1
|
Capobianco E, Pirrone I. The POHaD paradigm: role of the placenta in paternal programming. Placenta 2025:S0143-4004(25)00138-9. [PMID: 40350327 DOI: 10.1016/j.placenta.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/31/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
The Paternal Origins of Health and Disease (POHaD) paradigm emerges from the well-known Developmental Origins of Health and Disease (DOHaD) concept. Research into the programming of metabolic diseases originating from the paternal germline began over 20 years ago, focusing on the father's pre-conceptional exposure, such as metabolic disorders and lifestyle habits (kind of diet, exercise, smoking, drugs consumption, etc.). This exposure can lead to epigenetic marks not only in his germ cells but also in other components of the semen that impact the health of future generations. The significant role of the paternal genome in the fetal component of the placenta and the recognition of the placenta's involvement in postnatal disease programming underscore the importance of studying the placenta in paternal programming research. The aim of this work is to review what we know so far about paternal programming highlighting the variations in the phenotype of the placenta and the influence of it in the programming of metabolic pathologies in the offspring of fathers exposed to metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| | - Irune Pirrone
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| |
Collapse
|
2
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
3
|
Capobianco E, Pirrone I. Paternal programming of fetoplacental and offspring metabolic disorders. Placenta 2023; 141:71-77. [PMID: 37355440 DOI: 10.1016/j.placenta.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
The alarming increase in the prevalence of metabolic pathologies is of worldwide concern and has been linked not only to genetic factors but also to a large number of non-genetic factors. In recent years, there has been increasing interest in the study of the programming of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and obesity, by paternal exposure, a paradigm termed "Paternal Origins of Health and Disease" (POHaD). This term derives from the better known "Developmental Origins of Health and Disease" (DOHaD), which focuses on the involvement of the maternal intrauterine environment and complications during pregnancy associated with the health and disease of the offspring. Studies on paternal programming have documented environmentally induced epigenetic modifications in the male germline and in seminal plasma, which lead to intergenerational and transgenerational phenotypes, evident already during fetoplacental development. Studies with animal models at both ends of the nutritional spectrum (undernutrition or overnutrition) have been performed to understand the possible mechanisms and signaling pathways leading to the programming of metabolic disorders by exploring epigenetic changes throughout the life of the offspring. The aim of this review was to address the evidence of the programming of fetoplacental developmental alterations and metabolic pathologies in the offspring of males with metabolic disorders and unhealthy exposures, highlighting the mechanisms involved in such programming and looking for paternal interventions to reduce negative health outcomes in the offspring.
Collapse
Affiliation(s)
- Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| | - Irune Pirrone
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| |
Collapse
|
4
|
Selzer EB, Blain D, Hufnagel RB, Lupo PJ, Mitchell LE, Brooks BP. Review of Evidence for Environmental Causes of Uveal Coloboma. Surv Ophthalmol 2021; 67:1031-1047. [PMID: 34979194 DOI: 10.1016/j.survophthal.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Uveal coloboma is a condition defined by missing ocular tissues and is a significant cause of childhood blindness. It occurs from a failure of the optic fissure to close during embryonic development,and may lead to missing parts of the iris, ciliary body, retina, choroid, and optic nerve. Because there is no treatment for coloboma, efforts have focused on prevention. While several genetic causes of coloboma have been identified, little definitive research exists regarding the environmental causes of this condition. We review the current literature on environmental factors associated with coloboma in an effort to guide future research and preventative counseling related to this condition.
