1
|
Natrus L, Klys Y, Osadchuk Y, Anft M, Westhoff T, Babel N. Combined Administration of Metformin and Propionate Reduces the Degree of Oxidative/Nitrosative Damage of Hypothalamic Neurons in Rat Model of Type 2 Diabetes Mellitus. Mol Neurobiol 2025; 62:4338-4354. [PMID: 39443349 PMCID: PMC11880168 DOI: 10.1007/s12035-024-04529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Many complications associated with type 2 diabetes mellitus (T2DM) are closely linked with the generation of reactive species or free radicals leading to oxidative/nitrosative stress. The aim of this study was to investigate the effect of combined administration of metformin with propionate on the degree of oxidative/nitrosative damage in the brain of rats with an experimental model of T2DM. Male Wistar rats were divided into control (healthy rats); rats with T2DM and no further therapy; rats with T2DM that received: metformin, propionate, propionate + metformin. Ventromedial hypothalamus samples were analyzed by transmission electron microscopy, gas-liquid chromatography, Western blotting, RT-PCR and electron paramagnetic resonance. Combined treatment resulted in normalization of the neuronal NOS levels and reduction of mRNA level of induced nitric oxide synthase (NOS) and superoxide radicals compared to untreated T2DM rats. A decrease was also observed in the level of 8-oxyguanine with normalization of fatty acids distribution. The combined treatment partially mitigated ultrastructural alterations resulting from oxidative/nitrosative damage in neurons' mitochondria in T2DM. Thus, we demonstrated a positive effect of the combined use of metformin and propionate on all indicators of oxidative/nitrosative stress in T2DM.
Collapse
MESH Headings
- Animals
- Metformin/pharmacology
- Rats, Wistar
- Male
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neurons/ultrastructure
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/complications
- Propionates
- Oxidative Stress/drug effects
- Nitrosative Stress/drug effects
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus/pathology
- Hypothalamus/ultrastructure
- Disease Models, Animal
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Nitric Oxide Synthase Type I/metabolism
- Rats
- Drug Therapy, Combination
Collapse
Affiliation(s)
- Larysa Natrus
- Department of Modern Medical Diagnostic and Treatment Technology, Bogomolets National Medical University, Kiev, 03057, Ukraine.
| | - Yuliia Klys
- Department of Modern Medical Diagnostic and Treatment Technology, Bogomolets National Medical University, Kiev, 03057, Ukraine
| | - Yuliia Osadchuk
- Department of Modern Medical Diagnostic and Treatment Technology, Bogomolets National Medical University, Kiev, 03057, Ukraine
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Timm Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
2
|
Osum M, Kalkan R. Circadian rhythm, epigenetics and disease interaction. Glob Med Genet 2025; 12:100006. [PMID: 39925445 PMCID: PMC11800305 DOI: 10.1016/j.gmg.2024.100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 02/11/2025] Open
Abstract
Identifying the circadian clock first provided the genetic basis for behaviour, and our understanding of circadian rhythms has since expanded to provide molecular insight into disease and physiology. The synchronization of central and peripheral clocks and robust daily rhythms can be achieved in a wide range of physiological systems and homeostatic responses can be supplemented. The rhythmical epigenome, which works as a central regulator, determines the circadian transcription of cell types. The rhythmical epigenome imposes oscillation on biological systems that momentarily split metabolism within 24 h. Interactions between the endogenous circadian system govern blood pressure, sleep, obesity and postural variations. Human health is dependent on the circadian rhythm. It can depict disease dynamics as well as overall drug efficacy monitoring to optimize the therapy effect. Circadian rhythms can collectively drive various metabolic activities, but dietary habits, sleep patterns, and other factors can also influence the circadian rhythm. The synergy of circadian rhythm and metabolism can bring new insights and personalized analysis for disease development causes and prevention. The understanding of the molecular clock and disease relationship can be exploited to determine treatment timing as well as new therapy targets.
Collapse
Affiliation(s)
- Meyrem Osum
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Cyprus
| | - Rasime Kalkan
- Faculty of Medicine, European University of Lefke, Mersin 10, Lefke 99728, Northern Cyprus, Turkey
| |
Collapse
|
3
|
Ferreira-Marques M, Carmo-Silva S, Pereira J, Botelho M, Nóbrega C, López-Otín C, de Almeida LP, Aveleira CA, Cavadas C. Restoring neuropetide Y levels in the hypothalamus ameliorates premature aging phenotype in mice. GeroScience 2025:10.1007/s11357-025-01574-0. [PMID: 40011349 DOI: 10.1007/s11357-025-01574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
The hypothalamus has been recognized as a regulator of whole-body aging. Neuropeptide Y (NPY), highly abundant in the central nervous system and produced by the hypothalamus, enhances autophagy in this brain region and mediates autophagy triggered by caloric restriction, suggesting a potential role as a caloric restriction mimetic and an aging regulator. Considering that hypothalamic NPY levels decline during aging, we investigated if reestablishment of NPY levels mitigate aging phenotype, using a mouse model of premature aging - Zmpste24-/- mouse. The results show that reestablishing hypothalamic NPY levels delayed aging-associated features, including lipodystrophy, alopecia, and memory. Moreover, these results suggest that strategies that promote maintenance of hypothalamic NPY levels might be relevant to counteract aging progression and age-related deteriorations.
