1
|
Harding RJ, Xie Y, Caron NS, Findlay-Black H, Lyu C, Potluri N, Chandrasekaran R, Hayden MR, Leavitt BR, Langbehn DR, Southwell AL. Challenges and advances for huntingtin detection in cerebrospinal fluid: in support of relative quantification. Biomark Res 2025; 13:63. [PMID: 40259428 PMCID: PMC12012996 DOI: 10.1186/s40364-025-00772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025] Open
Abstract
Huntington disease (HD) is a progressive and devastating neurodegenerative disease caused by expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene above a critical threshold of ~ 35 repeats resulting in expression of mutant HTT (mHTT). A promising treatment approach being tested in clinical trials is HTT lowering, which aims to reduce levels of the mHTT protein. Target engagement of these therapies in the brain are inferred using antibody-based assays that measure mHTT levels in the cerebrospinal fluid (CSF). These levels are typically reported as the absolute concentration of mHTT concentration, derived from a standard curve generated using a single protein standard. However, patient biofluids are a complex milieu containing different mHTT protein species, suggesting that absolute quantitation is challenging. As a result, a single recombinant protein standard may not be sufficient to interpret assay signal as molar mHTT concentration. In this study, we used immunoprecipitation and flow cytometry (IP-FCM) to investigate different factors that influence mHTT detection assay signal. Our results show that HTT protein fragmentation, protein-protein interactions, affinity tag positioning, oligomerization and polyglutamine tract length affect assay signal intensity. These findings indicate that absolute HTT quantitation in heterogeneous biological samples is not possible with current technologies using a single standard protein. We also explore the binding specificity of the MW1 anti-polyglutamine antibody, commonly used in these assays as a mHTT-selective reagent and demonstrate that mHTT binding is preferred but not specific. Furthermore, we find that MW1 depletion of mHTT for quantitation of wildtype HTT is not only incomplete, leaving residual mHTT, but also non-specific, resulting in pull down of some wildtype HTT protein. Based on these observations, we recommend that mHTT detection assays report only relative mHTT quantitation using normalized arbitrary units of assay signal intensity, rather than molar concentrations, in the assessment of central nervous system HTT lowering in ongoing clinical and preclinical studies. Further, we recommend that MW1-depletion not be used as a method for quantifying wildtype HTT protein and that detergent be consistently added to samples during testing.
Collapse
Affiliation(s)
- Rachel J Harding
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yuanyun Xie
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Hailey Findlay-Black
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Caroline Lyu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Nalini Potluri
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Renu Chandrasekaran
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Douglas R Langbehn
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Amber L Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Kareem RA, Sanghvi G, Ganesan S, Agarwal M, Kaur P, Taher WM, Alwan M, Jawad MJ, Hamad AK. Short-chain fatty acids in Huntington's disease: Mechanisms of action and their therapeutic implications. Pharmacol Biochem Behav 2025; 249:173972. [PMID: 39983928 DOI: 10.1016/j.pbb.2025.173972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and emotional instability, primarily resulting from the abnormal accumulation of mutant huntingtin protein. Growing research highlights the role of intestinal microbiota and their metabolites, particularly short-chain fatty acids (SCFAs), in modulating HD progression. SCFAs, including acetate, propionate, and butyrate, are produced by gut bacteria through dietary fiber fermentation and are recognized for their neuroprotective properties. Evidence suggests that SCFAs regulate neuroinflammation, neuronal communication, and metabolic functions within the central nervous system (CNS). In HD, these compounds may support neuronal health, reduce oxidative stress, and enhance blood-brain barrier (BBB) integrity. Their mechanisms of action involve binding to G-protein-coupled receptors (GPCRs) and modulating gene expression through epigenetic pathways, underscoring their therapeutic potential. This analysis examines the significance of SCFAs in HD, emphasizing the gut-brain axis and the benefits of dietary interventions aimed at modifying gut microbiota composition and promoting SCFA production. Further research into these pathways may pave the way for novel HD management strategies and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mohit Agarwal