Collapse
Affiliation(s)
- Evan B Selzer
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
5
|
Moriel P, Palmer EA, Harvey KM, Cooke RF. Improving Beef Progeny Performance Through Developmental Programming. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.728635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal nutritional management during gestation appears to modulate fetal development and imprint offspring postnatal health and performance, via altered organ and tissue development and tissue-specific epigenetics. This review highlighted the studies demonstrating how developmental programming could be explored by beef producers to enhance offspring performance (growth, immune function, and reproduction), including altering cow body condition score (BCS) during pregnancy and maternal supplementation of protein and energy, polyunsaturated fatty acids (PUFA), trace minerals, frequency of supplementation, specific amino acids, and vitamins. However, this review also highlighted that programming effects on offspring performance reported in the literature were highly variable and depended on level, duration, timing, and type of nutrient restriction during gestation. It is suggested that maternal BCS gain during gestation, rather than BCS per se, enhances offspring preweaning growth. Opportunities for boosting offspring productive responses through maternal supplementation of protein and energy were identified more consistently for pre- vs. post-weaning phases. Maternal supplementation of specific nutrients (i.e., PUFA, trace minerals, and methionine) demonstrated potential for improving offspring performance, health and carcass characteristics during immunological challenging scenarios. Despite the growing body of evidence in recent years, the complexity of investigating developmental programming in beef cattle production is also growing and potential reasons for current research challenges are highlighted herein. These challenges include: (1) intrinsic difficulty of accurately measuring cow milk production multiple times in cow-calf systems; (2) larger focus on Bos taurus vs. Bos indicus breeds despite the predominance of Bos indicus-influenced beef breeds in tropical/subtropical environments and their specific, and sometimes opposite, physiological and performance outcomes compared to Bos taurus breeds; (3) limited focus on interaction between prenatal and postnatal management; (4) sex-specific outcomes following similar maternal nutrition during gestation; (5) greater focus on nutrient deficiency vs. excess; (6) limited implementation of immunological challenges; and (7) lack of multigeneration and longer periods of offspring evaluation. This review provides multiple evidence that such obstacles need to be overcome in order to significantly advance the scientific knowledge of developmental programming in beef cattle and promote global beef production.
Collapse
|
6
|
Sousa Neto I, Fontes W, Prestes J, Marqueti R. Impact of paternal exercise on physiological systems in the offspring. Acta Physiol (Oxf) 2021; 231:e13620. [PMID: 33606364 DOI: 10.1111/apha.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
A significant number of studies have demonstrated that paternal exercise modulates future generations via effects on the sperm epigenome. However, comprehensive information regarding the effects of exercise performed by the father on different tissues and their clinical relevance has not yet been explored in detail. This narrative review is focused on the effects of paternal exercise training on various physiological systems of offspring. A detailed mechanistic understanding of these effects could provide crucial clues for the exercise physiology field and aid the development of therapeutic approaches to mitigate disorders in future generations. Non-coding RNA and DNA methylation are major routes for transmitting epigenetic information from parents to offspring. Resistance and treadmill exercise are the most frequently used modalities of planned and structured exercise in controlled experiments. Paternal exercise orchestrated protective effects over changes in fetus development and placenta inflammatory status. Moreover paternal exercise promoted modifications in the ncRNA profiles, gene and protein expression in the hippocampus, left ventricle, skeletal muscle, tendon, liver and pancreas in the offspring, while the transgenerational effects are unknown. Paternal exercise demonstrates clinical benefits to the offspring and provides a warning on the harmful effects of a paternal unhealthy lifestyle. Exercise in fathers is presented as one of the most logical and cost-effective ways of restoring health in the offspring and, consequently, modifying the phenotype. It is important to consider that paternal programming might have unique significance in the developmental origins of offspring diseases.
