1
|
Renz J, Dauda KA, Aga ONL, Diaz-Uriarte R, Löhr IH, Blomberg B, Johnston IG. Evolutionary accumulation modeling in AMR: machine learning to infer and predict evolutionary dynamics of multi-drug resistance. mBio 2025:e0048825. [PMID: 40396716 DOI: 10.1128/mbio.00488-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Can we understand and predict the evolutionary pathways by which bacteria acquire multi-drug resistance (MDR)? These questions have substantial potential impact in basic biology and in applied approaches to address the global health challenge of antimicrobial resistance (AMR). In this minireview, we discuss how a class of machine-learning approaches called evolutionary accumulation modeling (EvAM) may help reveal these dynamics using genetic and/or phenotypic AMR data sets, without requiring longitudinal sampling. These approaches are well-established in cancer progression and evolutionary biology but currently less used in AMR research. We discuss how EvAM can learn the evolutionary pathways by which drug resistances and other AMR features (for example, mutations driving these resistances) are acquired as pathogens evolve, predict next evolutionary steps, identify influences between AMR features, and explore differences in MDR evolution between regions, demographics, and more. We demonstrate a case study from the literature on MDR evolution in Mycobacterium tuberculosis and discuss the strengths and weaknesses of these approaches, providing links to some approaches for implementation.
Collapse
Affiliation(s)
- Jessica Renz
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Kazeem A Dauda
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Olav N L Aga
- Computational Biology Unit, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ramon Diaz-Uriarte
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Community of Madrid, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Community of Madrid, Spain
| | - Iren H Löhr
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Bjørn Blomberg
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Smith BJ, Zhao C, Dubinkina V, Jin X, Zahavi L, Shoer S, Moltzau-Anderson J, Segal E, Pollard KS. Accurate estimation of intraspecific microbial gene content variation in metagenomic data with MIDAS v3 and StrainPGC. Genome Res 2025; 35:1247-1260. [PMID: 40210439 PMCID: PMC12047655 DOI: 10.1101/gr.279543.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Metagenomics has greatly expanded our understanding of the human gut microbiome by revealing a vast diversity of bacterial species within and across individuals. Even within a single species, different strains can have highly divergent gene content, affecting traits such as antibiotic resistance, metabolism, and virulence. Methods that harness metagenomic data to resolve strain-level differences in functional potential are crucial for understanding the causes and consequences of this intraspecific diversity. The enormous size of pangenome references, strain mixing within samples, and inconsistent sequencing depth present challenges for existing tools that analyze samples one at a time. To address this gap, we updated the MIDAS pangenome profiler, now released as version 3, and developed StrainPGC, an approach to strain-specific gene content estimation that combines strain tracking and correlations across multiple samples. We validate our integrated analysis using a complex synthetic community of strains from the human gut and find that StrainPGC outperforms existing approaches. Analyzing a large, publicly available metagenome collection from inflammatory bowel disease patients and healthy controls, we catalog the functional repertoires of thousands of strains across hundreds of species, capturing extensive diversity missing from reference databases. Finally, we apply StrainPGC to metagenomes from a clinical trial of fecal microbiota transplantation for the treatment of ulcerative colitis. We identify two Escherichia coli strains, from two different donors, that are both frequently transmitted to patients but have notable differences in functional potential. StrainPGC and MIDAS v3 together enable precise, intraspecific pangenomic investigations using large collections of metagenomic data without microbial isolation or de novo assembly.