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University, Rajasthan, Jaipur,302131, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
3
|
Shiwal A, Nibrad D, Tadas M, Katariya R, Kale M, Wankhede N, Kotagale N, Umekar M, Taksande B. Polyamines signalling pathway: A key player in unveiling the molecular mechanisms underlying Huntington's disease. Neuroscience 2025; 570:213-224. [PMID: 39986431 DOI: 10.1016/j.neuroscience.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Polyaminesare essential organic cations found in all eukaryotic cells and play an important role in many cellular processes including growth, differentiation, andneuroprotection. This review explores the complex relationship between polyamine signaling and Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder characterized by the progressive degeneration of medium-spiny neurons in the striatum and cortex due to mutations in the huntingtin gene. We provide a comprehensive overview of how polyamines, specificallyputrescine,spermidine, andspermine, regulate important cellular functions such as gene expression, protein synthesis, membrane stability, and ion channel regulation with implications for HD. Dysfunction in polyamine metabolism in HD, reveals how changes in these molecules promote oxidative stress, mitochondrial dysfunction, andexcitotoxicity. Importantly, polyamines interact with mutanthuntingtin protein (mHTT) to affect its aggregationand neurotoxicity. This effect may contribute to the pathophysiological mechanisms underlying HD, suggesting that polyamines may act as potential biomarkers of disease progression. Additionally, we discuss the therapeutic implications of targeting the polyamine signaling pathway to alleviate HD symptoms. By enhancing autophagy and modulating neurotransmitter systems, polyamines mayprovideneuroprotectionagainstmHTT-inducedtoxicity. Moreover, the present review provides new insight into the role of polyamines in the pathogenesis of HDand suggests that regulation of polyamine metabolism may represent a promising therapy to slow the disease progression. Besides this, the review highlights the need for further investigation of the diverse roles of polyamines in neurodegenerative diseases, including HD, paving the way for novel interventions to improve cellular homeostasis andpatient outcomes.
Collapse
Affiliation(s)
- Amit Shiwal
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Dhanshree Nibrad
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nitu Wankhede
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, MS 444 604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India.
| |
Collapse
|
4
|
Nibrad D, Shiwal A, Tadas M, Katariya R, Kale M, Kotagale N, Umekar M, Taksande B. Therapeutic modulation of mitochondrial dynamics by agmatine in neurodegenerative disorders. Neuroscience 2025; 569:43-57. [PMID: 39890051 DOI: 10.1016/j.neuroscience.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Mitochondrial dysfunction is a pivotal factor in the pathogenesis of neurodegenerative disorders, driving neuronal degeneration through mechanisms involving oxidative stress, impaired energy production, and dysregulated calcium homeostasis. Agmatine, an endogenous polyamine derived from arginine, has garnered attention for its neuroprotective properties, including anti-inflammatory, anti-oxidative, and antiapoptotic effects. Recent studies have highlighted the potential of agmatine in preserving mitochondrial function and mitigating neurodegeneration, making it a promising candidate for therapeutic intervention. One of the key mechanisms by which agmatine exerts its neuroprotective effects is through the maintenance of mitochondrial homeostasis. Agmatine has been shown to modulate mitochondrial dynamics, promoting mitochondrial fusion and fission balance essential for cellular energy metabolism and signaling. Moreover, agmatine acts as a regulator of mitochondrial permeability transition pore (mPTP) opening, preventing excessive calcium influx and subsequent mitochondrial dysfunction. Despite promising findings, challenges such as optimizing agmatine's pharmacokinetics, determining optimal dosing regimens, and elucidating its precise molecular targets within mitochondria remain to be addressed. Future research directions should focus on developing targeted delivery systems for agmatine, investigating its interactions with mitochondrial proteins, and conducting well-designed clinical trials to evaluate its therapeutic efficacy and safety profile in neurodegenerative disorders. Overall, agmatine emerges as a novel therapeutic agent with the potential to modulate mitochondrial homeostasis and alleviate neurodegenerative pathology, offering new avenues for treating these debilitating conditions.
Collapse
Affiliation(s)
- Dhanshree Nibrad
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Amit Shiwal
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, (M.S.) 444604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, (M.S.) 441 002, India.