Collapse
Affiliation(s)
- Ivo Sousa Neto
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry Department of Cell Biology Institute of Biology Universidade de Brasília Brasília Distrito Federal Brazil
| | - Jonato Prestes
- Graduate Program on Physical Education Universidade Católica de Brasília Brasília Distrito Federal Brazil
| | - Rita Marqueti
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| |
Collapse
|
7
|
Caton JS, Crouse MS, McLean KJ, Dahlen CR, Ward AK, Cushman RA, Grazul-Bilska AT, Neville BW, Borowicz PP, Reynolds LP. Maternal periconceptual nutrition, early pregnancy, and developmental outcomes in beef cattle. J Anim Sci 2020; 98:skaa358. [PMID: 33165531 PMCID: PMC7718859 DOI: 10.1093/jas/skaa358] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
The focus of this review is maternal nutrition during the periconceptual period and offspring developmental outcomes in beef cattle, with an emphasis on the first 50 d of gestation, which represents the embryonic period. Animal agriculture in general, and specifically the beef cattle industry, currently faces immense challenges. The world needs to significantly increase its output of animal food products by 2050 and beyond to meet the food security and agricultural sustainability needs of the rapidly growing human population. Consequently, efficient and sustainable approaches to livestock production are essential. Maternal nutritional status is a major factor that leads to developmental programming of offspring outcomes. Developmental programming refers to the influence of pre-and postnatal factors, such as inappropriate maternal nutrition, that affect growth and development and result in long-term consequences for health and productivity of the offspring. In this review, we discuss recent studies in which we and others have addressed the questions, "Is development programmed periconceptually?" and, if so, "Does it matter practically to the offspring in production settings?" The reviewed studies have demonstrated that the periconceptual period is important not only for pregnancy establishment but also may be a critical period during which fetal, placental, and potentially postnatal development and function are programmed. The evidence for fetal and placental programming during the periconceptual period is strong and implies that research efforts to mitigate the negative and foster the positive benefits of developmental programming need to include robust investigative efforts during the periconceptual period to better understand the implications for life-long health and productivity.
Collapse
Affiliation(s)
- Joel S Caton
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Anna T Grazul-Bilska
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Pawel P Borowicz
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Lawrence P Reynolds
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
8
|
Spence JP, Lai D, Reiter JL, Cao S, Bell RL, Williams KE, Liang T. Epigenetic changes on rat chromosome 4 contribute to disparate alcohol drinking behavior in alcohol-preferring and -nonpreferring rats. Alcohol 2020; 89:103-112. [PMID: 32798691 PMCID: PMC7722131 DOI: 10.1016/j.alcohol.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Paternal alcohol abuse is a well-recognized risk factor for the development of an alcohol use disorder (AUD). In addition to genetic and environmental risk factors, heritable epigenetic factors also have been proposed to play a key role in the development of AUD. However, it is not clear whether epigenetic factors contribute to the genetic inheritance in families affected by AUD. We used reciprocal crosses of the alcohol-preferring (P) and -nonpreferring (NP) rat lines to test whether epigenetic factors also impacted alcohol drinking in up to two generations of offspring. METHODS F1 offspring derived by reciprocal breeding of P and NP rats were tested for differences in alcohol consumption using a free-choice protocol of 10% ethanol, 20% ethanol, and water that were available concurrently. In a separate experiment, an F2 population was tested for alcohol consumption not only due to genetic differences. These rats were generated from inbred P (iP) and iNP rat lines that were reciprocally bred to produce genetically identical F1 offspring that remained alcohol-naïve. Intercrosses of the F1 generation animals produced the F2 generation. Alcohol consumption was then assessed in the F2 generation using a standard two-bottle choice protocol, and was analyzed using genome-wide linkage analysis. Alcohol consumption measures were also analyzed for sex differences. RESULTS Average alcohol consumption was higher in the F1 offspring of P vs. NP sires and in the F2 offspring of F0 iP vs. iNP grandsires. Linkage analyses showed the maximum LOD scores for alcohol consumption in both male and female offspring were on chromosome 4 (Chr 4). The LOD score for both sexes considered together was higher when the grandsire was iP vs. iNP (5.0 vs. 3.35, respectively). Furthermore, the F2 population displayed enhanced alcohol consumption when the P alleles from the F0 sire were present. CONCLUSIONS These results demonstrate that epigenetic and/or non-genetic factors mapping to rat chromosome 4 contribute to a transgenerational paternal effect on alcohol consumption in the P and NP rat model of AUD.
