1
|
Sabit H, Abouelnour S, Hassen BM, Magdy S, Yasser A, Wadan AHS, Abdel-Ghany S, Radwan F, Alqosaibi AI, Hafiz H, Awlya OFA, Arneth B. Anticancer Potential of Prebiotics: Targeting Estrogen Receptors and PI3K/AKT/mTOR in Breast Cancer. Biomedicines 2025; 13:990. [PMID: 40299687 PMCID: PMC12025111 DOI: 10.3390/biomedicines13040990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Estrogen receptors (ERs) play a critical role in breast cancer (BC) development and progression, with ERα being oncogenic and ERβ exhibiting tumor-suppressive properties. The interaction between ER signaling and other molecular pathways, such as PI3K/AKT/mTOR, influences tumor growth and endocrine resistance. Emerging research highlights the role of prebiotics in modulating gut microbiota, which may influence estrogen metabolism, immune function, and therapeutic responses in BC. This review explores the impact of prebiotics on estrogen receptor modulation, gut microbiota composition, immune regulation, and metabolic pathways in breast cancer. The potential of prebiotics as adjunctive therapies to enhance treatment efficacy and mitigate chemotherapy-related side effects is discussed. A comprehensive analysis of recent preclinical and clinical studies was conducted, examining the role of prebiotics in gut microbiota modulation, immune regulation, and metabolic reprogramming in breast cancer. The impact of short-chain fatty acids (SCFAs) derived from prebiotic fermentation on epigenetic regulation and endocrine resistance was also evaluated. Prebiotics were found to modulate the gut microbiota-estrogen axis, reduce inflammation, and influence immune responses. SCFAs demonstrated selective estrogen receptor downregulation and metabolic reprogramming, suppressing tumor growth. Synbiotic interventions mitigate chemotherapy-related side effects, improving the quality of life in breast cancer patients. Prebiotics offer a promising avenue for breast cancer prevention and therapy by modulating estrogen metabolism, immune function, and metabolic pathways. Future clinical trials are needed to validate their efficacy as adjunctive treatments in breast cancer management.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Sama Abouelnour
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Bassel M. Hassen
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Salma Magdy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Ahmed Yasser
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate 15888, Egypt;
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Faisal Radwan
- Center for Coastal Environmental Health and Biomolecular Research, NCCOS/NOS/NOAA, Charleston, SC 29412, USA
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hala Hafiz
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ohaad F. A. Awlya
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| |
Collapse
|
2
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
3
|
Yadav S, Sapra L, Srivastava RK. Polysaccharides to postbiotics: Nurturing bone health via modulating "gut-immune axis". Int J Biol Macromol 2024; 278:134655. [PMID: 39128750 DOI: 10.1016/j.ijbiomac.2024.134655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The increasing prevalence of individuals affected by bone pathologies globally has sparked catastrophic concerns. Ankylosing spondylitis, osteoporosis, rheumatoid arthritis, osteoarthritis, and fractures alone impact an estimated 1.71 billion people worldwide. The gut microbiota plays a crucial role in interacting with the host through the synthesis of a diverse range of metabolites called gut-associated metabolites (GAMs), which originate from external dietary substrates or endogenous host compounds. Many metabolic disorders have been linked to alterations in the gut microbiota's activity and composition. The development of metabolic illnesses has been linked to certain microbiota-derived metabolites, such as branched-chain amino acids, bile acids, short-chain fatty acids, tryptophan, trimethylamine N-oxide, and indole derivatives. Moreover, the modulation of gut microbiota through biotics (prebiotics, probiotics and postbiotics) presents a promising avenue for therapeutic intervention. Biotics selectively promote the growth of beneficial gut bacteria, thereby enhancing the production of GAMs with potential beneficial effects on bone metabolism. Understanding the intricate interplay between GAMs, and bone-associated genes through molecular informatics holds significant promise for early diagnosis, prognosis, and novel treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Sumedha Yadav
