1
|
Goriounova AS, Flori Sassano M, Wrennall JA, Tarran R. ELD607 specifically traffics Orai1 to the lysosome leading to inhibition of store operated calcium entry. Cell Calcium 2024; 123:102945. [PMID: 39191091 DOI: 10.1016/j.ceca.2024.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Orai1 is a plasma membrane Ca2+ channel involved in store operated calcium entry (SOCE). SOCE can regulate cell growth, exocytosis, gene expression and inflammation. We previously found that short palate lung and nasal epithelial clone 1's (SPLUNC1) sixth α-helix (α6) bound Orai1 to inhibit SOCE. SPLUNC1 was not proteolytically stable, so we developed ELD607, an 11 amino acid peptide based on SPLUNC1's α6 region which was more stable and more potent than SPLUNC1/α6. Here, we studied ELD607's mechanism of action. We overexpressed either Orai1-HA or Orai1-YFP in HEK293T cells to probe ELD607-Orai1 interactions by confocal microscopy. We also measured changes in Fluo-4 fluorescence in a multiplate reader as a marker of cytoplasmic Ca2+ levels. ELD607 internalized Orai1 independently of STIM1. Both 15 min and 3 h exposure to ELD607 similarly depleted Orai1 in the plasma membrane. However, 3 h exposure to ELD607 yielded greater inhibition of SOCE. ELD607 continued to colocalize with Orai1 after internalization and this process was dependent on the presence of the ubiquitin ligase NEDD4.2. Similarly, ELD607 increased the colocalization between Orai1 and ubiquitin. ELD607 also increased the colocalization between Orai1 and Rab5 and 7, but not Rab11, suggesting that Orai1 trafficked through early and late but not recycling endosomes. Finally, ELD607 caused Orai1, but not Orai2, Orai3, or STIM1 to traffic to lysosomes. We conclude that ELD607 rapidly binds to Orai1 and works in an identical fashion as full length SPLUNC1 by internalizing Orai1 and sending it to lysosomes, leading to a decrease in SOCE.
Collapse
Affiliation(s)
- Alexandra S Goriounova
- Department of Pharmacology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - M Flori Sassano
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| | - Joe A Wrennall
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA.
| |
Collapse
|
2
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
4
|
Kerkhofs M, Vervloessem T, Luyten T, Stopa KB, Chen J, Vangheluwe P, Bultynck G, Vervliet T. The alkalinizing, lysosomotropic agent ML-9 induces a pH-dependent depletion of ER Ca 2+ stores in cellulo. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119308. [PMID: 35710019 DOI: 10.1016/j.bbamcr.2022.119308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
ML-9 elicits a broad spectrum of effects in cells, including inhibition of myosin light chain kinase, inhibition of store-operated Ca2+ entry and lysosomotropic actions that result in prostate cancer cell death. Moreover, the compound also affects endoplasmic reticulum (ER) Ca2+ homeostasis, although the underlying mechanisms remain unclear. We found that ML-9 provokes a rapid mobilization of Ca2+ from ER independently of IP3Rs or TMBIM6/Bax Inhibitor-1, two ER Ca2+-leak channels. Moreover, in unidirectional 45Ca2+ fluxes in permeabilized cells, ML-9 was able to reduce ER Ca2+-store content. Although the ER Ca2+ store content was decreased, ML-9 did not directly inhibit SERCA's ATPase activity in vitro using microsomal preparations. Consistent with its chemical properties as a cell-permeable weak alkalinizing agent (calculated pKa of 8.04), ML-9 provoked a rapid increase in cytosolic pH preceding the Ca2+ efflux from the ER. Pre-treatment with the weak acid 3NPA blunted the ML-9-evoked increase in intracellular pH and subsequent ML-9-induced Ca2+ mobilization from the ER. This experiment underpins a causal link between ML-9's impact on the pH and Ca2+ dynamics. Overall, our work indicates that the lysosomotropic drug ML-9 may not only impact lysosomal compartments but also have severe impacts on ER Ca2+ handling in cellulo.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Tamara Vervloessem
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Tomas Luyten
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Kinga B Stopa
- Jagiellonian University, Malopolska Centre of Biotechnology, 30-387 Krakow, Poland
| | - Jialin Chen
- KU Leuven, Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- KU Leuven, Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium.