Collapse
Affiliation(s)
- John Paul Spence
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jill L Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
9
|
Parrettini S, Caroli A, Torlone E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front Endocrinol (Lausanne) 2020; 11:611929. [PMID: 33424775 PMCID: PMC7793966 DOI: 10.3389/fendo.2020.611929] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Pregnancy offers a window of opportunity to program the future health of both mothers and offspring. During gestation, women experience a series of physical and metabolic modifications and adaptations, which aim to protect the fetus development and are closely related to both pre-gestational nutritional status and gestational weight gain. Moreover, pre-gestational obesity represents a challenge of treatment, and nowadays there are new evidence as regard its management, especially the adequate weight gain. Recent evidence has highlighted the determinant role of nutritional status and maternal diet on both pregnancy outcomes and long-term risk of chronic diseases, through a transgenerational flow, conceptualized by the Development Origin of Health and Diseases (Dohad) theory. In this review we will analyse the physiological and endocrine adaptation in pregnancy, and the metabolic complications, thus the focal points for nutritional and therapeutic strategies that we must early implement, virtually before conception, to safeguard the health of both mother and progeny. We will summarize the current nutritional recommendations and the use of nutraceuticals in pregnancy, with a focus on the management of pregnancy complicated by obesity and hyperglycemia, assessing the most recent evidence about the effects of ante-natal nutrition on the long-term, on either maternal health or metabolic risk of the offspring.
Collapse
Affiliation(s)
- Sara Parrettini
- S. Maria della Misericordia Hospital, Division of Endocrinology and Metabolism, Perugia, Italy
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Antonella Caroli
- S. Maria della Misericordia Hospital, Division of Endocrinology and Metabolism, Perugia, Italy
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Torlone
- S. Maria della Misericordia Hospital, Division of Endocrinology and Metabolism, Perugia, Italy
| |
Collapse
|
10
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Morgan HL, Aljumah A, Rouillon C, Watkins AJ. Paternal low protein diet and the supplementation of methyl-donors impact fetal growth and placental development in mice. Placenta 2020; 103:124-133. [PMID: 33120048 PMCID: PMC7907633 DOI: 10.1016/j.placenta.2020.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
Introduction Paternal low-protein diet can alter sperm methylation status, fetal growth and program offspring ill-health, however its impact on the placenta remains poorly defined. Here we examine the influence paternal low-protein diet has on fetal and placental development and the additional impact of supplementary methyl-donors on fetoplacental physiology. Methods Male C57BL/6J mice were fed a control normal protein diet (NPD; 18% protein), a low-protein diet (LPD; 9% protein) or LPD with methyl-donor supplementation (MD-LPD; choline chloride, betaine, methionine, folic acid, vitamin B12) for a minimum of 8 weeks. Males were mated with 8–11 week old female C57BL/6J mice and fetal and placental tissue collected on embryonic day 17.5. Results Paternal LPD was associated with increased fetal weights compared to NPD and MD-LPD with 22% fetuses being above the 90th centile for fetal weight. However, LPD and MD-LPD placental weights were reduced when compared to NPD. Placentas from LPD fathers demonstrated a reduced junctional zone area and reduced free-fatty acid content. MD-LPD placentas did not mirror these finding, demonstrating an increased chorion area, a reduction in junctional-specific glycogen staining and reduced placental Dnmt3bexpression, none of which were apparent in either NPD or LPD placentas. Discussion A sub-optimal paternal diet can influence fetal growth and placental development, and dietary methyl-donor supplementation alters placental morphology and gene expression differentially to that observed with LPD alone. Understanding how paternal diet and micro-nutrient supplementation influence placental development is crucial for determining connections between paternal well-being and future offspring health. Paternal low protein diet (LPD) increased late gestation fetal weight. Supplementing the LPD with methyl donors (MD-LPD) normalised fetal weight. Placental weight and morphology are altered by both LPD and MD-LPD. Placental metabolite content and gene expression were perturbed by paternal LPD and MD-LPD.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Arwa Aljumah
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Charlène Rouillon
- INRAE, Fish Physiology and Genomics, Bat 16A, Campus de Beaulieu, Rennes, France
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK; Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK(1)
| |
Collapse
|
12
|
Kusuyama J, Alves-Wagner AB, Makarewicz NS, Goodyear LJ. Effects of maternal and paternal exercise on offspring metabolism. Nat Metab 2020; 2:858-872. [PMID: 32929233 PMCID: PMC7643050 DOI: 10.1038/s42255-020-00274-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Maternal and paternal obesity and type 2 diabetes are recognized risk factors for the development of metabolic dysfunction in offspring, even when the offspring follow a healthful lifestyle. Multiple studies have demonstrated that regular physical activity in mothers and fathers has striking beneficial effects on offspring health, including preventing the development of metabolic disease in rodent offspring as they age. Here, we review the benefits of maternal and paternal exercise in combating the development of metabolic dysfunction in adult offspring, focusing on offspring glucose homeostasis and adaptations to metabolic tissues. We discuss recent findings regarding the roles of the placenta and sperm in mediating the effects of parental exercise on offspring metabolic health, as well as the mechanisms hypothesized to underlie these beneficial changes. Given the worldwide epidemics of obesity and type 2 diabetes, if these findings translate to humans, regular exercise during the reproductive years might limit the vicious cycles in which increased metabolic risk propagates across generations.