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
4
|
Ai T, Shang L, Li B, Li J, Qin R. Konjac Oligosaccharides Alleviated Ovariectomy-Induced Bone Loss through Gut Microbiota Modulation and Treg/Th17 Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7969-7979. [PMID: 38551374 DOI: 10.1021/acs.jafc.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Oligosaccharides from the plant Amorphophallus konjac were potentially effective in menopausal osteoporosis due to their prebiotic attributes. The present work mainly studied the regulation of konjac oligosaccharides (KOS) on menopausal bone loss. Experiments were carried out in ovariectomized (OVX) rats, and various contents of KOS were correlated with diet. After 3 months of treatment, the degree of osteoporosis was determined by bone mineral density and femoral microarchitecture. The research data showed that the 8% dietary KOS significantly alleviated bone loss in OVX rats, as it promoted the bone trabecular number by 134.2% and enhanced the bone bending stiffness by 103.1%. From the perspective of the gut-bone axis, KOS promoted gut barrier repair and decreased pro-inflammatory cytokines. Besides, KOS promoted the growth of Bifidobacterium longum and restored Treg/Th17 balance in bone marrow. The two aspects contributed to decreased osteoclastogenic activity and thus inhibited inflammation-related bone loss. This work extended current knowledge of prebiotic inhibition on bone loss and provide an alternative strategy for osteoporosis prevention.
Collapse
Affiliation(s)
- Tingyang Ai
- College of Life Science, South-Central Minzu University, Wuhan 430070, Hubei, China
- College of Food Science and Technology, Hubei Minzu University, Wuhan 445000, Hubei, China
| | - Longchen Shang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Bin Li
- College of Food Science and Technology, Hubei Minzu University, Wuhan 445000, Hubei, China
| | - Jing Li
- College of Food Science and Technology, Hubei Minzu University, Wuhan 445000, Hubei, China
| | - Rui Qin
- College of Life Science, South-Central Minzu University, Wuhan 430070, Hubei, China
| |
Collapse
|
5
|
Fraser D, Ganesan SM. Microbiome, alveolar bone, and metabolites: Connecting the dots. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1074339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The oral microbiome (OM) is a diverse and dynamic collection of species, separated from alveolar bone by the oral mucosa. Pathogenic shifts in the OM (dysbiosis) during periodontitis are associated with an inflammatory response in the oral mucosa that drives alveolar bone resorption. Alveolar bone is also affected by metabolic disorders such as osteoporosis. Accumulating evidence has linked another microbial community, the gut microbiome (GM), to systemic bone metabolism and osteoporosis. Underlying this connection is the biologic activity of metabolites, byproducts of host and bacterial activity. Limited evidence also suggests that metabolites in the oral cavity signal between the OM and immune system, influencing both alveolar bone homeostasis and pathologic bone destruction in periodontitis. While the oral cavity and gut are connected through the gastrointestinal tract, dissimilar roles for known metabolites between these two niches exemplify the difficulty in translating knowledge on gut-derived metabolites and bone metabolism to alveolar bone. Integrated metabolomic, transcriptomic, and metagenomic approaches hold promise for resolving these challenges and identifying novel metabolites which impact alveolar bone health. Further interrogation through mechanistic testing in pre-clinical models and carefully controlled clinical studies have potential to lead toward translation of these discoveries into meaningful therapies.