Collapse
Affiliation(s)
- Byron J Smith
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, USA
| | - Chunyu Zhao
- Chan Zuckerberg Biohub San Francisco, San Francisco, California 94158, USA
| | - Veronika Dubinkina
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, USA
| | - Xiaofan Jin
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, USA
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Liron Zahavi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Saar Shoer
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacqueline Moltzau-Anderson
- Department of Gastroenterology, University of California, San Francisco, California 94115, USA
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katherine S Pollard
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, USA;
- Chan Zuckerberg Biohub San Francisco, San Francisco, California 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94158, USA
| |
Collapse
|
3
|
Paśmionka IB, Cheluszka P, Gospodarek J, Chmielowski K, Fries J. Isolation and assessment of antibiotic resistance of Staphylococcus aureus in the air of an underground hard coal mines. Sci Rep 2025; 15:11599. [PMID: 40185795 PMCID: PMC11971371 DOI: 10.1038/s41598-025-94630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Mine aerosol poses a serious health threat due to its easy access to the human respiratory tract. Damage may be caused by the chemical composition of dust and the substances adsorbed on its surface, including microorganisms that potentially affect human health. Our proposed research aimed to isolate Staphylococcus aureus strains from coal mine bioaerosol and to assess its sensitivity towards selected antibiotics. Bioaerosol samples were collected in three underground hard coal mines located in Upper Silesia in southern Poland. Microbiological tests of the air samples were carried out according to standard microbiological techniques. All tested strains of Staphylococcus aureus were sensitive to oxacillin, which indicated the lack of methicillin-resistant isolates (MRSA) in the tested group. However, antibiotic resistance from macrolide and lincosamide groups was observed among certain strains. 10% of isolates were constitutive MLSB resistance, while 4% of strains were inductive MLSB resistance. Less than 1% of isolates were erythromycin-resistant and clindamycin-sensitive (MSB). Based on the Chi-square test, statistically significant differences were found in the frequency of MSB, MLSB inductive, and MLSB constitutive phenotypes. Almost 30% of the identified strains showed multi-antibiotic resistance. However, the Chi-square test did not reveal any statistically significant differences in the frequency of multidrug-resistant strains in the considered research areas. The analyses carried out constituted the first study related to the isolation and assessment of drug susceptibility of Staphylococcus aureus in the bioaerosol of hard coal mines. Identification of bioaerosol in underground coal mines is a key issue because, due to the presence of pathogens, it plays a significant role in limiting the spread of occupational diseases. For the health of miners, research into microbial communities benefits the promotion of microbiological control of mine air.
Collapse
Affiliation(s)
- Iwona Beata Paśmionka
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicza 21 Av., 30-120, Kraków, Poland
| | - Piotr Cheluszka
- Department of Mining Mechanization and Robotisation, Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, Akademicka 2, 44-100, Gliwice, Poland.
| | - Janina Gospodarek
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicza 21 Av., 30-120, Kraków, Poland
| | - Krzysztof Chmielowski
- Department of Natural Gas Engineering, Oil and Gas Faculty, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Jiří Fries
- Department of Machine and Industrial Design, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Poruba, 708 00, Ostrava, Czech Republic
| |
Collapse
|
4
|
Cruz-Bustos T, Eder T, Ruttkowski B, Joachim A. Deciphering the code of resistance: a genomic and transcriptomic exploration of the Cystoisospora suis Holland-I strain. Sci Rep 2025; 15:5461. [PMID: 39953090 PMCID: PMC11828913 DOI: 10.1038/s41598-025-89372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Cystoisospora suis, a member of the apicomplexan order Coccidia and causative agent of neonatal porcine coccidiosis, poses a challenge to pig production due to the emergence of reduced efficacy of toltrazuril, the only EU-approved treatment. To address the critical gaps in understanding toltrazuril resistance and possibilities of early diagnostics, our study investigated the genetic basis of resistance through whole-genome DNA sequencing and transcriptome analysis of two C. suis strains, the toltrazuril-susceptible Wien-I and the resistant Holland-I. Additionally, we studied the mitochondrial genome and analysed mitochondrial gene expression in both strains. Our results show that genes encoding proteins involved in host-cell invasion displayed variable expression patterns and genetic mutations, suggesting adaptive changes in invasion mechanisms. Moreover, substantial fluctuations in the expression of genes linked to retrotransposons, accompanied by genetic alterations, were observed, highlighting their potential involvement in genomic rearrangements. Finally, our mitochondrial genome analyses revealed important insights into its genetic organization and conservation. Notably, the marked downregulation of CoI, CoIII and Cytb mRNA levels in the resistant strain Holland-I upon toltrazuril exposure highlights the dynamic response of mitochondrial genes to toltrazuril. These mitochondrial adaptations appear to be closely linked to the parasite drug resistance mechanism, potentially facilitating its survival under pharmacological stress. These findings enhance our knowledge of drug resistance mechanisms in Coccidia and highlight the need for novel management strategies, leading to the development of targeted treatments and controls.