Collapse
Affiliation(s)
- Joji Kusuyama
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ana Barbara Alves-Wagner
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nathan S Makarewicz
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Morgan HL, Watkins AJ. The influence of seminal plasma on offspring development and health. Semin Cell Dev Biol 2020; 97:131-137. [DOI: 10.1016/j.semcdb.2019.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
|
14
|
Morgan HL, Paganopoulou P, Akhtar S, Urquhart N, Philomin R, Dickinson Y, Watkins AJ. Paternal diet impairs F1 and F2 offspring vascular function through sperm and seminal plasma specific mechanisms in mice. J Physiol 2019; 598:699-715. [PMID: 31617219 DOI: 10.1113/jp278270] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS A low protein diet had minimal effects on paternal cardiovascular function or renin-angiotensin system activity. Paternal low protein diet modified F1 neonatal and adult offspring renin-angiotensin system activity and cardiovascular function in a sperm and/or seminal plasma specific manner. Paternal low protein diet modified F1 male offspring testicular expression of central epigenetic regulators. Significant changes in F2 neonatal offspring growth and tissue angiotensin-converting enzyme activity were programmed by paternal low protein diet in a sperm and/or seminal plasma specific manner. ABSTRACT Although the impact of maternal diet on adult offspring health is well characterized, the role that a father's diet has on his offspring's health remains poorly defined. We establish the significance of a sup-optimal paternal low protein diet for offspring vascular homeostasis and define the sperm and seminal plasma specific programming effects on cardiovascular health. Male C57BL6 mice were fed either a control normal protein diet (NPD; 18% protein) or an isocaloric low protein diet (LPD; 9% protein) for a minimum of 7 weeks. Using artificial insemination, in combination with vasectomized male mating, we generated offspring derived from either NPD or LPD sperm (devoid of seminal plasma) but in the presence of NPD or LPD seminal plasma (devoid of sperm). We observed that either LPD sperm or seminal fluid at conception impaired adult offspring vascular function in response to both vasoconstrictors and dilators. Underlying these changes in vascular function were significant changes in serum, lung and kidney angiotensin-converting enzyme (ACE) activity, established in F1 offspring from 3 weeks of age, maintained into adulthood and present also within juvenile F2 offspring. Furthermore, we observed differential expression of multiple central renin-angiotensin system regulators in adult offspring kidneys. Finally, paternal diet modified the expression profiles of central epigenetic regulators of DNA methylation, histone modifications and RNA methylation in adult F1 male testes. These novel data reveal the impact of sub-optimal paternal nutrition on offspring cardiovascular well-being, programming offspring cardiovascular function through both sperm and seminal plasma specific mechanisms over successive generations.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Panaigota Paganopoulou
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Sofia Akhtar
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Natalie Urquhart
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Ranmini Philomin
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Yasmin Dickinson
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK.,School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
15
|
Kayembe-Kitenge T, Kasole Lubala T, Musa Obadia P, Katoto Chimusa P, Katshiez Nawej C, Banza Lubaba Nkulu C, Devriendt K, Nemery B. Holoprosencephaly: A case series from an area with high mining-related pollution. Birth Defects Res 2019; 111:1561-1563. [PMID: 31419067 DOI: 10.1002/bdr2.1583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The extraction and processing of copper and cobalt in the African Copperbelt in the Democratic Republic of Congo have led to substantial environmental pollution, causing concerns about possible adverse effects on human health, including birth defects. CASES We report three neonates with clinically diagnosed holoprosencephaly who were part of a case-control study performed in Lubumbashi between February 2013 and February 2015. One mother had a high concentration of uranium in urine, and high manganese concentrations were found in blood of another mother and in cord blood of one infant. Two of the three fathers had a mining-related job. DISCUSSION We hypothesize that these cases of holoprosencephaly were connected to mining-related pollution, possibly via epigenetic alterations induced by paternal occupational exposure to toxic metals.