Collapse
Affiliation(s)
- Marisa Ferreira-Marques
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sara Carmo-Silva
- H&TRC - Health and Technology Research Center, Coimbra Health School, Polytechnic University of Coimbra, Coimbra, Portugal
- Citechcare-Center for Innovative Care and Health Technology, Polytechnic University of Leiria, Leiria, Portugal
| | - Joana Pereira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Mariana Botelho
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
- Centre de Recherche Des Cordeliers, Inserm U1138, Sorbonne Université, Paris, France
- Facultad de Ciencias de La Vida y La Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Luís Pereira de Almeida
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Célia A Aveleira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA-Portugal - Multidisciplinar Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Du T, Liu S, Yu H, Hu T, Huang L, Gao L, Jia L, Hu J, Yu Y, Sun Q. Chronic sleep deprivation disturbs energy balance modulated by suprachiasmatic nucleus efferents in mice. BMC Biol 2024; 22:296. [PMID: 39710657 DOI: 10.1186/s12915-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Epidemiologic researches show that short sleep duration may affect feeding behaviors resulting in higher energy intake and increased risk of obesity, but the further mechanisms that can interpret the causality remain unclear. The circadian rhythm is fine-tuned by the suprachiasmatic nucleus (SCN) as the master clock, which is essential for driving rhythms in food intake and energy metabolism through neuronal projections to the arcuate nucleus (ARC) and paraventricular nucleus (PVN). RESULTS We showed that chronic SD-induced aberrant expressions of AgRP/NPY and POMC attributed to compromised JAK/STAT3 signals and reduced energy expenditure in the mice, which can be rescued with AAV-genetic overexpression of BMAL1 into SCN. The potential mechanism may be related to the disruptions of SCN efferent mediated by BMAL1. CONCLUSIONS Chronic SD impairs energy balance through directly dampening BMAL1 expression, probably in the transcription level, in the SCN, which in turn affects the neuron projections to ARC and PVN. Remarkably, we provide evidence that may explain the causal mechanisms associated with sleep curtailment and obesity in adolescents.
Collapse
Affiliation(s)
- Tingting Du
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Shuailing Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Honghong Yu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Tian Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Lina Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Lanyue Gao
- Experimental Center, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lihong Jia
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Yu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qi Sun
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
5
|
Carpenter JM, Hughes SN, Filipov NM. Longitudinal evaluation of structural brain alterations in two established mouse models of Gulf War Illness. Front Neurosci 2024; 18:1465701. [PMID: 39308947 PMCID: PMC11412963 DOI: 10.3389/fnins.2024.1465701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Gulf War Illness (GWI) affects nearly 30% of veterans from the 1990-1991 Gulf War (GW) and is a multi-symptom illness with many neurological effects attributed to in-theater wartime chemical overexposures. Brain-focused studies have revealed persistent structural and functional alterations in veterans with GWI, including reduced volumes, connectivity, and signaling that correlate with poor cognitive and motor performance. GWI symptomology components have been recapitulated in rodent models as behavioral, neurochemical, and neuroinflammatory aberrations. However, preclinical structural imaging studies remain limited. This study aimed to characterize the progression of brain structural alterations over the course of 12 months in two established preclinical models of GWI. In the PB/PM model, male C57BL/6 J mice (8-9 weeks) received daily exposure to the nerve agent prophylactic pyridostigmine bromide (PB) and the pyrethroid insecticide permethrin (PM) for 10 days. In the PB/DEET/CORT/DFP model, mice received daily exposure to PB and the insect repellent DEET (days 1-14) and corticosterone (CORT; days 7-14). On day 15, mice received a single injection of the sarin surrogate diisopropylfluorophosphate (DFP). Using a Varian 7 T Bore MRI System, structural (sagittal T2-weighted) scans were performed at 6-, 9-, and 12-months post GWI exposures. Regions of interest, including total brain, ventricles, cortex, hippocampus, cerebellum, and brainstem were delineated in the open source Aedes Toolbox in MATLAB, followed by brain volumetric and cortical thickness analyses in ImageJ. Limited behavioral testing 1 month after the last MRI was also performed. The results of this study compare similarities and distinctions between these exposure paradigms and aid in the understanding of GWI pathogenesis. Major similarities among the models include relative ventricular enlargement and reductions in hippocampal volumes with age. Key differences in the PB/DEET/CORT/DFP model included reduced brainstem volumes and an early and persistent loss of total brain volume, while the PB/PM model produced reductions in cortical thickness with age. Behaviorally, at 13 months, motor function was largely preserved in both models. However, the GWI mice in the PB/DEET/CORT/DFP model exhibited an elevation in anxiety-like behavior.
Collapse
Affiliation(s)
| | | | - Nikolay M. Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Zeng W. Association between the weight-adjusted-waist index and circadian syndrome in findings from a nationwide study. Sci Rep 2024; 14:20883. [PMID: 39242644 PMCID: PMC11379805 DOI: 10.1038/s41598-024-70648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Weight-adjusted-waist index (WWI) is an emerging parameter for evaluating obesity. We sought to ascertain the link between WWI and circadian syndrome (CircS). The study population consisted of 8275 eligible subjects who were included in the ultimate analysis from the NHANES 2011-2018. By using multivariable regression models, the association of WWI and CircS was analyzed. In subgroup analysis, we explored the relationship in different groups and tested the stability of the intergroup connection using interaction testing. To investigate whether WWI and CircS had a potential non-linear relationship, smooth curve fittings, and threshold effects tests were also constructed. In a multivariate linear regression model, WWI is significantly positively related to CircS (OR = 1.77, 95% CI 1.50-2.08). Through subgroup analysis and interaction testing, the stability of this positive association was also validated. It was further found that there was an inverted U-shaped association, with a turning point of 11.84, between WWI and CircS. Our findings supported a strong association between WWI values and CircS. Central obesity management is pivotal for preventing or alleviating CircS.
Collapse
Affiliation(s)
- Weiwei Zeng
- Department of Hepatology, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
7
|
Cargnin-Carvalho A, da Silva MR, Costa AB, Engel NA, Farias BX, Bressan JB, Backes KM, de Souza F, da Rosa N, de Oliveira Junior AN, Goldim MPDS, Correa MEAB, Venturini LM, Fortunato JJ, Prophiro JS, Petronilho F, Silveira PCL, Ferreira GK, Rezin GT. High concentrations of fructose cause brain damage in mice. Biochem Cell Biol 2023; 101:313-325. [PMID: 36947832 DOI: 10.1139/bcb-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.