Collapse
Affiliation(s)
- Teresa Cruz-Bustos
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, 1210, Austria.
| | - Thomas Eder
- Institute for Medical Biochemistry, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Baerbel Ruttkowski
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| |
Collapse
|
5
|
Xu FX, Sun R, Owens R, Hu K, Fu D. Assessing Drug Uptake and Response Differences in 2D and 3D Cellular Environments Using Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:14480-14489. [PMID: 39186736 DOI: 10.1021/acs.analchem.4c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The architecture of cell culture, two-dimensional (2D) versus three-dimensional (3D), significantly impacts various cellular factors, including cell-cell interactions, nutrient and oxygen gradients, metabolic activity, and gene expression profiles. This can result in different cellular responses during cancer drug treatment, with 3D-cultured cells often exhibiting higher resistance to chemotherapeutic drugs. While various genetic and proteomic analyses have been employed to investigate the underlying mechanisms of this increased resistance, complementary techniques that provide experimental evidence of spatial molecular profiling data are limited. Stimulated Raman scattering (SRS) microscopy has demonstrated its capability to measure both intracellular drug uptake and growth inhibition. In this work, we applied three-band (C-D, C-H, and fingerprint regions) SRS imaging to 2D and 3D cell cultures and performed a comparative analysis of drug uptake and response with the goal of understanding whether the difference in drug uptake explains the drug resistance in 3D culture compared to 2D. Our investigations revealed that despite similar intracellular drug levels in 2D and 3D A549 cells during lapatinib treatment, the growth of 3D spheroids was less impacted, supporting an enhanced drug tolerance in the 3D microenvironment. We further elucidated drug penetration patterns and the resulting heterogeneous cellular responses across different spheroid layers. Additionally, we investigated the role of the extracellular matrix in modulating drug delivery and cell response and discovered that limited drug penetration in 3D could also contribute to lower drug response. Our study provides valuable insights into the intricate mechanisms of increased drug resistance in 3D tumor models during cancer drug treatments.
Collapse
Affiliation(s)
- Fiona Xi Xu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rui Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan Owens
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kailun Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Xu FX, Sun R, Owens R, Hu K, Fu D. Assessing drug uptake and response differences in 2D and 3D cellular environments using stimulated Raman scattering microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590622. [PMID: 38712095 PMCID: PMC11071388 DOI: 10.1101/2024.04.22.590622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The architecture of cell culture-two-dimensional (2D) versus three-dimensional (3D)-significantly impacts various cellular factors, including cell-cell interactions, nutrient and oxygen gradients, metabolic activity, and gene expression profiles. This can result in different cellular responses during cancer drug treatment, with 3D-cultured cells often exhibiting higher resistance to chemotherapeutic drugs. While various genetic and proteomic analyses have been employed to investigate the underlying mechanisms of this increased resistance, complementary techniques that provide experimental evidence of spatial molecular profiling data are limited. Stimulated Raman scattering (SRS) microscopy has demonstrated its capability to measure both intracellular drug uptake and growth inhibition. In this work, we applied three-band SRS imaging to 2D and 3D cell cultures and provided a comparative analysis of drug uptake and response with the goal of understanding whether the difference in drug uptake explains the drug resistance in 3D culture compared to 2D. Our investigations revealed that despite similar intracellular drug levels in 2D and 3D A549 cells during lapatinib treatment, the growth of 3D spheroids is less impacted, supporting an enhanced drug tolerance in the 3D microenvironment. We further elucidated drug penetration patterns and the resulting heterogeneous cellular responses across different spheroid layers. Additionally, we investigated the role of the extracellular matrix in modulating drug delivery and cell response, and we discovered that limited drug penetration in 3D could also contribute to lower drug response. Our study provides valuable insights into the intricate mechanisms of increased drug resistance in 3D tumor models during cancer drug treatments.