| | - Tim Vervliet
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Tandl D, Sponagel T, Alansary D, Fuck S, Smit T, Hehlgans S, Jakob B, Fournier C, Niemeyer BA, Rödel F, Roth B, Moroni A, Thiel G. X-ray irradiation triggers immune response in human T-lymphocytes via store-operated Ca2+ entry and NFAT activation. J Gen Physiol 2022; 154:213138. [PMID: 35416945 PMCID: PMC9011325 DOI: 10.1085/jgp.202112865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/25/2021] [Accepted: 02/11/2022] [Indexed: 12/30/2022] Open
Abstract
Radiation therapy efficiently eliminates cancer cells and reduces tumor growth. To understand collateral agonistic and antagonistic effects of this treatment on the immune system, we examined the impact of x-ray irradiation on human T cells. We find that, in a major population of leukemic Jurkat T cells and peripheral blood mononuclear cells, clinically relevant radiation doses trigger delayed oscillations of the cytosolic Ca2+ concentration. They are generated by store-operated Ca2+ entry (SOCE) following x-ray–induced clustering of Orai1 and STIM1 and formation of a Ca2+ release–activated Ca2+ (CRAC) channel. A consequence of the x-ray–triggered Ca2+ signaling cascade is translocation of the transcription factor nuclear factor of activated T cells (NFAT) from the cytosol into the nucleus, where it elicits the expression of genes required for immune activation. The data imply activation of blood immune cells by ionizing irradiation, with consequences for toxicity and therapeutic effects of radiation therapy.
Collapse
Affiliation(s)
- Dominique Tandl
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Tim Sponagel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dalia Alansary
- Molecular Biophysics, University of Saarland, Center for Integrative Physiology and Molecular Medicine, Homburg/Saar, Germany
| | - Sebastian Fuck
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Timo Smit
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe-University, Frankfurt am Main, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, University of Saarland, Center for Integrative Physiology and Molecular Medicine, Homburg/Saar, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University, Frankfurt am Main, Germany
| | - Bastian Roth
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
6
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
7
|
Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:ijms22168782. [PMID: 34445487 PMCID: PMC8395829 DOI: 10.3390/ijms22168782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanosensitive ion channels are widely expressed in the cardiovascular system. They translate mechanical forces including shear stress and stretch into biological signals. The most prominent biological signal through which the cardiovascular physiological activity is initiated or maintained are intracellular calcium ions (Ca2+). Growing evidence show that the Ca2+ entry mediated by mechanosensitive ion channels is also precisely regulated by a variety of key proteins which are distributed in the cell membrane or endoplasmic reticulum. Recent studies have revealed that mechanosensitive ion channels can even physically interact with Ca2+ regulatory proteins and these interactions have wide implications for physiology and pathophysiology. Therefore, this paper reviews the cross-talk between mechanosensitive ion channels and some key Ca2+ regulatory proteins in the maintenance of calcium homeostasis and its relevance to cardiovascular health and disease.
Collapse
|
8
|
Langthaler S, Rienmüller T, Scheruebel S, Pelzmann B, Shrestha N, Zorn-Pauly K, Schreibmayer W, Koff A, Baumgartner C. A549 in-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma. PLoS Comput Biol 2021; 17:e1009091. [PMID: 34157016 PMCID: PMC8219159 DOI: 10.1371/journal.pcbi.1009091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is still a leading cause of death worldwide. In recent years, knowledge has been obtained of the mechanisms modulating ion channel kinetics and thus of cell bioelectric properties, which is promising for oncological biomarkers and targets. The complex interplay of channel expression and its consequences on malignant processes, however, is still insufficiently understood. We here introduce the first approach of an in-silico whole-cell ion current model of a cancer cell, in particular of the A549 human lung adenocarcinoma, including the main functionally expressed ion channels in the plasma membrane as so far known. This hidden Markov-based model represents the electrophysiology behind proliferation of the A549 cell, describing its rhythmic oscillation of the membrane potential able to trigger the transition between cell cycle phases, and it predicts membrane potential changes over the cell cycle provoked by targeted ion channel modulation. This first A549 in-silico cell model opens up a deeper insight and understanding of possible ion channel interactions in tumor development and progression, and is a valuable tool for simulating altered ion channel function in lung cancer electrophysiology.