Collapse
Affiliation(s)
- Anderson Cargnin-Carvalho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Bianca Xavier Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Joice Benedet Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Kassiane Mathiola Backes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Francielly de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | | | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Immunoparasitology Research Group, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
8
|
Spindler M, Palombo M, Zhang H, Thiel CM. Dysfunction of the hypothalamic-pituitary adrenal axis and its influence on aging: the role of the hypothalamus. Sci Rep 2023; 13:6866. [PMID: 37105986 PMCID: PMC10140145 DOI: 10.1038/s41598-023-33922-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
As part of the hypothalamic-pituitary adrenal (HPA) axis, the hypothalamus exerts pivotal influence on metabolic and endocrine homeostasis. With age, these processes are subject to considerable change, resulting in increased prevalence of physical disability and cardiac disorders. Yet, research on the aging human hypothalamus is lacking. To assess detailed hypothalamic microstructure in middle adulthood, 39 healthy participants (35-65 years) underwent comprehensive structural magnetic resonance imaging. In addition, we studied HPA axis dysfunction proxied by hair cortisol and waist circumference as potential risk factors for hypothalamic alterations. We provide first evidence of regionally different hypothalamic microstructure, with age effects in its anterior-superior subunit, a critical area for HPA axis regulation. Further, we report that waist circumference was related to increased free water and decreased iron content in this region. In age, hair cortisol was additionally associated with free water content, such that older participants with higher cortisol levels were more vulnerable to free water content increase than younger participants. Overall, our results suggest no general age-related decline in hypothalamic microstructure. Instead, older individuals could be more susceptible to risk factors of hypothalamic decline especially in the anterior-superior subregion, including HPA axis dysfunction, indicating the importance of endocrine and stress management in age.
Collapse
Affiliation(s)
- Melanie Spindler
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany.
- Cluster of Excellence "Hearing4all", Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany.
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology & School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing (CMIC), University College London (UCL), London, UK
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
9
|
Carmo-Silva S, Ferreira-Marques M, Nóbrega C, Botelho M, Costa D, Aveleira CA, Pulst SM, Pereira de Almeida L, Cavadas C. Ataxin-2 in the hypothalamus at the crossroads between metabolism and clock genes. J Mol Endocrinol 2023; 70:JME-21-0272. [PMID: 36103139 DOI: 10.1530/jme-21-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023]
Abstract
ATXN2 gene, encoding for ataxin-2, is located in a trait locus for obesity. Atxn2 knockout (KO) mice are obese and insulin resistant; however, the cause for this phenotype is still unknown. Moreover, several findings suggest ataxin-2 as a metabolic regulator, but the role of this protein in the hypothalamus was never studied before. The aim of this work was to understand if ataxin-2 modulation in the hypothalamus could play a role in metabolic regulation. Ataxin-2 was overexpressed/re-established in the hypothalamus of C57Bl6/Atxn2 KO mice fed either a chow or a high-fat diet (HFD). This delivery was achieved through stereotaxic injection of lentiviral vectors encoding for ataxin-2. We show, for the first time, that HFD decreases ataxin-2 levels in mouse hypothalamus and liver. Specific hypothalamic ataxin-2 overexpression prevents HFD-induced obesity and insulin resistance. Ataxin-2 re-establishment in Atxn2 KO mice improved metabolic dysfunction without changing body weight. Furthermore, we observed altered clock gene expression in Atxn2 KO that might be causative of metabolic dysfunction. Interestingly, ataxin-2 hypothalamic re-establishment rescued these circadian alterations. Thus, ataxin-2 in the hypothalamus is a determinant for weight, insulin sensitivity and clock gene expression. Ataxin-2's potential role in the circadian clock, through the regulation of clock genes, might be a relevant mechanism to regulate metabolism. Overall, this work shows hypothalamic ataxin-2 as a new player in metabolism regulation, which might contribute to the development of new strategies for metabolic disorders.
Collapse
Affiliation(s)
- Sara Carmo-Silva
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Marisa Ferreira-Marques
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Mariana Botelho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniela Costa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Célia A Aveleira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Luís Pereira de Almeida
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Cavadas
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Ghaddar B, Gence L, Veeren B, Bringart M, Bascands JL, Meilhac O, Diotel N. Aqueous Extract of Psiloxylon mauritianum, Rich in Gallic Acid, Prevents Obesity and Associated Deleterious Effects in Zebrafish. Antioxidants (Basel) 2022; 11:antiox11071309. [PMID: 35883799 PMCID: PMC9312056 DOI: 10.3390/antiox11071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity has reached epidemic proportions, and its prevalence tripled worldwide between 1975 and 2016, especially in Reunion Island, a French overseas region. Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island registered in the French pharmacopeia, has recently gained interest in combating metabolic disorders because of its traditional lipid-lowering and “anti-diabetic” use. However, scientific data are lacking regarding its toxicity and its real benefits on metabolic diseases. In this study, we aim to determine the toxicity of an aqueous extract of P. mauritianum on zebrafish eleutheroembryos following the OECD toxicity assay (Organization for Economic Cooperation and Development, guidelines 36). After defining a non-toxic dose, we determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) that this extract is rich in gallic acid but contains also caffeoylquinic acid, kaempferol and quercetin, as well as their respective derivatives. We also showed that the non-toxic dose exhibits lipid-lowering effects in a high-fat-diet zebrafish larvae model. In a next step, we demonstrated its preventive effects on body weight gain, hyperglycemia and liver steatosis in a diet-induced obesity model (DIO) performed in adults. It also limited the deleterious effects of overfeeding on the central nervous system (i.e., cerebral oxidative stress, blood-brain barrier breakdown, neuro-inflammation and blunted neurogenesis). Interestingly, adult DIO fish treated with P. mauritianum display normal feeding behavior but higher feces production. This indicates that the “anti-weight-gain” effect is probably due to the action of P. mauritianum on the intestinal lipid absorption and/or on the microbiota, leading to the increase in feces production. Therefore, in our experimental conditions, the aqueous extract of P. mauritianum exhibited “anti-weight-gain” properties, which prevented the development of obesity and its deleterious effects at the peripheral and central levels. These effects should be further investigated in preclinical models of obese/diabetic mice, as well as the impact of P. mauritianum on the gut microbiota.