| |
Collapse
|
5
|
Keethedeth N, Anantha Shenoi R. Mitochondria-targeted nanotherapeutics: A new frontier in neurodegenerative disease treatment. Mitochondrion 2025; 81:102000. [PMID: 39662651 DOI: 10.1016/j.mito.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mitochondria are the seat of cellular energy and play key roles in regulating several cellular processes such as oxidative phosphorylation, respiration, calcium homeostasis and apoptotic pathways. Mitochondrial dysfunction results in error in oxidative phosphorylation, redox imbalance, mitochondrial DNA mutations, and disturbances in mitochondrial dynamics, all of which can lead to several metabolic and degenerative diseases. A plethora of studies have provided evidence for the involvement of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Hence mitochondria have been used as possible therapeutic targets in the regulation of neurodegenerative diseases. However, the double membranous structure of mitochondria poses an additional barrier to most drugs even if they are able to cross the plasma membrane. Most of the drugs acting on mitochondria also required very high doses to exhibit the desired mitochondrial accumulation and therapeutic effect which in-turn result in toxic effects. Mitochondrial targeting has been improved by direct conjugation of drugs to mitochondriotropic molecules like dequalinium (DQA) and triphenyl phosphonium (TPP) cations. But being cationic in nature, these molecules also exhibit toxicity at higher doses. In order to further improve the mitochondrial localization with minimal toxicity, TPP was conjugated with various nanomaterials like liposomes. inorganic nanoparticles, polymeric nanoparticles, micelles and dendrimers. This review provides an overview of the role of mitochondrial dysfunction in neurodegenerative diseases and various nanotherapeutic strategies for efficient targeting of mitochondria-acting drugs in these diseases.
Collapse
Affiliation(s)
- Nishad Keethedeth
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| | - Rajesh Anantha Shenoi
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| |
Collapse
|
6
|
Mansour RM, Shaker AAS, Abulsoud AI, Mageed SSA, Ashraf A, Elsakka EGE, Dahab MI, Sadek MM, Awad FA, Lutfy RH, Elimam H, Faraag AHI, Nassar YA, Ali MA, Mohammed OA, Abdel-Reheim MA, Doghish AS. The Role of MicroRNAs in Neurodegeneration: Insights from Huntington's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04750-7. [PMID: 40009259 DOI: 10.1007/s12035-025-04750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
MicroRNA (miRNAs) is a single non-coding strand with a small sequence of approximately 21-25 nucleotides, which could be a biomarker or act as a therapeutic agent for disease. This review explores the dynamic role of miRNAs in Huntington's disease (HD), encompassing their regulatory function, potential as diagnostic biomarker tools, and emerging therapeutic applications. We delved into the dysregulation of specific miRNAs in HD, for instance, downregulated levels of miR-9 and miR-124 and increased levels of miR-155 and miR-196a. These alterations highlight the promise of miRNAs as non-invasive tools for early HD detection and disease progression monitoring. Moving beyond diagnosis, the exciting potential of miRNA-based therapies. By mimicking downregulated miRNAs or inhibiting dysregulated ones, we can potentially restore the balance of mutant target gene expression and modify disease progression. Recent research using engineered miRNAs delivered via an adeno-associated virus (AAV) vector in a transgenic HD minipig model demonstrates encouraging results in reducing mutant HD and improving motor function.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, 11829, Badr City, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Mohammed I Dahab
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat, 32897, Sadat City, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
- Botany and Microbiology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
| | - Yara A Nassar
- Department of Botany, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt.
| |
Collapse
|
7
|
Ali I, Adil M, Imran M, Qureshi SA, Qureshi S, Hasan N, Ahmad FJ. Nanotechnology in Parkinson's Disease: overcoming drug delivery challenges and enhancing therapeutic outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-025-01799-8. [PMID: 39878857 DOI: 10.1007/s13346-025-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development. Moreover, early and precise PD diagnosis remains elusive, relying on clinical assessments, neuroimaging techniques, and emerging biomarkers. Conventional management of PD involves dopaminergic medications and surgical interventions, but these treatments often become less effective over time and do not address disease treatment. Challenges persist due to the blood-brain barrier's (BBB) impermeability, hindering drug delivery. Recent advancements in nanotechnology offer promising novel approaches for PD management. Various drug delivery systems (DDS), including nanosized polymers, lipid-based carriers, and nanoparticles (such as metal/metal oxide, protein, and carbonaceous particles), aim to enhance drug and gene delivery. These modifications seek to improve BBB permeability, ultimately benefiting PD patients. This review underscores the critical role of ageing in PD development and explores how age-related neuronal decline contributes to substantia nigra loss and PD manifestation in susceptible individuals. The review also highlights the advancements and ongoing challenges in nanotechnology-based therapies for PD.