Collapse
Affiliation(s)
- Sonja Langthaler
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Theresa Rienmüller
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Susanne Scheruebel
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Brigitte Pelzmann
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Niroj Shrestha
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Klaus Zorn-Pauly
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Wolfgang Schreibmayer
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Andrew Koff
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, United States of America
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| |
Collapse
|
9
|
Abstract
Maintaining a precise calcium (Ca2+) balance is vital for cellular survival. The most prominent pathway to shuttle Ca2+ into cells is the Ca2+ release activated Ca2+ (CRAC) channel. Orai proteins are indispensable players in this central mechanism of Ca2+ entry. This short review traces the latest articles published in the field of CRAC channel signalling with a focus on the structure of the pore-forming Orai proteins, the propagation of the binding signal from STIM1 through the channel to the central pore and their role in human health and disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, Austria
| | - Sascha Berlansky
- Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, Austria
| | - Irene Frischauf
- Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, Austria
| |
Collapse
|
10
|
Qiu JY, Ma LQ, Liu BB, Zhang WJ, Liu MS, Wang GG, Zhao XX, Luo X, Wang Q, Xu H, Zang DA, Shen J, Peng YB, Zhao P, Xue L, Yu MF, Chen W, Dai J, Liu QH. Folium Sennae and emodin reverse airway smooth muscle contraction. Cell Biol Int 2020; 44:1870-1880. [PMID: 32437058 DOI: 10.1002/cbin.11393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022]
Abstract
The objective of this project was to find a bronchodilatory compound from herbs and clarify the mechanism. We found that the ethanol extract of Folium Sennae (EEFS) can relax airway smooth muscle (ASM). EEFS inhibited ASM contraction, induced by acetylcholine, in mouse tracheal rings and lung slices. High-performance liquid chromatography assay showed that EEFS contained emodin. Emodin had a similar reversal action. Acetylcholine-evoked contraction was also partially reduced by nifedipine (a selective inhibitor of L-type voltage-dependent Ca2+ channels, LVDCCs), YM-58483 (a selective inhibitor of store-operated Ca2+ entry, SOCE), as well as Y-27632 (an inhibitor of Rho-associated protein kinase). In addition, LVDCC- and SOCE-mediated currents and cytosolic Ca2+ elevations were inhibited by emodin. Emodin reversed acetylcholine-caused increases in phosphorylation of myosin phosphatase target subunit 1. Furthermore, emodin, in vivo, inhibited acetylcholine-induced respiratory system resistance in mice. These results indicate that EEFS-induced relaxation results from emodin inhibiting LVDCC, SOCE, and Ca2+ sensitization. These findings suggest that Folium Sennae and emodin may be new sources of bronchodilators.
Collapse
Affiliation(s)
- Jun-Ying Qiu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Li-Qun Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bei-Bei Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Jing Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Su Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ge-Ge Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Xue Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi Luo
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Dun-An Zang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong-Bo Peng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Weiwei Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, China
| | - Qing-Hua Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
11
|
Richardson A, Powell AK, Sexton DW, Parsons JL, Reynolds NJ, Ross K. microRNA‐184 is induced by store‐operated calcium entry and regulates early keratinocyte differentiation. J Cell Physiol 2020; 235:6854-6861. [DOI: 10.1002/jcp.29579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/07/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Adam Richardson
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Liverpool UK
| | - Andrew K. Powell
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Liverpool UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Liverpool UK
| | - Jason L. Parsons
- Department of Molecular and Clinical Cancer Medicine, Cancer Research CentreUniversity of Liverpool Liverpool UK
| | - Nick J. Reynolds
- Dermatological Sciences, Institute of Cellular MedicineNewcastle University Newcastle upon Tyne UK
- Department of Dermatology, Royal Victoria InfirmaryNewcastle Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Kehinde Ross
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Liverpool UK
| |
Collapse
|
12
|