Collapse
|
7
|
Morales-Durán N, León-Buitimea A, Morones-Ramírez JR. Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Heliyon 2024; 10:e27984. [PMID: 38510041 PMCID: PMC10950705 DOI: 10.1016/j.heliyon.2024.e27984] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies.
Collapse
Affiliation(s)
- Nami Morales-Durán
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - José R. Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| |
Collapse
|
8
|
Yonezawa H, Narita Y, Nagane M, Mishima K, Terui Y, Arakawa Y, Asai K, Fukuhara N, Sugiyama K, Shinojima N, Aoi A, Nishikawa R. Three-year follow-up analysis of phase 1/2 study on tirabrutinib in patients with relapsed or refractory primary central nervous system lymphoma. Neurooncol Adv 2024; 6:vdae037. [PMID: 38690230 PMCID: PMC11059299 DOI: 10.1093/noajnl/vdae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background The ONO-4059-02 phase 1/2 study showed favorable efficacy and acceptable safety profile of tirabrutinib, a second-generation Bruton's tyrosine kinase inhibitor, for relapsed/refractory primary central nervous system lymphoma (PCNSL). Here, we report the long-term efficacy and safety after a 3-year follow-up. Methods Eligible patients were aged ≥ 20 years with histologically diagnosed PCNSL and KPS of ≥ 70. Patients received oral tirabrutinib once daily at 320 or 480 mg, or 480 mg under fasted conditions. Results Between October 19, 2017, and June 13, 2019, 44 patients were enrolled: 33 and 9 had relapsed and refractory, respectively. The 320, 480, and 480 mg fasted groups included 20, 7, and 17 patients, respectively. The median follow-up was 37.1 months. The overall response rate was 63.6% (95% CI: 47.8-77.6) with complete response (CR), unconfirmed CR, and partial response in 9, 7, and 12 patients, respectively. The median duration of response (DOR) was 9.2 months, with a DOR rate of 19.8%; the median progression-free survival (PFS) and median overall survival (OS) were 2.9 months and not reached, respectively, with PFS and OS rates of 13.9% and 56.7%, respectively. Adverse events occurred in 38 patients (86.4%): grade ≥ 3 in 23 (52.3%) including 1 patient with grade 5 events. KPS and quality of life (QoL) scores were well maintained among patients receiving long-term treatment. Conclusions The results demonstrated the long-term clinical benefit of tirabrutinib, with deep and durable response in a subset of patients and acceptable safety profile, while KPS and QoL scores were maintained.
Collapse
Affiliation(s)
- Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Hospital, Kagoshima, Kagoshima, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Mitaka, Tokyo, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Yasuhito Terui
- Department of Hematology Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Katsunori Asai
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Noriko Fukuhara
- Department of Hematology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology & Neuro-oncology Program, Hiroshima University Hospital, Hiroshima, Hiroshima, Japan
| | - Naoki Shinojima
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
| | - Arata Aoi
- Department of Clinical Development, Ono Pharmaceutical Co., Ltd., Osaka, Osaka, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| |
Collapse
|
9
|
Jha NG, Dkhar DS, Singh SK, Malode SJ, Shetti NP, Chandra P. Engineered Biosensors for Diagnosing Multidrug Resistance in Microbial and Malignant Cells. BIOSENSORS 2023; 13:235. [PMID: 36832001 PMCID: PMC9954051 DOI: 10.3390/bios13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To curtail pathogens or tumors, antimicrobial or antineoplastic drugs have been developed. These drugs target microbial/cancer growth and survival, thereby improving the host's health. In attempts to evade the detrimental effects of such drugs, these cells have evolved several mechanisms over time. Some variants of the cells have developed resistances against multiple drugs or antimicrobial agents. Such microorganisms or cancer cells are said to exhibit multidrug resistance (MDR). The drug resistance status of a cell can be determined by analyzing several genotypic and phenotypic changes, which are brought about by significant physiological and biochemical alterations. Owing to their resilient nature, treatment and management of MDR cases in clinics is arduous and requires a meticulous approach. Currently, techniques such as plating and culturing, biopsy, gene sequencing, and magnetic resonance imaging are prevalent in clinical practices for determining drug resistance status. However, the major drawbacks of using these methods lie in their time-consuming nature and the problem of translating them into point-of-care or mass-detection tools. To overcome the shortcomings of conventional techniques, biosensors with a low detection limit have been engineered to provide quick and reliable results conveniently. These devices are highly versatile in terms of analyte range and quantities that can be detected to report drug resistance in a given sample. A brief introduction to MDR, along with a detailed insight into recent biosensor design trends and use for identifying multidrug-resistant microorganisms and tumors, is presented in this review.