Collapse
Affiliation(s)
- Tony Kayembe-Kitenge
- Unit of Toxicology and Environment, School of Public Health, University of Lubumbashi, Lubumbashi, DR Congo.,Department of Internal Medicine University Hospital, University of Malemba-Nkulu, Malemba-Nkulu, DR Congo.,Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Toni Kasole Lubala
- Department of Pediatrics, University Hospital, University of Lubumbashi, Lubumbashi, DR Congo
| | - Paul Musa Obadia
- Unit of Toxicology and Environment, School of Public Health, University of Lubumbashi, Lubumbashi, DR Congo.,Department of Internal Medicine University Hospital, University of Malemba-Nkulu, Malemba-Nkulu, DR Congo.,Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Patrick Katoto Chimusa
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.,Department of Internal Medicine, Faculty of Medicine, Catholic University of Bukavu, Bukavu, DR Congo
| | | | - Célestin Banza Lubaba Nkulu
- Unit of Toxicology and Environment, School of Public Health, University of Lubumbashi, Lubumbashi, DR Congo.,Department of Internal Medicine University Hospital, University of Malemba-Nkulu, Malemba-Nkulu, DR Congo
| | - Koenraad Devriendt
- Center for Human Genetics, University Hospital, KU Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Morgan HL, Watkins AJ. Transgenerational Impact of Environmental Change. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:71-89. [PMID: 31471795 DOI: 10.1007/978-3-030-23633-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to adapt to changing environmental conditions is critical for any species to survive. Many environmental changes occur too rapidly for an organism's genome to adapt in time. Accordingly, being able to modify either its own phenotype, or the phenotype of its offspring to better suit future anticipated environmental conditions could afford an organism a significant advantage. However, a range of animal models and human epidemiological data sets are now showing that environmental factors such as changes in the quality or quantity of an individual's diet, temperature, stress or exposure to pollutants can all adversely affect the quality of parental gametes, the development of the preimplantation embryo and the health and wellbeing of offspring over multiple generations. This chapter will examine transgenerational effects of both maternal and paternal environmental factors on offspring development and wellbeing in both human and animal model studies. Changes in the epigenetic status of either parental or grand-parental gametes provide one candidate mechanism through which the impacts of environmental experience can be passed from one generation to another. This chapter will therefore also focus on the impact of parental and grand-parental diet on epigenetic transgenerational inheritance and offspring phenotype.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
17
|
Stanford KI, Rasmussen M, Baer LA, Lehnig AC, Rowland LA, White JD, So K, De Sousa-Coelho AL, Hirshman MF, Patti ME, Rando OJ, Goodyear LJ. Paternal Exercise Improves Glucose Metabolism in Adult Offspring. Diabetes 2018; 67:2530-2540. [PMID: 30344184 PMCID: PMC6245224 DOI: 10.2337/db18-0667] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Poor paternal diet has emerged as a risk factor for metabolic disease in offspring, and alterations in sperm may be a major mechanism mediating these detrimental effects of diet. Although exercise in the general population is known to improve health, the effects of paternal exercise on sperm and offspring metabolic health are largely unknown. Here, we studied 7-week-old C57BL/6 male mice fed a chow or high-fat diet and housed either in static cages (sedentary) or cages with attached running wheels (exercise trained). After 3 weeks, one cohort of males was sacrificed and cauda sperm obtained, while the other cohort was bred with chow-fed sedentary C57BL/6 females. Offspring were chow fed, sedentary, and studied during the first year of life. We found that high-fat feeding of sires impairs glucose tolerance and increases the percentage of fat mass in both male and female offspring at 52 weeks of age. Strikingly, paternal exercise suppresses the effects of paternal high-fat diet on offspring, reversing the observed impairment in glucose tolerance, percentage of fat mass, and glucose uptake in skeletal muscles of the offspring. These changes in offspring phenotype are accompanied by changes in sperm physiology, as, for example, high-fat feeding results in decreased sperm motility, an effect normalized in males subject to exercise training. Deep sequencing of sperm reveals pronounced effects of exercise training on multiple classes of small RNAs, as multiple changes to the sperm RNA payload observed in animals consuming a high-fat diet are suppressed by exercise training. Thus, voluntary exercise training of male mice results in pronounced improvements in the metabolic health of adult male and female offspring. We provide the first in-depth analysis of small RNAs in sperm from exercise-trained males, revealing a marked change in the levels of multiple small RNAs with the potential to alter phenotypes in the next generation.