Azimi I, Stevenson RJ, Zhang X, Meizoso-Huesca A, Xin P, Johnson M, Flanagan JU, Chalmers SB, Yoast RE, Kapure JS, Ross BP, Vetter I, Ashton MR, Launikonis BS, Denny WA, Trebak M, Monteith GR. A new selective pharmacological enhancer of the Orai1 Ca 2+ channel reveals roles for Orai1 in smooth and skeletal muscle functions. ACS Pharmacol Transl Sci 2020; 3:135-147. [PMID: 32190822 DOI: 10.1021/acsptsci.9b00081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Store operated calcium (Ca2+) entry is an important homeostatic mechanism in cells, whereby the release of Ca2+ from intracellular endoplasmic reticulum stores triggers the activation of a Ca2+ influx pathway. Mediated by Orai1, this Ca2+ influx has specific and essential roles in biological processes as diverse as lactation to immunity. Although pharmacological inhibitors of this Ca2+ influx mechanism have helped to define the role of store operated Ca2+ entry in many cellular events, the lack of isoform specific modulators and activators of Orai1 has limited our full understanding of these processes. Here we report the identification and synthesis of an Orai1 activity enhancer that concurrently potentiated Orai1 Ca2+ -dependent inactivation (CDI). This unique enhancer of Orai1 had only a modest effect on Orai3 with weak inhibitory effects at high concentrations in intact MCF-7 breast cancer cells. The Orai1 enhancer heightened vascular smooth muscle cell migration induced by platelet-derived growth factor and the unique store operated Ca2+ entry pathway present in skeletal muscle cells. These studies show that IA65 is an exemplar for the translation and development of Orai isoform selective agents. The ability of IA65 to activate CDI demonstrates that agents can be developed that can enhance Orai1-mediated Ca2+ influx but avoid the cytotoxicity associated with sustained Orai1 activation. IA65 and/or future analogues with similar Orai1 and CDI activating properties could be fine tuners of physiological processes important in specific disease states, such as cellular migration and immune cell function.
Collapse
Affiliation(s)
- Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Ralph J Stevenson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, and Pennsylvania State Cancer Institute. The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ping Xin
- Department of Cellular and Molecular Physiology, and Pennsylvania State Cancer Institute. The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Martin Johnson
- Department of Cellular and Molecular Physiology, and Pennsylvania State Cancer Institute. The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Silke B Chalmers
- School of Pharmacy, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, and Pennsylvania State Cancer Institute. The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jeevak S Kapure
- School of Pharmacy, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Irina Vetter
- School of Pharmacy, The University of Queensland, Brisbane 4072, Queensland, Australia.,IMB Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Mark R Ashton
- UniQuest Pty Ltd, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, and Pennsylvania State Cancer Institute. The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane 4072, Queensland, Australia.,Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane 4102, Queensland, Australia
| |
Collapse
|
13
|
NS8593 inhibits Ca 2+ permeant channels reversing mouse airway smooth muscle contraction. Life Sci 2019; 238:116953. [PMID: 31626793 DOI: 10.1016/j.lfs.2019.116953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/24/2023]
Abstract
AIMS This study focused on investigating whether NS8593 reverses airway smooth muscle (ASM) contraction and the underlying mechanism. MAIN METHODS ASM contraction in mouse tracheal rings and lung slices was measured. Currents mediated by voltage dependent Ca2+ channels (VDCCs) and ACH-activated channels were measured using the whole-cell patch-clamp technique in single tracheal smooth muscle cells (TSMCs). Intracellular Ca2+ level and cell length were measured using an LSM 700 laser confocal microscope and a Zen 2010 software. Mouse respiratory system resistance (Rrs) was assessed using a FlexiVent FX system. KEY FINDINGS High K+ (80 mM K+) and ACH induced ASM contraction in mouse tracheal rings and lung slices, which was partially relaxed by nifedipine (blocker of L-type VDCCs, LVDCCs), YM-58483 (blocker of store-operated Ca2+ entry (SOCE), transient receptor potential C3 (TRPC3) and TRPC5 channels), respectively. However, the contraction was completely reversed by NS8593, whereas, slightly relaxed by formoterol. ACH activated inward currents, which displayed linear and reversed around 0 mV, indicating the currents were mediated by non-selective cation channels (NSCCs). Moreover, these currents were blocked by YM-58483. In addition, such currents were abolished by NS8593, implicating that NS8593 inhibits the same channels. Besides, NS8593 inhibited increases of intracellular Ca2+ and the associated cell shortening. Finally, NS8593 inhibited ACH-induced increases of mouse respirator system resistance (Rrs). SIGNIFICANCE Our results indicate that NS8593 inhibits LVDCCs and NSCCs, resulting in decreases of intracellular Ca2+ and then leading to ASM relaxation. These data suggest that NS8593 might be a new bronchodilator.