Collapse
Affiliation(s)
- Niharika G. Jha
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Daphika S. Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Sumit K. Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Shweta J. Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Nagaraj P. Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Panjab, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
10
|
Yadav H, Mahalvar A, Pradhan M, Yadav K, Kumar Sahu K, Yadav R. Exploring the potential of phytochemicals and nanomaterial: a boon to antimicrobial treatment. MEDICINE IN DRUG DISCOVERY 2023. [DOI: 10.1016/j.medidd.2023.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
11
|
Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. mSphere 2022; 7:e0038322. [PMID: 36286534 PMCID: PMC9769886 DOI: 10.1128/msphere.00383-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.
Collapse
|
12
|
Sharma P, Singh N, Sharma S. ATP binding cassette transporters and cancer: revisiting their controversial role. Pharmacogenomics 2021; 22:1211-1235. [PMID: 34783261 DOI: 10.2217/pgs-2021-0116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The expression of ATP-binding cassette transporter (ABC transporters) has been reported in various tissues such as the lung, liver, kidney, brain and intestine. These proteins account for the efflux of different compounds and metabolites across the membrane, thus decreasing the concentration of the toxic compounds. ABC transporter genes play a vital role in the development of multidrug resistance, which is the main obstacle that hinders the success of chemotherapy. Preclinical and clinical trials have investigated the probability of overcoming drug-associated resistance and substantial toxicities. The focus has been put on several strategies to overcome multidrug resistance. These strategies include the development of modulators that can modulate ABC transporters. This knowledge can be translated for clinical oncology treatment in the future.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Navneet Singh
- Department of Pulmonary medicine, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
13
|
Quijia CR, Alves RC, Hanck-Silva G, Galvão Frem RC, Arroyos G, Chorilli M. Metal-organic frameworks for diagnosis and therapy of infectious diseases. Crit Rev Microbiol 2021; 48:161-196. [PMID: 34432563 DOI: 10.1080/1040841x.2021.1950120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases are one of the leading cause of mortality and morbidity worldwide. Metal-Organic Frameworks (MOFs), which are porous coordination materials composed of bridging organic ligands and metallic ions or clusters, exhibits great potential to be used against several pathogens, such as bacteria, viruses, fungi and protozoa. MOFs can show sustained release capability, high surface area, adjustable pore size and structural flexibility, which makes them good candidates for new therapeutic systems. This review provides a detailed summary of the biological application of MOFs, focussing on diagnosis and treatment of infectious diseases. MOFs have been reported for usage as antimicrobial agents, drug delivery systems, therapeutic composites, nanozymes and phototherapies. Furthermore, different MOF-based biosensors have also been developed to detect specific pathogens by electrochemical, fluorometric and colorimetric assays. Finally, we present limitations and perspectives in this field.
Collapse
Affiliation(s)
| | - Renata Carolina Alves
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | | | - Guilherme Arroyos
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| |
Collapse
|
14
|
Yang X, Ye W, Qi Y, Ying Y, Xia Z. Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. Front Bioeng Biotechnol 2021; 9:696514. [PMID: 34307323 PMCID: PMC8297506 DOI: 10.3389/fbioe.2021.696514] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems.
