1
|
Khan N, Muge E, Mulaa FJ, Wamalwa B, von Bergen M, Jehmlich N, Wick LY. Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments. THE ISME JOURNAL 2023; 17:570-578. [PMID: 36707614 PMCID: PMC10030463 DOI: 10.1038/s41396-023-01371-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Biotransformation of soil organochlorine pesticides (OCP) is often impeded by a lack of nutrients relevant for bacterial growth and/or co-metabolic OCP biotransformation. By providing space-filling mycelia, fungi promote contaminant biodegradation by facilitating bacterial dispersal and the mobilization and release of nutrients in the mycosphere. We here tested whether mycelial nutrient transfer from nutrient-rich to nutrient-deprived areas facilitates bacterial OCP degradation in a nutrient-deficient habitat. The legacy pesticide hexachlorocyclohexane (HCH), a non-HCH-degrading fungus (Fusarium equiseti K3), and a co-metabolically HCH-degrading bacterium (Sphingobium sp. S8) isolated from the same HCH-contaminated soil were used in spatially structured model ecosystems. Using 13C-labeled fungal biomass and protein-based stable isotope probing (protein-SIP), we traced the incorporation of 13C fungal metabolites into bacterial proteins while simultaneously determining the biotransformation of the HCH isomers. The relative isotope abundance (RIA, 7.1-14.2%), labeling ratio (LR, 0.13-0.35), and the shape of isotopic mass distribution profiles of bacterial peptides indicated the transfer of 13C-labeled fungal metabolites into bacterial proteins. Distinct 13C incorporation into the haloalkane dehalogenase (linB) and 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase (LinC), as key enzymes in metabolic HCH degradation, underpin the role of mycelial nutrient transport and fungal-bacterial interactions for co-metabolic bacterial HCH degradation in heterogeneous habitats. Nutrient uptake from mycelia increased HCH removal by twofold as compared to bacterial monocultures. Fungal-bacterial interactions hence may play an important role in the co-metabolic biotransformation of OCP or recalcitrant micropollutants (MPs).
Collapse
Affiliation(s)
- Nelson Khan
- University of Nairobi, Department of Biochemistry, 00200-30197, Nairobi, Kenya
- Helmholtz Centre for Environmental Research UFZ, Department of Environmental Microbiology, 04318, Leipzig, Germany
| | - Edward Muge
- University of Nairobi, Department of Biochemistry, 00200-30197, Nairobi, Kenya
| | - Francis J Mulaa
- University of Nairobi, Department of Biochemistry, 00200-30197, Nairobi, Kenya
| | - Benson Wamalwa
- University of Nairobi, Department of Chemistry, 00200-30197, Nairobi, Kenya
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research UFZ, Department of Molecular Systems Biology, 04318, Leipzig, Germany
- German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz Centre for Environmental Research UFZ, Department of Molecular Systems Biology, 04318, Leipzig, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research UFZ, Department of Environmental Microbiology, 04318, Leipzig, Germany.
| |
Collapse
|
2
|
Biodegradation of technical hexachlorocyclohexane by Cupriavidus malaysiensis. World J Microbiol Biotechnol 2022; 38:108. [DOI: 10.1007/s11274-022-03284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
3
|
Aparicio JD, Espíndola D, Montesinos VN, Litter MI, Donati E, Benimeli CS, Polti MA. Evaluation of the sequential coupling of a bacterial treatment with a physicochemical process for the remediation of wastewater containing Cr and organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126307. [PMID: 34130164 DOI: 10.1016/j.jhazmat.2021.126307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
A restoration strategy was developed for the treatment of two artificial liquid systems (Minimal Medium, MM, and Water Carbon Nitrogen, WCN) contaminated with Cr(VI), lindane (γ-HCH), phenanthrene (Phe), and reactive black 5 (RB5), through the use of an actinobacteria consortium, coupled with a physicochemical treatment using a column filled with nano-scale zero valent iron particles immobilized on dried Macrocystis pyrifera algae biomass. The Sequential Treatment A (STA: physicochemical followed by biological method) removed the three organic compounds with different effectiveness; however, it was very ineffective for Cr(VI) removal. The Sequential Treatment B (STB: biological followed by the physicochemical method) removed the four compounds with variable efficiencies. The removal of γ-HCH, Phe, and RB5 in both effluents did not present significant differences, regardless of the sequential treatment used. The highest removal of Cr(VI) and total Cr was observed in MM and WCN, respectively. Ecotoxicity tests (L. sativa) of the effluents treated with both methodological couplings demonstrated that the toxicity of WCN only decreased at the end of STA, while that of MM decreased at all stages of both sequential treatments. Therefore, MM would be more appropriate to perform both treatments.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina
| | - Diego Espíndola
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina
| | - Víctor Nahuel Montesinos
- Gerencia Química, Centro Atómico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina
| | - Marta Irene Litter
- IIIA (CONICET-UNSAM), Universidad Nacional de General San Martín, Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martín, Prov. de Buenos Aires, Argentina
| | - Edgardo Donati
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 Catamarca, Argentina.