Collapse
|
14
|
ER Ca 2+ release and store-operated Ca 2+ entry - partners in crime or independent actors in oncogenic transformation? Cell Calcium 2019; 82:102061. [PMID: 31394337 DOI: 10.1016/j.ceca.2019.102061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is a pleiotropic messenger that controls life and death decisions from fertilisation until death. Cellular Ca2+ handling mechanisms show plasticity and are remodelled throughout life to meet the changing needs of the cell. In turn, as the demands on a cell alter, for example through a change in its niche environment or its functional requirements, Ca2+ handling systems may be targeted to sustain the remodelled cellular state. Nowhere is this more apparent than in cancer. Oncogenic transformation is a multi-stage process during which normal cells become progressively differentiated towards a cancerous state that is principally associated with enhanced proliferation and avoidance of death. Ca2+ signalling is intimately involved in almost all aspects of the life of a transformed cell and alterations in Ca2+ handling have been observed in cancer. Moreover, this remodelling of Ca2+ signalling pathways is also required in some cases to sustain the transformed phenotype. As such, Ca2+ handling is hijacked by oncogenic processes to deliver and maintain the transformed phenotype. Central to generation of intracellular Ca2+ signals is the release of Ca2+ from the endoplasmic reticulum intracellular (ER) Ca2+ store via inositol 1,4,5-trisphosphate receptors (InsP3Rs). Upon depletion of ER Ca2+, store-operated Ca2+ entry (SOCE) across the plasma membrane occurs via STIM-gated Orai channels. SOCE serves to both replenish stores but also sustain Ca2+ signalling events. Here, we will discuss the role and regulation of these two signalling pathways and their interplay in oncogenic transformation.
Collapse
|
15
|
Katz ZB, Zhang C, Quintana A, Lillemeier BF, Hogan PG. Septins organize endoplasmic reticulum-plasma membrane junctions for STIM1-ORAI1 calcium signalling. Sci Rep 2019; 9:10839. [PMID: 31346209 PMCID: PMC6658532 DOI: 10.1038/s41598-019-46862-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
ORAI1 Ca2+ channels in the plasma membrane (PM) are gated by STIM1 at endoplasmic reticulum (ER)-PM junctions to effect store-dependent Ca2+ entry into cells, but little is known about how local STIM-ORAI signalling at junctions is coordinated with overall cellular architecture. Filamentous septins can specify cytoskeletal rearrangements and have been found recently to modulate STIM-ORAI signalling. Here we show by super-resolution imaging of ORAI1, STIM1, and septin 4 in living cells that septins facilitate Ca2+ signalling indirectly. Septin 4 does not colocalize preferentially with ORAI1 in resting or stimulated cells, assemble stably at ER-PM junctions, or specify a boundary that directs or confines ORAI1 to junctions. Rather, ORAI1 is recruited to junctions solely through interaction with STIM proteins, while septins regulate the number of ER-PM junctions and enhance STIM1-ORAI1 interactions within junctions. Thus septins communicate with STIM1 and ORAI1 through protein or lipid intermediaries, and are favorably positioned to coordinate Ca2+ signalling with rearrangements in cellular architecture.