Collapse
Affiliation(s)
- Irfan Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, 4102, Australia
| | - Saba Asif Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
8
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2025; 36:53-90. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
9
|
Vassallo N. Poration of mitochondrial membranes by amyloidogenic peptides and other biological toxins. J Neurochem 2025; 169:e16213. [PMID: 39213385 DOI: 10.1111/jnc.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria are essential organelles known to serve broad functions, including in cellular metabolism, calcium buffering, signaling pathways and the regulation of apoptotic cell death. Maintaining the integrity of the outer (OMM) and inner mitochondrial membranes (IMM) is vital for mitochondrial health. Cardiolipin (CL), a unique dimeric glycerophospholipid, is the signature lipid of energy-converting membranes. It plays a significant role in maintaining mitochondrial architecture and function, stabilizing protein complexes and facilitating efficient oxidative phosphorylation (OXPHOS) whilst regulating cytochrome c release from mitochondria. CL is especially enriched in the IMM and at sites of contact between the OMM and IMM. Disorders of protein misfolding, such as Alzheimer's and Parkinson's diseases, involve amyloidogenic peptides like amyloid-β, tau and α-synuclein, which form metastable toxic oligomeric species that interact with biological membranes. Electrophysiological studies have shown that these oligomers form ion-conducting nanopores in membranes mimicking the IMM's phospholipid composition. Poration of mitochondrial membranes disrupts the ionic balance, causing osmotic swelling, loss of the voltage potential across the IMM, release of pro-apoptogenic factors, and leads to cell death. The interaction between CL and amyloid oligomers appears to favour their membrane insertion and pore formation, directly implicating CL in amyloid toxicity. Additionally, pore formation in mitochondrial membranes is not limited to amyloid proteins and peptides; other biological peptides, as diverse as the pro-apoptotic Bcl-2 family members, gasdermin proteins, cobra venom cardiotoxins and bacterial pathogenic toxins, have all been described to punch holes in mitochondria, contributing to cell death processes. Collectively, these findings underscore the vulnerability of mitochondria and the involvement of CL in various pathogenic mechanisms, emphasizing the need for further research on targeting CL-amyloid interactions to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Tal-Qroqq, Malta
| |
Collapse
|
10
|
Lv D, Feng P, Guan X, Liu Z, Li D, Xue C, Bai B, Hölscher C. Neuroprotective effects of GLP-1 class drugs in Parkinson's disease. Front Neurol 2024; 15:1462240. [PMID: 39719978 PMCID: PMC11667896 DOI: 10.3389/fneur.2024.1462240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive neurological disorder primarily affecting motor control, clinically characterized by resting tremor, bradykinesia, rigidity, and other symptoms that significantly diminish the quality of life. Currently, available treatments only alleviate symptoms without halting or delaying disease progression. There is a significant association between PD and type 2 diabetes mellitus (T2DM), possibly due to shared pathological mechanisms such as insulin resistance, chronic inflammation, and mitochondrial dysfunction. PD is caused by a deficiency of dopamine, a neurotransmitter in the brain that plays a critical role in the control of movement. Glucose metabolism and energy metabolism disorders also play an important role in the pathogenesis of PD. This review investigates the neuroprotective mechanisms of glucagon-like peptide-1 (GLP-1) and its receptor agonists, offering novel insights into potential therapeutic strategies for PD. GLP-1 class drugs, primarily used in diabetes management, show promise in addressing PD's underlying pathophysiological mechanisms, including energy metabolism and neuroprotection. These drugs can cross the blood-brain barrier, improve insulin resistance, stabilize mitochondrial function, and enhance neuronal survival and function. Additionally, they exhibit significant anti-inflammatory and antioxidative stress effects, which are crucial in neurodegenerative diseases like PD. Research indicates that GLP-1 receptor agonists could improve both motor and cognitive symptoms in PD patients, marking a potential breakthrough in PD treatment and prevention. Further exploration of GLP-1's molecular mechanisms in PD could provide new preventive and therapeutic approaches, especially for PD patients with concurrent T2DM. By targeting both metabolic and neurodegenerative pathways, GLP-1 receptor agonists represent a multifaceted approach to PD treatment, offering hope for better disease management and improved patient outcomes.