Collapse
Affiliation(s)
- Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Matthieu Bringart
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
- CHU de La Réunion, 97400 Saint-Denis, La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
- Correspondence:
| |
Collapse
|
11
|
Ruiz S, Vázquez F, Pellitero S, Puig-Domingo M. ENDOCRINE OBESITY: Pituitary dysfunction in obesity. Eur J Endocrinol 2022; 186:R79-R92. [PMID: 35333754 DOI: 10.1530/eje-21-0899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
Obesity, the growing pandemic of the 21st century, is associated with multiple organ dysfunction, either by a direct increase in fatty organ content or by indirect modifications related to general metabolic changes driven by a specific increase in biologic products. The pituitary gland is not protected against such a situation. Different hypothalamic-pituitary axes experience functional modifications initially oriented to an adaptive situation that, with years of obesity, turn to maladaptive dynamics that contribute to perpetuating obesity and specific symptoms of their hormonal nature. This paper reviews the recent knowledge on obesity-related pituitary dysfunction and its pathogenic mechanisms and discusses potential therapeutic actions aimed at contributing to ameliorating the complex treatment of severe cases of obesity.
Collapse
Affiliation(s)
- Sabina Ruiz
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| | - Federico Vázquez
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| | - Silvia Pellitero
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| |
Collapse
|
12
|
Effect of Propionic Acid on Diabetes-Induced Impairment of Unfolded Protein Response Signaling and Astrocyte/Microglia Crosstalk in Rat Ventromedial Nucleus of the Hypothalamus. Neural Plast 2022; 2022:6404964. [PMID: 35103058 PMCID: PMC8800605 DOI: 10.1155/2022/6404964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background The aim was to investigate the influence of propionic acid (PA) on the endoplasmic reticulum (ER), unfolded protein response (UPR) state, and astrocyte/microglia markers in rat ventromedial hypothalamus (VMH) after type 2 diabetes mellitus (T2DM). Methods Male Wistar rats were divided: (1) control, (2) T2DM, and groups that received the following (14 days, orally): (3) metformin (60 mg/kg), (4) PA (60 mg/kg), and (5) PA+metformin. Western blotting, RT-PCR, transmission electron microscopy, and immunohistochemical staining were performed. Results We found T2DM-associated enlargement of ER cisterns, while drug administration slightly improved VMH ultrastructural signs of damage. GRP78 level was 2.1-fold lower in T2DM vs. control. Metformin restored GRP78 to control, while PA increased it by 2.56-fold and metformin+PA—by 3.28-fold vs. T2DM. PERK was elevated by 3.61-fold in T2DM, after metformin—by 4.98-fold, PA—5.64-fold, and metformin+PA—3.01-fold vs. control. A 2.45-fold increase in ATF6 was observed in T2DM. Metformin decreased ATF6 content vs. T2DM. Interestingly, PA exerted a more pronounced lowering effect on ATF6, while combined treatment restored ATF6 to control. IRE1 increased in T2DM (2.4-fold), metformin (1.99-fold), and PA (1.45-fold) groups vs. control, while metformin+PA fully normalized its content. The Iba1 level was upregulated in T2DM (5.44-fold) and metformin groups (6.88-fold). Despite PA treatment leading to a further 8.9-fold Iba1 elevation, PA+metformin caused the Iba1 decline vs. metformin and PA treatment. GFAP level did not change in T2DM but rose in metformin and PA groups vs. control. PA+metformin administration diminished GFAP vs. PA. T2DM-induced changes were associated with dramatically decreased ZO-1 levels, while PA treatment increased it almost to control values. Conclusions T2DM-induced UPR imbalance, activation of microglia, and impairments in cell integrity may trigger VMH dysfunction. Drug administration slightly improved ultrastructural changes in VMH, normalized UPR, and caused an astrocyte activation. PA and metformin exerted beneficial effects for counteracting diabetes-induced ER stress in VMH.
Collapse
|
13
|
OUP accepted manuscript. Nutr Rev 2022; 80:1942-1957. [DOI: 10.1093/nutrit/nuac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Xu Z, Ke X, Yuan X, Wang L, Duan L, Yao Y, Deng K, Feng F, You H, Lian X, Wang R, Yang H, Pan H, Lu L, Zhu H. Metabolic syndrome as a common comorbidity in adults with hypothalamic dysfunction. Front Endocrinol (Lausanne) 2022; 13:973299. [PMID: 36313753 PMCID: PMC9606337 DOI: 10.3389/fendo.2022.973299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hypothalamic dysfunction (HD) results in various endocrine disorders and is associated with an increased risk of metabolic comorbidities. This study aimed to analyze the clinical characteristics and metabolic abnormalities of adults with HD of various causes. METHODS This study retrospectively reviewed adults with HD treated at our center between August 1989 and October 2020. Metabolic characteristics of patients were compared to those of age-, sex-matched lean, and body mass index (BMI)-matched controls. RESULTS Temperature dysregulation (61.0%) was the most common hypothalamic physiological dysfunction. At least one anterior pituitary hormone deficiency was observed in 50 patients (84.7%), with hypogonadotropic hypogonadism being the most frequently observed. Metabolic syndrome was confirmed in 31 patients (52.5%) and was significantly more prevalent in those with panhypopituitarism or overweight/obesity. Metabolic syndrome (MetS) was significantly more common in patients with HD than in both lean and BMI-matched controls (P < 0.001 and P = 0.030, respectively). Considering the components of MetS, elevated fasting glucose levels were significantly more common in patients with HD than in BMI-matched controls (P = 0.029). Overweight/obesity and panhypopituitarism were significant risk factors for MetS in the multivariate analysis on patients with HD. Moreover, in the multivariate analysis on patients and BMI-matched control, HD was a significant risk factor of MetS (P=0.035, OR 2.919) after adjusted for age, sex and BMI. CONCLUSIONS Temperature dysregulation and hypogonadotropic hypogonadism are the most common physiological and endocrine dysfunctions, respectively. MetS and unfavorable metabolic profiles were prevalent in adults with HD. HD was a significant risk factor of MetS after adjusted for BMI.