Collapse
|
6
|
Huang Z, Cheng Z, Li X, Tao J, Li Y, Zhu X, Guo H, Zhou X, Du Q. The effect of intestinal flora intervention on bone development in children: A systematic review and meta-analysis. Complement Ther Clin Pract 2022; 48:101591. [DOI: 10.1016/j.ctcp.2022.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
|
7
|
Microbial Composition of a Traditional Fermented Wheat Preparation—Nishasta and Its Role in the Amelioration of Retinoic Acid-Induced Osteoporosis in Rats. FERMENTATION 2022. [DOI: 10.3390/fermentation8040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fermented foods have a long history of human use. The purpose of this study was to characterize the microbial composition of a traditional fermented wheat preparation—Nishasta— and to explore its effect in retinoic acid-induced osteoporosis in Wistar rats. The sample was suspended in sterile water (10% w/v), mixed thoroughly, filtered, and gradually diluted. Aliquots of dilutions were cultured in MRS (DeMan–Rogosa–Sharpe) medium, and colonies with similar morphologies were subjected to DNA extraction. The 16S rRNA gene of the isolates was amplified by polymerase chain reaction, checked by agarose gel electrophoresis, and finally identified by sequencing. Anti-osteoporosis screening of Nishasta was carried out in female Wistar rats using retinoic acid as an inducer (70 mg/kg, p.o. once a day for 14 days). Its effect on bone health parameters was determined. The bone metabolism markers such as hydroxyproline (HOP), tartrate-resistant acid phosphatase (TRACP), and alkaline phosphatase (ALP) were evaluated. The results of microbial characterization revealed the presence of ten clones of Lactobacillus plantarum in the fermented preparation with L. plantarum NF3 as the predominant strain. The average microbial count was 2.4 × 103 CFU/g. Retinoic acid administration led to a marked disorder of various bone health markers in rats. It also increased the levels of urine calcium and phosphorus, indicating increased bone destruction. Treatment with fermented wheat (at 200, 100, and 50 mg/kg doses, p.o. daily for 42 days after the induction of osteoporosis) improved bone mineral density in a dose-dependent manner. It also improved the bone microstructure and reduced the levels of ALP, TRACP, and HOP. Micro-CT revealed that it reduced trabecular separation and increased the percent bone volume, trabecular numbers, trabecular thickness, and bone mineral density in the rats. The results showed that the fermented wheat promoted bone formation and prevented bone resorption. Our findings clearly established the effectiveness of Nishasta against osteoporosis in Wistar rats that can be partly attributed to the improved gut calcium absorption and microbiota composition.
Collapse
|
8
|
Miao S, Zhou W, Li H, Zhu M, Dong X, Zou X. Effects of coated sodium butyrate on production performance, egg quality, serum biochemistry, digestive enzyme activity, and intestinal health of laying hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1960209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sasa Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wenting Zhou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huaiyu Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingkun Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol 2021; 9:606-621. [PMID: 34242583 DOI: 10.1016/s2213-8587(21)00119-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Osteoporotic or fragility fractures affect one in two women and one in five men who are older than 50. These events are associated with substantial morbidity, increased mortality, and an impaired quality of life. Recommended general measures for fragility fracture prevention include a balanced diet with an optimal protein and calcium intake and vitamin D sufficiency, together with regular weight-bearing physical exercise. In this narrative Review, we discuss the role of nutrients, foods, and dietary patterns in maintaining bone health. Much of this information comes from observational studies. Bone mineral density, microstructure-estimated bone strength, and trabecular and cortical microstructure are positively associated with total protein intake. Several studies indicate that fracture risk might be lower with a higher dietary protein intake, provided that the calcium supply is sufficient. Dairy products are a valuable source of these two nutrients. Hip fracture risk appears to be lower in consumers of dairy products, particularly fermented dairy products. Consuming less than five servings per day of fruit and vegetables is associated with a higher hip fracture risk. Adherence to a Mediterranean diet or to a prudent diet is associated with a lower fracture risk. These various nutrients and dietary patterns influence gut microbiota composition or function, or both. The conclusions of this Review emphasise the importance of a balanced diet including minerals, protein, and fruit and vegetables for bone health and in the prevention of fragility fractures.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Tara C Brennan-Speranza
- School of Medical Sciences and School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Ai T, Hao L, Shang L, Wang L, Li B, Li J. Konjac Oligosaccharides Modulate the Gut Environment and Promote Bone Health in Calcium-Deficient Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4412-4422. [PMID: 33832226 DOI: 10.1021/acs.jafc.0c07839] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the beneficial effect of konjac oligosaccharides (KOS) on bone health in calcium-deficient mice. During the experimental period, low-calcium diet-fed mice were administered with calcium chloride to simulate daily calcium supplementation. Meanwhile, different levels of KOS intervened by adding them into the diet. After 8 weeks, the calcium balance status, bone mass parameters, and gut environment modulation were evaluated. The results showed that dietary KOS intervention alleviated the negative calcium balance, significantly promoted the trabecular number and cortical thickness, and remarkably enhanced the skeletal mechanical strength. Moreover, Pearson's correlation analysis among significantly changed gut microbiota, gut metabolites, and relevant physiological indexes showed that the microbial genera of Lactobacillus, Bifidobacterium, Mucispirillum, Alistipes, and unidentified Clostridia and gut metabolites of kynurenine and testosterone were significantly associated with increased bone mass. These findings provided a new insight into the effect of prebiotics on bone health.