Collapse
Affiliation(s)
- Dongliang Lv
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Peng Feng
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xueying Guan
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhaona Liu
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongfang Li
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Cunshui Xue
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Bo Bai
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou, China
| |
Collapse
|
11
|
Zhang T, Li Y, Pan L, Sha J, Bailey M, Faure-Kumar E, Williams CK, Wohlschlegel J, Magaki S, Niu C, Lee Y, Su YC, Li X, Vinters HV, Geschwind DH. Brain-wide alterations revealed by spatial transcriptomics and proteomics in COVID-19 infection. NATURE AGING 2024; 4:1598-1618. [PMID: 39543407 PMCID: PMC11867587 DOI: 10.1038/s43587-024-00730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/25/2024] [Indexed: 11/17/2024]
Abstract
Understanding the pathophysiology of neurological symptoms observed after severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection is essential to optimizing outcomes and therapeutics. To date, small sample sizes and narrow molecular profiling have limited the generalizability of findings. In this study, we profiled multiple cortical and subcortical regions in postmortem brains of patients with coronavirus disease 2019 (COVID-19) and controls with matched pulmonary pathology (total n = 42) using spatial transcriptomics, bulk gene expression and proteomics. We observed a multi-regional antiviral response without direct active SARS-CoV2 infection. We identified dysregulation of mitochondrial and synaptic pathways in deep-layer excitatory neurons and upregulation of neuroinflammation in glia, consistent across both mRNA and protein. Remarkably, these alterations overlapped substantially with changes in age-related neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Our work, combining multiple experimental and analytical methods, demonstrates the brain-wide impact of severe acute/subacute COVID-19, involving both cortical and subcortical regions, shedding light on potential therapeutic targets within pathways typically associated with pathological aging and neurodegeneration.
Collapse
Affiliation(s)
- Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yunfeng Li
- Translational Pathology Core Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liuliu Pan
- Technology Access Program, Bruker Spatial Technology, Seattle, WA, USA
- Duality Biologics, Shanghai, China
| | - Jihui Sha
- Proteome Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Bailey
- Proof of Principle Team, Translational Science, Bruker Spatial Technology, Seattle, WA, USA
| | - Emmanuelle Faure-Kumar
- Center for Systems Biomedicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Kazu Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Wohlschlegel
- Proteome Research Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chao Niu
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yoojin Lee
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chyuan Su
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Harding RJ, Xie Y, Caron NS, Findlay-Black H, Lyu C, Potluri N, Chandrasekaran R, Hayden MR, Leavitt BR, Langbehn DR, Southwell AL. Challenges and advances for huntingtin detection in cerebrospinal fluid: in support of relative quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614766. [PMID: 39386513 PMCID: PMC11463412 DOI: 10.1101/2024.09.25.614766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Huntington disease (HD) is a progressive and devastating neurodegenerative disease caused by expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene above a critical threshold of ~35 repeats resulting in expression of mutant HTT (mHTT). A promising treatment approach being tested in clinical trials is HTT lowering, which aims to reduce levels of the mHTT protein. Target engagement of these therapies in the brain are inferred using antibody-based assays to measure mHTT levels in the cerebrospinal fluid (CSF), which is frequently reported as absolute mHTT concentration based on a monomeric protein standard used to generate a standard curve. However, patient biofluids are a complex milieu of different mHTT protein species, suggesting that absolute quantitation is challenging, and a single, recombinant protein standard may not be sufficient to interpret assay signal as molar mHTT concentration. In this study, we used immunoprecipitation and flow cytometry (IP-FCM) to investigate different factors that influence mHTT detection assay signal. Our results show that HTT protein fragmentation, protein-protein interactions, affinity tag positioning, oligomerization and polyglutamine tract length affect assay signal intensity, indicating that absolute HTT quantitation in heterogeneous biological samples is not possible with current technologies using a single standard protein. We also explore the binding specificity of the MW1 anti-polyglutamine antibody, commonly used in these assays as a mHTT-selective reagent and demonstrate that mHTT binding is preferred but not specific. Furthermore, we find that MW1 depletion is not only incomplete, leaving residual mHTT, but also non-specific, resulting in pull down of some wildtype HTT protein. Based on these observations, we recommend that mHTT detection assays report only relative mHTT quantitation using normalized arbitrary units of assay signal intensity, rather than molar concentrations, in the assessment of central nervous system HTT lowering in ongoing clinical and preclinical studies, and that MW1-depletion not be used a method for quantifying wildtype HTT protein.