Collapse
Affiliation(s)
- Zhuoran Xu
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaoan Ke
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xianxian Yuan
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Linjie Wang
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lian Duan
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Xin Lian
- Department of Radiation Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Hongbo Yang
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hui Pan
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lin Lu
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Huijuan Zhu
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- *Correspondence: Huijuan Zhu,
| |
Collapse
|
15
|
Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development. Cell Stem Cell 2021; 29:328-343.e5. [PMID: 34879244 DOI: 10.1016/j.stem.2021.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022]
Abstract
The hypothalamus comprises various nuclei and neuronal subpopulations that control fundamental homeostasis and behaviors. However, spatiotemporal molecular characterization of hypothalamus development in humans is largely unexplored. Here, we revealed spatiotemporal transcriptome profiles and cell-type characteristics of human hypothalamus development and illustrated the molecular diversity of neural progenitors and the cell-fate decision, which is programmed by a combination of transcription factors. Different neuronal and glial fates are sequentially produced and showed spatial developmental asynchrony. Moreover, human hypothalamic gliogenesis occurs at an earlier stage of gestation and displays distinctive transcription profiles compared with those in mouse. Notably, early oligodendrocyte cells in humans exhibit different gene patterns and interact with neuronal cells to regulate neuronal maturation by Wnt, Hippo, and integrin signals. Overall, our study provides a comprehensive molecular landscape of human hypothalamus development at early- and mid-embryonic stages and a foundation for understanding its spatial and functional complexity.
Collapse
|
16
|
Role of circadian rhythm and impact of circadian rhythm disturbance on the metabolism and disease. J Cardiovasc Pharmacol 2021; 79:254-263. [PMID: 34840256 DOI: 10.1097/fjc.0000000000001178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Molecular circadian clocks exist in almost all cells of the organism and operate for approximately 24 h, maintain the normal physiological and behavioral body processes and regulate metabolism of many cells related to a variety of disease states. Circadian rhythms regulate metabolism, mainly including neurotransmitters, hormones, amino acids and lipids. Circadian misalignment is related to metabolic syndromes, such as obesity, diabetes and hypertension, which have reached an alarming level in modern society. We reviewed the mechanism of the circadian clock and the interaction between circadian rhythm and metabolism, as well as circadian rhythm disturbance on the metabolism of hypertension, obesity and diabetes. Finally, we discuss how to use the circadian rhythm to prevent diseases. Thus, this review is a micro to macro discussion from the perspective of circadian rhythm and aims to provide basic ideas for circadian rhythm research and disease therapies.
Collapse
|
17
|
Jeong JK, Dow SA, Young CN. Sensory Circumventricular Organs, Neuroendocrine Control, and Metabolic Regulation. Metabolites 2021; 11:metabo11080494. [PMID: 34436435 PMCID: PMC8402088 DOI: 10.3390/metabo11080494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The central nervous system is critical in metabolic regulation, and accumulating evidence points to a distributed network of brain regions involved in energy homeostasis. This is accomplished, in part, by integrating peripheral and central metabolic information and subsequently modulating neuroendocrine outputs through the paraventricular and supraoptic nucleus of the hypothalamus. However, these hypothalamic nuclei are generally protected by a blood-brain-barrier limiting their ability to directly sense circulating metabolic signals—pointing to possible involvement of upstream brain nuclei. In this regard, sensory circumventricular organs (CVOs), brain sites traditionally recognized in thirst/fluid and cardiovascular regulation, are emerging as potential sites through which circulating metabolic substances influence neuroendocrine control. The sensory CVOs, including the subfornical organ, organum vasculosum of the lamina terminalis, and area postrema, are located outside the blood-brain-barrier, possess cellular machinery to sense the metabolic interior milieu, and establish complex neural networks to hypothalamic neuroendocrine nuclei. Here, evidence for a potential role of sensory CVO-hypothalamic neuroendocrine networks in energy homeostasis is presented.
Collapse
Affiliation(s)
| | | | - Colin N. Young
- Correspondence: ; Tel.: +1-202-994-9575; Fax: +1-202-994-287
| |
Collapse
|
18
|
Dionysopoulou S, Charmandari E, Bargiota A, Vlahos NF, Mastorakos G, Valsamakis G. The Role of Hypothalamic Inflammation in Diet-Induced Obesity and Its Association with Cognitive and Mood Disorders. Nutrients 2021; 13:498. [PMID: 33546219 PMCID: PMC7913301 DOI: 10.3390/nu13020498] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is often associated with cognitive and mood disorders. Recent evidence suggests that obesity may cause hypothalamic inflammation. Our aim was to investigate the hypothesis that there is a causal link between obesity-induced hypothalamic inflammation and cognitive and mood disorders. Inflammation may influence hypothalamic inter-connections with regions important for cognition and mood, while it may cause dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and influence monoaminergic systems. Exercise, healthy diet, and glucagon-like peptide receptor agonists, which can reduce hypothalamic inflammation in obese models, could improve the deleterious effects on cognition and mood.