Collapse
Affiliation(s)
- Tingyang Ai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Lulu Hao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Longchen Shang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
11
|
Cao S, Cladis DP, Weaver CM. Use of Calcium Isotopic Tracers To Determine Factors That Perturb Calcium Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12886-12892. [PMID: 32299214 DOI: 10.1021/acs.jafc.0c01641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Calcium plays an important role in maintaining bone health. Ensuring adequate calcium intake throughout life is essential for reaching greater peak bone mass in young adulthood and lowering osteoporotic fracture risk when aging. Calcium homeostasis involves a complex interaction between three organ systems: intestine, kidney, and bone. Metabolic balance plus kinetic studies using calcium isotopic tracers can estimate calcium metabolism parameters and pinpoint how organs and processes are perturbed by internal and external modifiers. Both modifiable factors (e.g., vitamin D supplementations and dietary bioactives) and non-modifiable factors (e.g., age, sex, and race) influence calcium utilization. Current evidence suggests that prebiotic fibers may offer an alternative approach to enhance calcium absorption through altering gut microbiota to ultimately improve bone health.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dennis P Cladis
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Connie M Weaver
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Ferreira RDS, Mendonça LABM, Ribeiro CFA, Calças NC, Guimarães RDCA, Nascimento VAD, Gielow KDCF, Carvalho CME, Castro APD, Franco OL. Relationship between intestinal microbiota, diet and biological systems: an integrated view. Crit Rev Food Sci Nutr 2020; 62:1166-1186. [PMID: 33115284 DOI: 10.1080/10408398.2020.1836605] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The health-disease process can be influenced by the intestinal microbiota. As this plays a fundamental role in protecting the organism, the importance of studying the composition and diversity of this community becomes increasingly evident. Changes in the composition of the intestinal bacterial community may result in dysbiosis, and this process may contribute to triggering various diseases in all biological systems. This imbalance of intestinal microbiota homeostasis may alter commensal bacteria and the host metabolism, as well as immune function. Dysbiosis also causes an increase in intestinal permeability due to exposure to molecular patterns associated with the pathogen and lipopolysaccharides, leading to a chronic inflammatory process that can result in diseases for all biological systems. In this context, dietary intervention through the use of probiotics, prebiotics and antioxidant foods can be considered a contribution to the modulation of intestinal microbiota. Probiotics have been used to provide up to 10 billion colony forming units, and probiotic foods, Kefir and fermented natural yogurt are also used. Prebiotics, in turn, are found in supplemental formulations of processed foods and in functional foods that are also sources of phenolic compounds, such as flavonoids, antioxidant and anti-inflammatory substances, polyunsaturated fatty acids, vitamins, and minerals. In this review, we will discuss the relationship between an imbalance in the intestinal microbiota with the development of diseases, besides indicating the need for future studies that can establish bacterial parameters for the gastrointestinal tract by modulating the intestinal microbiota, associated with the adoption of healthy habits during all life cycles.
