De Sutter P, Leybaert L, Heindryckx B. Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI. Hum Reprod 2019; 33:416-425. [PMID: 29329390 DOI: 10.1093/humrep/dex376] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/12/2017] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Can human oocyte calcium analysis predict fertilization success after assisted oocyte activation (AOA) in patients experiencing fertilization failure after ICSI? SUMMARY ANSWER ICSI-AOA restores the fertilization rate only in patients displaying abnormal Ca2+ oscillations during human oocyte activation. WHAT IS KNOWN ALREADY Patients capable of activating mouse oocytes and who showed abnormal Ca2+ profiles after mouse oocyte Ca2+ analysis (M-OCA), have variable responses to ICSI-AOA. It remains unsettled whether human oocyte Ca2+ analysis (H-OCA) would yield an improved accuracy to predict fertilization success after ICSI-AOA. STUDY DESIGN, SIZE, DURATION Sperm activation potential was first evaluated by MOAT. Subsequently, Ca2+ oscillatory patterns were determined with sperm from patients showing moderate to normal activation potential based on the capacity of human sperm to generate Ca2+ responses upon microinjection in mouse and human oocytes. Altogether, this study includes a total of 255 mouse and 122 human oocytes. M-OCA was performed with 16 different sperm samples before undergoing ICSI-AOA treatment. H-OCA was performed for 11 patients who finally underwent ICSI-AOA treatment. The diagnostic accuracy to predict fertilization success was calculated based on the response to ICSI-AOA. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients experiencing low or total failed fertilization after conventional ICSI were included in the study. All participants showed moderate to high rates of activation after MOAT. Metaphase II (MII) oocytes from B6D2F1 mice were used for M-OCA. Control fertile sperm samples were used to obtain a reference Ca2+ oscillation profile elicited in human oocytes. Donated human oocytes, non-suitable for IVF treatments, were collected and vitrified at MII stage for further analysis by H-OCA. MAIN RESULTS AND THE ROLE OF CHANCE M-OCA and H-OCA predicted the response to ICSI-AOA in 8 out of 11 (73%) patients. Compared to M-OCA, H-OCA detected the presence of sperm activation deficiencies with greater sensitivity (75 vs 100%, respectively). ICSI-AOA never showed benefit to overcome fertilization failure in patients showing normal capacity to generate Ca2+ oscillations in H-OCA and was likely to be beneficial in cases displaying abnormal H-OCA Ca2+ oscillations patterns. LIMITATIONS, REASONS FOR CAUTION The scarce availability of human oocytes donated for research purposes is a limiting factor to perform H-OCA. Ca2+ imaging requires specific equipment to monitor fluorescence changes over time. WIDER IMPLICATIONS OF THE FINDINGS H-OCA is a sensitive test to diagnose gamete-linked fertilization failure. H-OCA allows treatment counseling for couples experiencing ICSI failures to either undergo ICSI-AOA or to participate in gamete donation programs. The present data provide an important template of the Ca2+ signature observed during human fertilization in cases with normal, low and failed fertilization after conventional ICSI. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Flemish fund for scientific research (FWO-Vlaanderen, G060615N). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- M Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Dhaenens
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Y Lu
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - D Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - F Vanden Meerschaut
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
25
|
Ferrer-Buitrago M, Bonte D, Dhaenens L, Vermorgen S, Lu Y, De Sutter P, Heindryckx B. Assessment of the calcium releasing machinery in oocytes that failed to fertilize after conventional ICSI and assisted oocyte activation. Reprod Biomed Online 2018; 38:497-507. [PMID: 30745236 DOI: 10.1016/j.rbmo.2018.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
