1
|
Sarathkumara YD, Xian RR, Liu Z, Yu KJ, Chan JKC, Kwong YL, Lam TH, Liang R, Chiu B, Xu J, Hu W, Ji BT, Coghill AE, Kelly AM, Pfeiffer RM, Rothman N, Ambinder RF, Hildesheim A, Lan Q, Proietti C, Doolan DL. A proteome-wide analysis unveils a core Epstein-Barr virus antibody signature of classic Hodgkin lymphoma across ethnically diverse populations. Int J Cancer 2024; 155:1476-1486. [PMID: 38995124 PMCID: PMC11326961 DOI: 10.1002/ijc.35072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024]
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus associated with various malignancies, including classical Hodgkin lymphoma (cHL). Despite its known association, the specific role of humoral immune response to EBV remains poorly characterized in cHL. To address this, we conducted a study using a custom protein microarray to measure the antibody responses in cHL patients and matched healthy controls recruited from an East-Asian hospital-based case-control study. We identified 16 IgG antibodies significantly elevated in EBV-positive cHL compared with controls, defining an "East-Asian antibody signature of EBV-positive cHL." We evaluated responses against these 16 antibodies in a distinct European population, leveraging data from our previous European cHL case-control study from the UK, Denmark, and Sweden. A subset of antibodies (14/16, 87.5%) from the "East-Asian antibody signature of EBV-positive cHL" exhibited significant associations with cHL in the European population. Conversely, we assessed the "European antibody signature of EBV-positive cHL" identified in our prior study which consisted of 18 EBV antibodies (2 IgA, 16 IgG), in the East-Asian population. A subset of these antibodies (15/18, 83.3%) maintained significant associations with cHL in the East-Asian population. This cross-comparison of antibody signatures underscores the robust generalizability of EBV antibodies across populations. Five anti-EBV IgG antibodies (LMP-1, TK, BALF2, BDLF3, and BBLF1), found in both population-specific antibody signatures, represent a "core signature of EBV-positive cHL." Our findings suggest that the antibody responses targeting these core EBV proteins reflect a specific EBV gene expression pattern, serving as potential biomarkers for EBV-positive cHL independent of population-specific factors.
Collapse
Affiliation(s)
- Yomani D Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Rena R Xian
- Department of Pathology and Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yok-Lam Kwong
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Tai Hing Lam
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raymond Liang
- Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Brian Chiu
- Department of Health Studies, University of Chicago, Chicago, Illinois, USA
| | - Jun Xu
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Anna E Coghill
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ashton M Kelly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Richard F Ambinder
- Department of Pathology and Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:358-371. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|