Collapse
Affiliation(s)
- Rosângela Dos Santos Ferreira
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Camila Fontoura Acosta Ribeiro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Natali Camposano Calças
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Karine de Cássia Freitas Gielow
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Alinne Pereira de Castro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.,Center of Proteomic and Biochemical Analysis, Post Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
13
|
Shavandi A, Saeedi P, Gérard P, Jalalvandi E, Cannella D, Bekhit AED. The role of microbiota in tissue repair and regeneration. J Tissue Eng Regen Med 2020; 14:539-555. [PMID: 31845514 DOI: 10.1002/term.3009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/15/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
A comprehensive understanding of the human body endogenous microbiota is essential for acquiring an insight into the involvement of microbiota in tissue healing and regeneration process in order to enable development of biomaterials with a better integration with human body environment. Biomaterials used for biomedical applications are normally germ-free, and the human body as the host of the biomaterials is not germ-free. The complexity and role of the body microbiota in tissue healing/regeneration have been underestimated historically. Traditionally, studies aiming at the development of novel biomaterials had focused on the effects of environment within the target tissue, neglecting the signals generated from the microbiota and their impact on tissue regeneration. The significance of the human body microbiota in relation to metabolism, immune system, and consequently tissue regeneration has been recently realised and is a growing research field. This review summarises recent findings on the role of microbiota and mechanisms involved in tissue healing and regeneration, in particular skin, liver, bone, and nervous system regrowth and regeneration highlighting the potential new roles of microbiota for development of a new generation of biomaterials.
Collapse
Affiliation(s)
- Amin Shavandi
- BioMatter-BTL, École interfacultaire de Bioingénieurs (EIB), Université Libre de Brussels, Brussels, Belgium
| | - Pouya Saeedi
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Philippe Gérard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Esmat Jalalvandi
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - David Cannella
- PhotoBioCatalysis Unit - BTL - École interfacultaire de Bioingénieurs (EIB), Université Libre de Brussels, Brussels, Belgium
| | | |
Collapse
|
14
|
Snelson M, Biruete A, McFarlane C, Campbell K. A Renal Clinician's Guide to the Gut Microbiota. J Ren Nutr 2020; 30:384-395. [PMID: 31928802 DOI: 10.1053/j.jrn.2019.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/16/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
It is increasingly recognized that the gut microbiota plays a role in the progression of chronic diseases and that diet may confer health benefits by altering the gut microbiota composition. This is of particular relevance for chronic kidney disease (CKD), as the gut is a source of uremic retention solutes, which accumulate as a result of impaired kidney function and can exert nephrotoxic and other harmful effects. Kidney dysfunction is also associated with changes in the composition of the gut microbiota and the gastrointestinal tract. Diet modulates the gut microbiota, and there is much interest in the use of prebiotics, probiotics, and synbiotics as dietary therapies in CKD, as well as dietary patterns that beneficially alter the microbiota. This review provides an overview of the gut microbiota and its measurement, its relevance in the context of CKD, and the current state of knowledge regarding dietary manipulation of the microbiota.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.