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina.
| |
Collapse
|
4
|
Barbance A, Della-Negra O, Chaussonnerie S, Delmas V, Muselet D, Ugarte E, Saaidi PL, Weissenbach J, Fischer C, Le Paslier D, Fonknechten N. Genetic Analysis of Citrobacter sp.86 Reveals Involvement of Corrinoids in Chlordecone and Lindane Biotransformations. Front Microbiol 2020; 11:590061. [PMID: 33240246 PMCID: PMC7680753 DOI: 10.3389/fmicb.2020.590061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
Chlordecone (Kepone®) and γ-hexachlorocyclohexane (γ-HCH or lindane) have been used for decades in the French West Indies (FWI) resulting in long-term soil and water pollution. In a previous work, we have identified a new Citrobacter species (sp.86) that is able to transform chlordecone into numerous products under anaerobic conditions. No homologs to known reductive dehalogenases or other candidate genes were found in the genome sequence of Citrobacter sp.86. However, a complete anaerobic pathway for cobalamin biosynthesis was identified. In this study, we investigated whether cobalamin or intermediates of cobalamin biosynthesis was required for chlordecone microbiological transformation. For this purpose, we constructed a set of four Citrobacter sp.86 mutant strains defective in several genes belonging to the anaerobic cobalamin biosynthesis pathway. We monitored chlordecone and its transformation products (TPs) during long-term incubation in liquid cultures under anaerobic conditions. Chlordecone TPs were detected in the case of cobalamin-producing Citrobacter sp.86 wild-type strain but also in the case of mutants able to produce corrinoids devoid of lower ligand. In contrast, mutants unable to insert the cobalt atom in precorrin-2 did not induce any transformation of chlordecone. In addition, it was found that lindane, previously shown to be anaerobically transformed by Citrobacter freundii without evidence of a mechanism, was also degraded in the presence of the wild-type strain of Citrobacter sp.86. The lindane degradation abilities of the various Citrobacter sp.86 mutant strains paralleled chlordecone transformation. The present study shows the involvement of cobalt-containing corrinoids in the microbial degradation of chlorinated compounds with different chemical structures. Their increased production in contaminated environments could accelerate the decontamination processes.
Collapse
Affiliation(s)
- Agnès Barbance
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Oriane Della-Negra
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Sébastien Chaussonnerie
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Valérie Delmas
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Delphine Muselet
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Edgardo Ugarte
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Pierre-Loïc Saaidi
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean Weissenbach
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Cécile Fischer
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Denis Le Paslier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Denis Le Paslier,
| | - Nuria Fonknechten
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Laboratoire de Cancérologie Expérimentale, IRCM, Institut François Jacob, CEA, Université Paris-Saclay, Fontenay aux Roses, France
- *Correspondence: Nuria Fonknechten,
| |
Collapse
|
5
|
Bebić J, Banjanac K, Ćorović M, Milivojević A, Simović M, Marinković A, Bezbradica D. Immobilization of laccase from Myceliophthora thermophila on functionalized silica nanoparticles: Optimization and application in lindane degradation. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.12.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Zhang W, Lin Z, Pang S, Bhatt P, Chen S. Insights Into the Biodegradation of Lindane (γ-Hexachlorocyclohexane) Using a Microbial System. Front Microbiol 2020; 11:522. [PMID: 32292398 PMCID: PMC7119470 DOI: 10.3389/fmicb.2020.00522] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Lindane (γ-hexachlorocyclohexane) is an organochlorine pesticide that has been widely used in agriculture over the last seven decades. The increasing residues of lindane in soil and water environments are toxic to humans and other organisms. Large-scale applications and residual toxicity in the environment require urgent lindane removal. Microbes, particularly Gram-negative bacteria, can transform lindane into non-toxic and environmentally safe metabolites. Aerobic and anaerobic microorganisms follow different metabolic pathways to degrade lindane. A variety of enzymes participate in lindane degradation pathways, including dehydrochlorinase (LinA), dehalogenase (LinB), dehydrogenase (LinC), and reductive dechlorinase (LinD). However, a limited number of reviews have been published regarding the biodegradation and bioremediation of lindane. This review summarizes the current knowledge regarding lindane-degrading microbes along with biodegradation mechanisms, metabolic pathways, and the microbial remediation of lindane-contaminated environments. The prospects of novel bioremediation technologies to provide insight between laboratory cultures and large-scale applications are also discussed. This review provides a theoretical foundation and practical basis to use lindane-degrading microorganisms for bioremediation.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