Collapse
Affiliation(s)
- Sofia Dionysopoulou
- Division of Endocrinology, Metabolism and Diabetes, Hippocratio General Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics and Gynecology, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgios Valsamakis
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
19
|
Rosendo-Silva D, Matafome P. Gut-adipose tissue crosstalk: A bridge to novel therapeutic targets in metabolic syndrome? Obes Rev 2021; 22:e13130. [PMID: 32815267 DOI: 10.1111/obr.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
The gut is one of the main endocrine organs in our body, producing hormones acknowledged to play determinant roles in controlling appetite, energy balance and glucose homeostasis. One of the targets of such hormones is the adipose tissue, a major energetic reservoir, which governs overall metabolism through the secretion of adipokines. Disturbances either in nutrient and metabolic sensing and consequent miscommunication between these organs constitute a key driver to the metabolic complications clustered in metabolic syndrome. Thus, it is essential to understand how the disruption of this crosstalk might trigger adipose tissue dysfunction, a strong characteristic of obesity and insulin resistance. The beneficial effects of metabolic surgery in the amelioration of glucose homeostasis and body weight reduction allowed to understand the potential of gut signals modulation as a treatment for metabolic syndrome-related obesity and type 2 diabetes. In this review, we cover the effects of gut hormones in the modulation of adipose tissue metabolic and endocrine functions, as well as their impact in tissue plasticity. Furthermore, we discuss how the modulation of gut secretome, either through surgical procedures or pharmacological approaches, might improve adipose tissue function in obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
20
|
de Souza Santos R, Gross AR, Sareen D. Hypothalamus and neuroendocrine diseases: The use of human-induced pluripotent stem cells for disease modeling. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:337-350. [PMID: 34238469 DOI: 10.1016/b978-0-12-820683-6.00025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hypothalamus, which is part of the brain of all vertebrate animals, is considered the link between the central nervous system (CNS) and (i) the endocrine system via the pituitary gland and (ii) with our organs via the autonomic nervous system. It synthesizes and releases neurohormones, which in turn stimulate or inhibit the secretion of other hormones within the CNS, and sends and receives signals to and from the peripheral nervous and endocrine systems. As the brain region responsible for energy homeostasis, the hypothalamus is the key regulator of thermoregulation, hunger and satiety, circadian rhythms, sleep and fatigue, memory and learning, arousal and reproductive cycling, blood pressure, and heart rate and thus orchestrates complex physiological responses in order to maintain metabolic homeostasis. These critical roles implicate the hypothalamus in neuroendocrine disorders such as obesity, diabetes, anorexia nervosa, bulimia, and others. In this chapter, we focus on the use of human-induced pluripotent stem cells (hiPSCs) and their differentiation into hypothalamic neurons in order to model neuroendocrine disorders such as extreme obesity in a dish. To do so, we discuss important steps of human hypothalamus development, neuroendocrine diseases related to the hypothalamus, multiple protocols to differentiate hiPSCs into hypothalamic neurons, and severe obesity modeling in vitro using hiPSCs-derived hypothalamic neurons.
Collapse
Affiliation(s)
- Roberta de Souza Santos
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA, United States
| | - Andrew R Gross
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA, United States
| | - Dhruv Sareen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Biomanufacturing Center, West Hollywood, CA, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States; iPSC Core, David and Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
21
|
Wang X, Xu Z, Cai Y, Zeng S, Peng B, Ren X, Yan Y, Gong Z. Rheostatic Balance of Circadian Rhythm and Autophagy in Metabolism and Disease. Front Cell Dev Biol 2020; 8:616434. [PMID: 33330516 PMCID: PMC7732583 DOI: 10.3389/fcell.2020.616434] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
Circadian rhythms are physical, behavioral and environmental cycles that respond primarily to light and dark, with a period of time of approximately 24 h. The most essential physiological functions of mammals are manifested in circadian rhythm patterns, including the sleep-wake cycle and nutrient and energy metabolism. Autophagy is a conserved biological process contributing to nutrient and cellular homeostasis. The factors affecting autophagy are numerous, such as diet, drugs, and aging. Recent studies have indicated that autophagy is activated rhythmically in a clock-dependent manner whether the organism is healthy or has certain diseases. In addition, autophagy can affect circadian rhythm by degrading circadian proteins. This review discusses the interaction and mechanisms between autophagy and circadian rhythm. Moreover, we introduce the molecules influencing both autophagy and circadian rhythm. We then discuss the drugs affecting the circadian rhythm of autophagy. Finally, we present the role of rhythmic autophagy in nutrient and energy metabolism and its significance in physiology and metabolic disease.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol 2020; 17:655-672. [PMID: 32855515 PMCID: PMC7841622 DOI: 10.1038/s41575-020-0341-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Normal eating behaviour is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction is a complex, maladaptive eating behaviour that reflects alterations in brain-gut-microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signalling playing a role. Early-life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie-dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signalling) and intestinal (vagal afferent function, metabolic endotoxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biology model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA.
- Ahmanson-Lovelace Brain Mapping Center at University of California Los Angeles, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Sun Q, Liu Y, Wei W, Wu D, Lin R, Wen D, Jia L. Chronic Timed Sleep Restriction Attenuates LepRb-Mediated Signaling Pathways and Circadian Clock Gene Expression in the Rat Hypothalamus. Front Neurosci 2020; 14:909. [PMID: 33013300 PMCID: PMC7507490 DOI: 10.3389/fnins.2020.00909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
The sleep duration of adolescents has continued to decline over the past 20 years. Sleep insufficiency is one of the most important risk factors for obesity, but the mechanisms underlying the association are unclear. Therefore, the hypothalamic-regulated mechanisms of appetite and the circadian clock gene expression were examined in sleep-restricted rats. Rats aged 7 weeks were randomly divided into two groups: the control group and sleep restriction group (7 rats/group) rats were sleep-restricted for 4 weeks. Body weight gain and amount of food/water consumption were quantified. The expression of genes or proteins which regulated appetite and energy metabolism via leptin receptor signaling and the circadian clock in the hypothalamus were assessed. Chronic sleep restriction induced increased food intake and weight gain in adolescent and young adult rats from the second week of initiation of sleep restriction. Phosphorylation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) was decreased, although levels of circulating leptin or leptin receptor expression were unaltered. Furthermore, insulin receptor substrate (IRS)/phosphoinositide 3-kinase (PI3K)/AKT/mTOR and forkhead box O1 (FoxO1) signaling pathways were also compromised. Moreover, core circadian clock genes were also decreased in the sleep restriction group compared with the control. Chronic timed sleep restriction induced hyperphagic behaviors, attenuated leptin receptor-mediated signaling pathways, and depleted the expression of circadian clock gene in the hypothalamus of adolescent and young adult rats.