Collapse
Affiliation(s)
- Xinfu Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhongni Xia
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Bwalya AK, Irekwa RM, Mbugua A, Munyao MM, Rotich PK, Nyandwaro TT, Njoroge CW, Mwangi AW, Yego JJ, Kiyaga S, Nzou SM. Investigation of single nucleotide polymorphisms in <i>MRPA</i> and <i>AQP-1</i> genes of <i>Leishmania donovani</i> as resistance markers in visceral leishmaniasis in Kenya. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Byadi S, Eddine HM, Sadik K, Podlipnik Č, Aboulmouhajir A. Fingerprint-based 2D-QSAR Models for Predicting Bcl-2 Inhibitors Affinity. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200414155403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:
Bcl-2 family plays an essential role in the cell cycle events incorporating
survival, proliferation, and differentiation in normal and neoplastic neuronal cells. Thus, it
has been validated as a principal target for the treatment of cancer. For this reason, we will build
a model based on a large number of Bcl-2 inhibitors to predict the activities of new compounds
as future Bcl-2 inhibitors.
Methods:
In this study, QSAR models were successfully used to predict the inhibitory activity
against Bcl-2 for a set of compounds collected from BDB (Binding database). The kPLS (kernelbased
Partial Least-Square) method implemented in Schrodinger's Canvas, was used for searching
the correlation between pIC50 and binary fingerprints for a set of known Bcl-2 inhibitors.
Results and Discussion:
Models based on binary fingerprints with two kPLS factors have been
found with decent predictive power (q2 > 0.58), while the optimal number of factors is about 5.
The enrichment study (148 actives, 5700 decoys) has shown excellent classification ability of
our models (AUC > 0.90) for all cases).
Conclusion:
We found that the kPLS method, in combination with binary fingerprints, is useful
for the affinity prediction and the Bcl-2 inhibitors classification. The obtained promising results,
methods, and applications highlighted in this study will help us to design more selective Bcl-2
inhibitors with better structural characteristics and improved anti-cancer activity.
Collapse
Affiliation(s)
- Said Byadi
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Hachim Mouhi Eddine
- Molecular Modeling and Spectroscopy Team, Sciences Faculty, Chouaib Doukkali University, El Jadida, Morocco
| | - Karima Sadik
- Molecular Modeling and Spectroscopy Team, Sciences Faculty, Chouaib Doukkali University, El Jadida, Morocco
| | - Črtomir Podlipnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Aziz Aboulmouhajir
- Molecular Modeling and Spectroscopy Team, Sciences Faculty, Chouaib Doukkali University, El Jadida, Morocco
| |
Collapse
|
17
|
Han Y, Qu YQ, Mok SWF, Chen J, Xia CL, He HQ, Li Z, Zhang W, Qiu CL, Liu L, Law BYK, Wong VKW. A Novel Drug Resistance Mechanism: Genetic Loss of Xeroderma Pigmentosum Complementation Group C ( XPC) Enhances Glycolysis-Mediated Drug Resistance in DLD-1 Colon Cancer Cells. Front Pharmacol 2019; 10:912. [PMID: 31551763 PMCID: PMC6746939 DOI: 10.3389/fphar.2019.00912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/18/2019] [Indexed: 02/04/2023] Open
Abstract
The pro-apoptotic proteins BAX and BAK are critical regulatory factors constituting the apoptosis machinery. Downregulated expression of BAX and BAK in human colorectal cancer lead to chemotherapeutic failure and poor survival rate in patients. In this study, isogenic DLD-1 colon cancer cells and the BAX and BAK double knockout counterpart were used as the cellular model to investigate the role of BAX/BAK-associated signaling network and the corresponding downstream effects in the development of drug resistance. Our data suggested that DLD-1 colon cancer cells with BAX/BAK double-knockout were selectively resistant to a panel of FDA-approved drugs (27 out of 66), including etoposide. PCR array analysis for the transcriptional profiling of genes related to human cancer drug resistance validated the altered level of 12 genes (3 upregulated and 9 downregulated) in DLD-1 colon cancer cells lack of BAX and BAK expression. Amongst these genes, XPC responsible for DNA repairment and cellular respiration demonstrated the highest tolerance towards etoposide treatment accompanying upregulated glycolysis as revealed by metabolic stress assay in DLD-1 colon cancer cells deficient with XPC. Collectively, our findings provide insight into the search of novel therapeutic strategies and pharmacological targets to against cancer drug resistance genetically associated with BAX, BAK, and XPC, for improving the therapy of colorectal cancer via the glycolytic pathway.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Cheng Lai Xia
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, China
| | - Hu Qiang He
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cong Ling Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|