7
|
Qiao W, Puentes Jácome LA, Tang X, Lomheim L, Yang MI, Gaspard S, Avanzi IR, Wu J, Ye S, Edwards EA. Microbial Communities Associated with Sustained Anaerobic Reductive Dechlorination of α-, β-, γ-, and δ-Hexachlorocyclohexane Isomers to Monochlorobenzene and Benzene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:255-265. [PMID: 31830788 DOI: 10.1021/acs.est.9b05558] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intensive historical and worldwide use of pesticide formulations containing hexachlorocyclohexane (HCH) has led to widespread contamination. We derived four anaerobic enrichment cultures from HCH-contaminated soil capable of sustainably dechlorinating each of α-, β-, γ-, and δ-HCH isomers stoichiometrically to benzene and monochlorobenzene (MCB). For each isomer, the dechlorination rates, inferred from production rates of the dechlorinated products, MCB and benzene, increased progressively from <3 to ∼12 μM/day over 2 years. The molar ratio of benzene to MCB produced was a function of the substrate isomer and ranged from β (0.77 ± 0.15), α (0.55 ± 0.09), γ (0.13 ± 0.02), to δ (0.06 ± 0.02) in accordance with pathway predictions based on prevalence of antiperiplanar geometry. Data from 16S rRNA gene amplicon sequencing and quantitative PCR revealed significant increases in the absolute abundances of Pelobacter and Dehalobacter, most notably in the α-HCH and δ-HCH cultures. Cultivation with a different HCH isomer resulted in distinct bacterial communities, but similar archaeal communities. This study provides the first direct comparison of shifts in anaerobic microbial communities induced by the dechlorination of distinct HCH isomers. It also uncovers candidate microorganisms responsible for the dechlorination of α-, β-, γ-, and δ-HCH, a key step toward better understanding and monitoring of natural attenuation processes and improving bioremediation technologies for HCH-contaminated sites.
Collapse
Affiliation(s)
- Wenjing Qiao
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luz A Puentes Jácome
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Xianjin Tang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Line Lomheim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Sarra Gaspard
- Laboratory COVACHIMM2E, EA 3592, Université des Antilles, Pointe à Pitre 97157, Guadeloupe, French West-Indies, France
| | - Ingrid Regina Avanzi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Laboratory of Biomaterial and Tissue Engineering, Federal University of Sao Paulo, 136 Silva Jardim Street, Santos 11015-020, São Paulo, Brazil
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Shujun Ye
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| |
Collapse
|
8
|
Russo F, Ceci A, Maggi O, Siciliano A, Guida M, Petrangeli Papini M, Černík M, Persiani AM. Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24445-24461. [PMID: 31228071 DOI: 10.1007/s11356-019-05679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The study of the soil microbial community represents an important step in better understanding the environmental context. Therefore, biological characterisation and physicochemical integration are keys when defining contaminated sites. Fungi play a fundamental role in the soil, by providing and supporting ecological services for ecosystems and human wellbeing. In this research, 52 soil fungal taxa were isolated from in situ pilot reactors installed to a contaminated site in Czech Republic with a high concentration of hexachlorocyclohexane (HCH). Among the identified isolates, 12 strains were selected to evaluate their tolerance to different isomers of HCH by using specific indices (Rt:Rc; T.I.) and to test their potential in xenobiotic biotransformation. Most of the selected taxa was not significantly affected by exposure to HCH, underlining the elevated tolerance of all the tested fungal taxa, and different metabolic intermediates of HCH dechlorination were observed. The oxidative stress responses to HCH for two selected species, Penicillium simplicissimum and Trichoderma harzianum, were investigated in order to explore their toxic responses and to evaluate their potential functioning in bioremediation of contaminated environments. This research suggests that the isolated fungal species may provide opportunities for new eco-friendly, integrated and cost-effective solutions for environmental management and remediation, considering their efficient adaptation to stressful conditions.
Collapse
Affiliation(s)
- Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|