Collapse
Affiliation(s)
- Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| | - Yang Liu
- Institute of Health Science, China Medical University, Shenyang, China
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| | - Ren Lin
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Science, China Medical University, Shenyang, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
24
|
Zhou X, Zhong S, Peng H, Liu J, Ding W, Sun L, Ma Q, Liu Z, Chen R, Wu Q, Wang X. Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. Nat Commun 2020; 11:4063. [PMID: 32792525 PMCID: PMC7426815 DOI: 10.1038/s41467-020-17890-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
The neuroendocrine hypothalamus is the central regulator of vital physiological homeostasis and behavior. However, the cellular and molecular properties of hypothalamic neural progenitors remain unexplored. Here, hypothalamic radial glial (hRG) and hypothalamic mantle zone radial glial (hmRG) cells are found to be neural progenitors in the developing mammalian hypothalamus. The hmRG cells originate from hRG cells and produce neurons. During the early development of hypothalamus, neurogenesis occurs in radial columns and is initiated from hRG cells. The radial glial fibers are oriented toward the locations of hypothalamic subregions which act as a scaffold for neuronal migration. Furthermore, we use single-cell RNA sequencing to reveal progenitor subtypes in human developing hypothalamus and characterize specific progenitor genes, such as TTYH1, HMGA2, and FAM107A. We also demonstrate that HMGA2 is involved in E2F1 pathway, regulating the proliferation of progenitor cells by targeting on the downstream MYBL2. Different neuronal subtypes start to differentiate and express specific genes of hypothalamic nucleus at gestational week 10. Finally, we reveal the developmental conservation of nuclear structures and marker genes in mouse and human hypothalamus. Our identification of cellular and molecular properties of neural progenitors provides a basic understanding of neurogenesis and regional formation of the non-laminated hypothalamus.
Collapse
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Honghai Peng
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Shandong, 250013, China
| | - Jing Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyu Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
25
|
Spezani R, da Silva RR, Martins FF, de Souza Marinho T, Aguila MB, Mandarim-de-Lacerda CA. Intermittent fasting, adipokines, insulin sensitivity, and hypothalamic neuropeptides in a dietary overload with high-fat or high-fructose diet in mice. J Nutr Biochem 2020; 83:108419. [PMID: 32580132 DOI: 10.1016/j.jnutbio.2020.108419] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The intermittent fasting (IF) might have benefits on metabolism and food intake. Twelve-week old C57BL/6 J mice were fed a control diet (C, 10% kcal fat), a high-fat diet (HF, 50% kcal fat) or a high-fructose diet (HFru, 50% kcal fructose) for 8 weeks, then half of the animals in each group underwent IF (24 h fed, 24 h fasting) for an additional 4 weeks. Although food intake on the fed day remained the same for all groups, all fasting groups showed a reduction in body mass compared to their counterparts. IF reduced total cholesterol, triacylglycerol, fasting glucose, fasting insulin resistance index, and plasma leptin, but increased plasma adiponectin. IF reduced Leptin gene expression in the HF-IF group, but increased proinflammatory markers in the hypothalamus, also in the C-IF group. Both groups HFru-IF and C-IF, showed alterations in the leptin signaling pathway (Leptin, OBRb, and SOCS3), mainly in the HFru-IF group, suggesting leptin resistance. NPY and POMC neuropeptides labeled the neurons of the hypothalamus by immunofluorescence, corroborating qualitatively other quantitative findings of the study. In conclusion, current results are convincing in demonstrating the IF effect on central regulation of food intake control, as shown by NPY and POMC neuropeptide expressions, resulting in a lower weight gain. Besides, IF improves glycemia, lipid metabolism, and consequently insulin and leptin resistance. However, there is increased expression of inflammatory markers in mouse hypothalamus challenged by the HF and HFru diets, which in the long term may induce adverse effects.
Collapse
Affiliation(s)
- Renata Spezani
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Ribeiro da Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany de Souza Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Clemenzi MN, Martchenko A, Loganathan N, Tse EK, Brubaker PL, Belsham DD. Analysis of Western diet, palmitate and BMAL1 regulation of neuropeptide Y expression in the murine hypothalamus and BMAL1 knockout cell models. Mol Cell Endocrinol 2020; 507:110773. [PMID: 32114021 DOI: 10.1016/j.mce.2020.110773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Western diets that are high in saturated fat and sugar disrupt circadian rhythms, induce weight gain, and lead to metabolic diseases including obesity. However, the mechanistic link between altered circadian rhythms and energy homeostasis remains poorly understood. In C57BL/6J mice, consuming a Western diet for 16 weeks significantly reduced food intake (at zeitgeber 12-16), in association with decreases in hypothalamic expression of the orexigenic neuropeptides, neuropeptide Y (Npy) and agouti-related peptide (AgRP). To examine the acute effects of the most prevalent saturated fatty acid in a Western diet, palmitate, and the role of the core clock gene, Bmal1, in the regulation of hypothalamic feeding neuropeptides, we used heterogeneous and clonal BMAL1 knockout (KO) immortalized hypothalamic cell lines, expressing specific neuropeptides, derived from male (M) and female (F) mice. Both mHypoA-BMAL1-KO/F and mHypoA-BMAL1-KO/M cells demonstrated a loss of circadian rhythmicity in expression of the clock gene, Per2, as compared to wild-type (control) cultures. Loss of BMAL1 also altered the time-dependent expression of Npy and proopiomelanocortin, and disrupted AgRP rhythmicity. Furthermore, palmitate increased BMAL1 binding to the Npy promotor region, and palmitate treatment (50 μM for 24 h) stimulated Npy expression in a BMAL1-dependent manner in both heterogeneous and clonal NPY-expressing female-derived cell models. The results of this study demonstrate that circadian expression of Bmal1 serves as a mechanistic link between Western diet- and palmitate-induced disruptions of the normal rhythmic patterns in hypothalamic feeding-related neuropeptides.