| | - Annabel Biruete
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Catherine McFarlane
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia; Renal Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Katrina Campbell
- Menzies Health Institute Queensland, Griffith University, Nathan, Queensland, Australia; Allied Health Services, Metro North Hospital and Health Service, Herston, Queensland, Australia
| |
Collapse
|
15
|
Bone Health and BMD Research in Pediatric and Adolescent Individuals with ASD: Current Data, Evaluation, and Next Steps. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-019-09268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
McCabe LR, Irwin R, Tekalur A, Evans C, Schepper JD, Parameswaran N, Ciancio M. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone 2019; 118:20-31. [PMID: 29604350 PMCID: PMC6163087 DOI: 10.1016/j.bone.2018.03.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
Abstract
High fat diets can have detrimental effects on the skeleton as well as cause intestinal dysbiosis. Exercise prevents high fat (HF) diet-induced obesity and also improves bone density and prevents the intestinal dysbiosis that promotes energy storage. Previous studies indicate a link between intestinal microbial balance and bone health. Therefore, we examined whether exercise could prevent HF-induced bone pathology in male mice and determined whether benefits correlate to changes in host intestinal microbiota. Male C57Bl/6 mice were fed either a low fat diet (LF; 10 kcal% fat) or a HF diet (60 kcal% fat) and put under sedentary or voluntary exercise conditions for 14 weeks. Our results indicated that HF diet reduced trabecular bone volume, when corrected for differences in body weight, of both the tibia (40% reduction) and vertebrae (25% reduction) as well and increased marrow adiposity (44% increase). More importantly, these effects were prevented by exercise. Exercise also had a significant effect on several cortical bone parameters and enhanced bone mechanical properties in LF but not HF fed mice. Microbiome analyses indicated that exercise altered the HF induced changes in microbial composition by reducing the Firmicutes/Bacteriodetes ratio. This ratio negatively correlated with bone volume as did levels of Clostridia and Lachnospiraceae. In contrast, the abundance of several Actinobacteria phylum members (i.e., Bifidobacteriaceae) were positively correlated with bone volume. Taken together, exercise can prevent many of the negative effects of a high fat diet on male skeletal health. Exercise induced changes in microbiota composition could represent a novel mechanism that contributes to exercise induced benefits to bone health.
Collapse
Affiliation(s)
- Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, United States; Department of Radiology, Michigan State University, East Lansing, MI, United States; Biomedical Imaging Research Center, Michigan State University, East Lansing, MI, United States.
| | - Regina Irwin
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Arjun Tekalur
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Christian Evans
- Physical Therapy Program, Midwestern University, Downers Grove, IL, United States
| | - Jonathan D Schepper
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | | | - Mae Ciancio
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL, United States.
| |
Collapse
|
17
|
McCabe LR, Parameswaran N. Advances in Probiotic Regulation of Bone and Mineral Metabolism. Calcif Tissue Int 2018; 102:480-488. [PMID: 29453726 PMCID: PMC5849527 DOI: 10.1007/s00223-018-0403-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Probiotics have been consumed by humans for thousands of years because they are beneficial for long-term storage of foods and promote the health of their host. Ingested probiotics reside in the gastrointestinal tract where they have many effects including modifying the microbiota composition, intestinal barrier function, and the immune system which result in systemic benefits to the host, including bone health. Probiotics benefit bone growth, density, and structure under conditions of dysbiosis, intestinal permeability, and inflammation (recognized mediators of bone loss and osteoporosis). It is likely that multiple mechanisms are involved in mediating probiotic signals from the gut to the bone. Studies indicate a role for the microbiota (composition and activity), intestinal barrier function, and immune cells in the signaling process. These mechanisms are not mutually exclusive, but rather, may synergize to provide benefits to the skeletal system of the host and serve as a starting point for investigation. Given that probiotics hold great promise for supporting bone health and are generally regarded as safe, future studies identifying mechanisms are warranted.
Collapse
Affiliation(s)
- Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, USA.
- Biomedical Imaging Research Center, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
18
|
Bandali E, Wang Y, Lan Y, Rogers MA, Shapses SA. The influence of dietary fat and intestinal pH on calcium bioaccessibility: anin vitrostudy. Food Funct 2018. [DOI: 10.1039/c7fo01631j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In vivostudies measuring true fractional calcium (Ca) absorption have shown that dietary fat is a significant predictor of absorption and is influenced by luminal pH levels.
Collapse
Affiliation(s)
- E. Bandali
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research
- Institute of Food
- Health
- and Nutrition
- Rutgers University
| | - Y. Wang
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research
- Institute of Food
- Health
- and Nutrition
- Rutgers University
| | - Y. Lan
- Department of Food Sciences
- Rutgers University
- New Brunswick
- USA
- South China Agriculture University
| | - M. A. Rogers
- Department of Food Science
- University of Guelph
- Guelph
- Canada
| | - S. A. Shapses
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research
- Institute of Food
- Health
- and Nutrition
- Rutgers University
| |
Collapse
|