Collapse
Affiliation(s)
- Zachary B Katz
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Chen Zhang
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ariel Quintana
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Translational Science Division, Clinical Science Department, Moffitt Cancer Center Magnolia Campus, Tampa, FL, 33612, USA
| | - Björn F Lillemeier
- NOMIS Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Patrick G Hogan
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
- Program in Immunology, University of California San Diego, La Jolla, CA, 92037, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Richardson A, Owens DJ, Ross K. MicroRNA-184 and its long noncoding RNA sponge urothelial carcinoma associated 1 are induced in wounded keratinocytes in a store-operated calcium entry-dependent manner. Br J Dermatol 2019; 180:1533-1534. [PMID: 30597516 DOI: 10.1111/bjd.17576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- A Richardson
- School of Pharmacy and Biomolecular Sciences, Liverpool, U.K
| | - D J Owens
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, U.K
| | - K Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool, U.K
| |
Collapse
|
17
|
Roux A, Leroy H, De Muylder B, Bracq L, Oussous S, Dusanter-Fourt I, Chougui G, Tacine R, Randriamampita C, Desjardins D, Le Grand R, Bouillaud F, Benichou S, Margottin-Goguet F, Cheynier R, Bismuth G, Mangeney M. FOXO1 transcription factor plays a key role in T cell-HIV-1 interaction. PLoS Pathog 2019; 15:e1007669. [PMID: 31042779 PMCID: PMC6513100 DOI: 10.1371/journal.ppat.1007669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/13/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-1 is dependent on the host cell for providing the metabolic resources for completion of its viral replication cycle. Thus, HIV-1 replicates efficiently only in activated CD4+ T cells. Barriers preventing HIV-1 replication in resting CD4+ T cells include a block that limits reverse transcription and also the lack of activity of several inducible transcription factors, such as NF-κB and NFAT. Because FOXO1 is a master regulator of T cell functions, we studied the effect of its inhibition on T cell/HIV-1 interactions. By using AS1842856, a FOXO1 pharmacologic inhibitor, we observe that FOXO1 inhibition induces a metabolic activation of T cells with a G0/G1 transition in the absence of any stimulatory signal. One parallel outcome of this change is the inhibition of the activity of the HIV restriction factor SAMHD1 and the activation of the NFAT pathway. FOXO1 inhibition by AS1842856 makes resting T cells permissive to HIV-1 infection. In addition, we found that FOXO1 inhibition by either AS1842856 treatment or upon FOXO1 knockdown induces the reactivation of HIV-1 latent proviruses in T cells. We conclude that FOXO1 has a central role in the HIV-1/T cell interaction and that inhibiting FOXO1 with drugs such as AS1842856 may be a new therapeutic shock-and-kill strategy to eliminate the HIV-1 reservoir in human T cells. HIV-1 is controlled by host restriction factors that interfere with its life cycle. However, the virus has equipped itself to counter these strategies. We report a new interplay between HIV-1 and human T lymphocytes through the FOXO1 transcription factor. By using AS1842856, a drug targeting FOXO1, we found that FOXO1 inhibition triggers metabolic activation and G0/G1 transition of resting T cells and also by the inactivation of the SAMHD1 viral restriction factor. FOXO1 inhibition makes resting CD4+ T cells permissive to HIV-1 infection. We finally found that pharmacologic (AS1842856 treatment) or genetic (shRNA) silencing of FOXO1 reactivate HIV-1 latent proviruses. Thus FOXO1 appears as an important player of the HIV-1/T-cell relationship and a new potential therapeutic target for intervention during HIV-1 infection.
Collapse
Affiliation(s)
- Arthur Roux
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Héloise Leroy
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Bénédicte De Muylder
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Lucie Bracq
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
- Institut Pasteur Shangai-Chinese Academy of Sciences, Shangai, China
- International Associated Laboratory (LIA VirHost), CNRS, Université Paris Descartes, Institut Pasteur Paris, and Institut Pasteur Shangai-Chinese Academy of Sciences, Shangai, China
| | - Samia Oussous
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Isabelle Dusanter-Fourt
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Ghina Chougui
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Rachida Tacine
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Clotilde Randriamampita
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Delphine Desjardins
- CEA, Université Paris Sud, INSERM -Immunology of Viral Infections and Autoimmune Diseases department (IMVA), U1184, IDMIT Department, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM -Immunology of Viral Infections and Autoimmune Diseases department (IMVA), U1184, IDMIT Department, Fontenay-aux-Roses, France
| | - Frederic Bouillaud
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Serge Benichou
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
- Institut Pasteur Shangai-Chinese Academy of Sciences, Shangai, China
- International Associated Laboratory (LIA VirHost), CNRS, Université Paris Descartes, Institut Pasteur Paris, and Institut Pasteur Shangai-Chinese Academy of Sciences, Shangai, China
| | - Florence Margottin-Goguet
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Remi Cheynier
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Georges Bismuth
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Marianne Mangeney
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|