Collapse
Affiliation(s)
| | | | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Erika K Tse
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Tang Q, Gao Y, Liu Q, Yang X, Wu T, Huang C, Huang Y, Zhang J, Zhang Z, Li R, Pu S, Zhang G, Zhao Y, Zhou J, Huang H, Li Y, Jiang W, Chang Y, He J. Sirt6 in pro-opiomelanocortin neurons controls energy metabolism by modulating leptin signaling. Mol Metab 2020; 37:100994. [PMID: 32278654 PMCID: PMC7215198 DOI: 10.1016/j.molmet.2020.100994] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Sirt6 is an essential regulator of energy metabolism in multiple peripheral tissues. However, the direct role of Sirt6 in the hypothalamus, specifically pro-opiomelanocortin (POMC) neurons, controlling energy balance has not been established. Here, we aimed to determine the role of Sirt6 in hypothalamic POMC neurons in the regulation of energy balance and the underlying mechanisms. METHODS For overexpression studies, the hypothalamic arcuate nucleus (ARC) of diet-induced obese mice was targeted bilaterally and adenovirus was delivered by using stereotaxic apparatus. For knockout studies, the POMC neuron-specific Sirt6 knockout mice (PKO mice) were generated. Mice were fed with chow diet or high-fat diet, and body weight and food intake were monitored. Whole-body energy expenditure was determined by metabolic cages. Parameters of body composition and glucose/lipid metabolism were evaluated. RESULTS Sirt6 overexpression in the ARC ameliorated diet-induced obesity. Conversely, selective Sirt6 ablation in POMC neurons predisposed mice to obesity and metabolic disturbances. PKO mice showed an increased fat mass and food intake, while the energy expenditure was decreased. Mechanistically, Sirt6 could modulate leptin signaling in hypothalamic POMC neurons, with Sirt6 deficiency impairing leptin-induced phosphorylation of signal transducer and activator of transcription 3. The effects of leptin on reducing food intake and body weight and leptin-stimulated lipolysis were also impaired. Moreover, Sirt6 inhibition diminished the leptin-induced depolarization of POMC neurons. CONCLUSIONS Our results reveal a key role of Sirt6 in POMC neurons against energy imbalance, suggesting that Sirt6 is an important molecular regulator for POMC neurons to promote negative energy balance.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuping Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Cuiyuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijing Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyun Pu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Guorong Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingnan Zhao
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongsheng Chang
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China.
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
28
|
Ke Y, Bu S, Ma H, Gao L, Cai Y, Zhang Y, Zhou W. Preventive and Therapeutic Effects of Astaxanthin on Depressive-Like Behaviors in High-Fat Diet and Streptozotocin-Treated Rats. Front Pharmacol 2020; 10:1621. [PMID: 32082151 PMCID: PMC7003134 DOI: 10.3389/fphar.2019.01621] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The comorbidity of diabetes and depression has a negative impact on both lifestyle and quality of life. Astaxanthin (AST) has been demonstrated to improve glucose metabolism and has antidepressant-like effects, but it is not clear whether AST has potential for preventing depression in diabetes. The aim of this study is to observe the preventive and therapeutic effects of AST on glucose metabolism or depressive-like behaviors in a diabetic rat model produced by feeding with a high-fat diet for 10 weeks followed by injection of 25 mg/kg streptozotocin (STZ). Preventive treatment with AST at doses of 7.5, 15, and 25 mg/kg/day was given by intragastric gavage 4 weeks before STZ injection. Preventive plus therapeutic treatment also involved therapeutic AST treatments for 6 more weeks after STZ injection, whereas therapeutic-only treatment involved only the 6-week post-STZ treatment. Depressive-like behaviors were evaluated at the end of the treatment by using open field, locomotor activity, elevated plus maze, and forced swimming tests. Preventive and therapeutic treatment with AST both reduced the level of fasting glucose, improved glucose tolerance, and decreased total TCh and TG in diabetic rats. Preventive or preventative plus therapeutic treatment with AST decreased the immobility time and increased the time spent in the open arms of an elevated plus maze and locomotor activity in diabetic rats. However, therapeutic treatment with AST alone failed to affect the depressive-like behaviors. Preventive or preventative plus therapeutic treatment with AST at doses of 15 or 25 mg/kg significantly increased the expression of pERK, pAKT, pCREB, and BDNF in the prefrontal cortex (PFC) in diabetic rats. In contrast, therapeutic treatment with 25 mg/kg AST alone increased the expression of pERK in the PFC. This study indicates that AST may be used as a preventive or therapeutic approach for co-morbidity of diabetes and depression.
Collapse
Affiliation(s)
- Yuting Ke
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Shizhong Bu
- Center of Diabetic Research, School of Medicine, Ningbo University, Ningbo, China
| | - Hong Ma
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, China
| | - Lei Gao
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yujia Cai
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yisheng Zhang
- Lihuili Eastern Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
30
|
Kalmukova OO, Yurchenko AV, Kyryk VM, Nepomnyaschy VM, Savchuk OM, Dzerzhynsky ME. Effects of Melatonin Administration in Different Time Modes on Morphofunctional Indices of the Hypothalamic Serotonergic Neurons in Obese Rats. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Greydanus DE, Agana M, Kamboj MK, Shebrain S, Soares N, Eke R, Patel DR. Pediatric obesity: Current concepts. Dis Mon 2018; 64:98-156. [DOI: 10.1016/j.disamonth.2017.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|