Collapse
Affiliation(s)
- Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Morten Rasmussen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Lisa A Baer
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Adam C Lehnig
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Leslie A Rowland
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Joseph D White
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kawai So
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
| | | | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
| | - Mary-Elizabeth Patti
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Watkins AJ, Dias I, Tsuro H, Allen D, Emes RD, Moreton J, Wilson R, Ingram RJM, Sinclair KD. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc Natl Acad Sci U S A 2018; 115:10064-10069. [PMID: 30150380 PMCID: PMC6176621 DOI: 10.1073/pnas.1806333115] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The association between poor paternal diet, perturbed embryonic development, and adult offspring ill health represents a new focus for the Developmental Origins of Health and Disease hypothesis. However, our understanding of the underlying mechanisms remains ill-defined. We have developed a mouse paternal low-protein diet (LPD) model to determine its impact on semen quality, maternal uterine physiology, and adult offspring health. We observed that sperm from LPD-fed male mice displayed global hypomethylation associated with reduced testicular expression of DNA methylation and folate-cycle regulators compared with normal protein diet (NPD) fed males. Furthermore, females mated with LPD males display blunted preimplantation uterine immunological, cell signaling, and vascular remodeling responses compared to controls. These data indicate paternal diet impacts on offspring health through both sperm genomic (epigenetic) and seminal plasma (maternal uterine environment) mechanisms. Extending our model, we defined sperm- and seminal plasma-specific effects on offspring health by combining artificial insemination with vasectomized male mating of dietary-manipulated males. All offspring derived from LPD sperm and/or seminal plasma became heavier with increased adiposity, glucose intolerance, perturbed hepatic gene expression symptomatic of nonalcoholic fatty liver disease, and altered gut bacterial profiles. These data provide insight into programming mechanisms linking poor paternal diet with semen quality and offspring health.
Collapse
Affiliation(s)
- Adam J Watkins
- Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, B4 7ET Birmingham, United Kingdom;
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, NG7 2UH Nottingham, United Kingdom
| | - Irundika Dias
- Aston Research Institute, Aston Medical School, Aston University, B4 7ET Birmingham, United Kingdom
| | - Heather Tsuro
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, United Kingdom
| | - Danielle Allen
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, United Kingdom
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, LE12 5RD Loughborough, United Kingdom
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Joanna Moreton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, LE12 5RD Loughborough, United Kingdom
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Ray Wilson
- Deep Seq, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, NG7 2UH Nottingham, United Kingdom
| | - Richard J M Ingram
- Nottingham Digestive Diseases Centre, Queens Medical Centre, Nottingham University Hospitals National Health Service Trust, NG7 2UH Nottingham, United Kingdom
- Centre for Biomedical Sciences, University of Nottingham, NG7 2RD Nottingham, United Kingdom
| | - Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD Loughborough, United Kingdom
| |
Collapse
|