RESEARCH QUESTION Can oocyte-related activation deficiencies be evaluated in oocytes that failed to fertilize after intracytoplasmic sperm injection (ICSI) combined with assisted oocyte activation (AOA)? DESIGN Evaluation of the spindle-chromosome complexes and intracellular distribution of inositol trisphosphate type 1 receptors (IP3R1) in in-vitro matured (IVM) and failed-to-fertilize oocytes from patients undergoing AOA. Assessment of the oocyte-related Ca2+ releasing capacity in response to Ca2+ ionophores and sperm microinjection in oocytes that failed to fertilize after ICSI or ICSI-AOA. RESULTS IVM oocytes from patients undergoing conventional ICSI (control) and ICSI-AOA (study group) revealed a similar normalcy of spindle-chromosome complexes and distribution patterns of IP3R1. Failed-to-fertilize oocytes from both groups showed significant differences in proportion of normal or abnormal spindle-chromosome complex conformations. However, migration of IP3R1 was identified in a higher proportion of failed-to-fertilize oocytes after ICSI-AOA than after conventional ICSI. It was further observed that oocytes which failed to fertilize, either after ICSI or ICSI-AOA, mostly retain their capacity to respond to stimuli such as exposure to Ca2+ ionophores or to sperm microinjection. CONCLUSIONS Evaluation of spindle-chromosome normalcy and distribution of IP3R1 does not help identify the presence of Ca2+ releasing deficiencies in these oocytes. However, oocyte Ca2+ analysis adds value in identifying Ca2+ releasing incapacity of oocytes that failed to fertilize after ICSI or ICSI-AOA. Some patients experiencing fertilization failure after ICSI-AOA present with a suspected activation deficiency downstream of the Ca2+ machinery, which cannot be overcome by ICSI-AOA based on the use of Ca2+ ionophores.
Collapse
Affiliation(s)
- Minerva Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Davina Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lien Dhaenens
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sanne Vermorgen
- Ghent University (UGent Honours Programme in Life Sciences), Ghent, Belgium
| | - Yuechao Lu
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
26
|
Anifandis G, Michopoulos A, Daponte A, Chatzimeletiou K, Simopoulou M, Messini CI, Polyzos NP, Vassiou K, Dafopoulos K, Goulis DG. Artificial oocyte activation: physiological, pathophysiological and ethical aspects. Syst Biol Reprod Med 2018; 65:3-11. [DOI: 10.1080/19396368.2018.1516000] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- George Anifandis
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Alexandros Michopoulos
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Katerina Chatzimeletiou
- Unit of Human Reproduction, 1st Department of Obstetrics and Gynecology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Mara Simopoulou
- Department of Physiology, Kapodistrian University of Athens, School of Health Sciences, Faculty of Medicine, Athens, Greece
| | - Christina I. Messini
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Nikolas P. Polyzos
- Vrije Universiteit Brussel, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katerina Vassiou
- Department of Anatomy, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
The role and mechanism of action of sperm PLC-zeta in mammalian fertilisation. Biochem J 2017; 474:3659-3673. [PMID: 29061915 DOI: 10.1042/bcj20160521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
At mammalian fertilisation, the fundamental stimulus that triggers oocyte (egg) activation and initiation of early embryonic development is an acute rise of the intracellular-free calcium (Ca2+) concentration inside the egg cytoplasm. This essential Ca2+ increase comprises a characteristic series of repetitive Ca2+ oscillations, starting soon after sperm-egg fusion. Over the last 15 years, accumulating scientific and clinical evidence supports the notion that the physiological stimulus that precedes the cytosolic Ca2+ oscillations is a novel, testis-specific phospholipase C (PLC) isoform, known as PLC-zeta (PLCζ). Sperm PLCζ catalyses the hydrolysis of phosphatidylinositol 4,5-bisphosphate triggering cytosolic Ca2+ oscillations through the inositol 1,4,5-trisphosphate signalling pathway. PLCζ is the smallest known mammalian PLC isoform with the most elementary domain organisation. However, relative to somatic PLCs, the PLCζ isoform possesses a unique potency in stimulating Ca2+ oscillations in eggs that is attributed to its novel biochemical characteristics. In this review, we discuss the latest developments that have begun to unravel the vital role of PLCζ at mammalian fertilisation and decipher its unique mechanism of action within the fertilising egg. We also postulate the significant potential diagnostic and therapeutic capacity of PLCζ in alleviating certain types of male infertility.
Collapse
|