Collapse
Affiliation(s)
- Rachel J. Harding
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yuanyun Xie
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Nicholas S. Caron
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Hailey Findlay-Black
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Caroline Lyu
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nalini Potluri
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Renu Chandrasekaran
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Blair R. Leavitt
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Douglas R. Langbehn
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amber L. Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
13
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
14
|
Upadhayay S, Kumar P. Mitochondrial targeted antioxidants as potential therapy for huntington's disease. Pharmacol Rep 2024; 76:693-713. [PMID: 38982016 DOI: 10.1007/s43440-024-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion in CAG repeat on huntington (Htt) gene, leading to a degeneration of GABAergic medium spiny neurons (MSNs) in the striatum, resulting in the generation of reactive oxygen species, and decrease antioxidant activity. These pathophysiological alterations impair mitochondrial functions, leading to an increase in involuntary hyperkinetic movement. However, researchers investigated the neuroprotective effect of antioxidants using various animal models. Still, their impact is strictly limited to curtailing oxidative stress and increasing the antioxidant enzyme in the brain, which is less effective in HD. Meanwhile, researchers discovered Mitochondria-targeted antioxidants (MTAXs) that can improve mitochondrial functions and antioxidant activity through the modulation of mitochondrial signaling pathways, including peroxisome proliferator-activated receptor (PPAR)-coactivator 1 (PGC-1α), dynamin-related protein 1 (Drp1), mitochondrial fission protein 1 (Fis1), and Silent mating type information regulation 2 homolog 1 (SIRT-1), showing neuroprotective effects in HD. The present review discusses the clinical and preclinical studies that investigate the neuroprotective effect of MTAXs (SS31, XJB-5-131, MitoQ, bezafibrate, rosiglitazone, meldonium, coenzyme Q10, etc.) in HD. This brief literature review will help to understand the relevance of MTAXs in HD and enlighten the importance of MTAXs in future drug discovery and development.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
15
|
Yadav M, Harding RJ, Li T, Xu X, Gall-Duncan T, Khan M, Bardile CF, Sequiera GL, Duan S, Chandrasekaran R, Pan A, Bu J, Yamazaki T, Hirose T, Prinos P, Tippett L, Turner C, Curtis MA, Faull RL, Pouladi MA, Pearson CE, He HH, Arrowsmith CH. Huntingtin is an RNA binding protein and participates in NEAT1-mediated paraspeckles. SCIENCE ADVANCES 2024; 10:eado5264. [PMID: 39028820 PMCID: PMC11259171 DOI: 10.1126/sciadv.ado5264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Huntingtin protein, mutated in Huntington's disease, is implicated in nucleic acid-mediated processes, yet the evidence for direct huntingtin-nucleic acid interaction is limited. Here, we show wild-type and mutant huntingtin copurify with nucleic acids, primarily RNA, and interact directly with G-rich RNAs in in vitro assays. Huntingtin RNA-immunoprecipitation sequencing from patient-derived fibroblasts and neuronal progenitor cells expressing wild-type and mutant huntingtin revealed long noncoding RNA NEAT1 as a significantly enriched transcript. Altered NEAT1 levels were evident in Huntington's disease cells and postmortem brain tissues, and huntingtin knockdown decreased NEAT1 levels. Huntingtin colocalized with NEAT1 in paraspeckles, and we identified a high-affinity RNA motif preferred by huntingtin. This study highlights NEAT1 as a huntingtin interactor, demonstrating huntingtin's involvement in RNA-mediated functions and paraspeckle regulation.
Collapse
Affiliation(s)
- Manisha Yadav
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rachel J. Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Tiantian Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Terence Gall-Duncan
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mahreen Khan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Glen L. Sequiera
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Shili Duan
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Anni Pan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jiachuan Bu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A. Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L.M. Faull
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Mahmoud A. Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Christopher E. Pearson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Ichegiri A, Kodolikar K, Bagade V, Selukar M, Dey T. Mitochondria: A source of potential biomarkers for non-communicable diseases. Adv Clin Chem 2024; 121:334-365. [PMID: 38797544 DOI: 10.1016/bs.acc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.
Collapse
Affiliation(s)
- Amulya Ichegiri
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Kshitij Kodolikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vaibhavi Bagade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Mrunal Selukar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
17
|
Baev AY, Vinokurov AY, Potapova EV, Dunaev AV, Angelova PR, Abramov AY. Mitochondrial Permeability Transition, Cell Death and Neurodegeneration. Cells 2024; 13:648. [PMID: 38607087 PMCID: PMC11011324 DOI: 10.3390/cells13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.
Collapse
Affiliation(s)
- Artyom Y. Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan;
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Elena V. Potapova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Andrey V. Dunaev
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (A.Y.V.); (E.V.P.); (A.V.D.)
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| |
Collapse
|
18
|
Tong H, Yang T, Xu S, Li X, Liu L, Zhou G, Yang S, Yin S, Li XJ, Li S. Huntington's Disease: Complex Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:3845. [PMID: 38612657 PMCID: PMC11011923 DOI: 10.3390/ijms25073845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Huntington's disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there is currently no effective curative treatment for HD, significant progress has been made in developing various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold great promise for effective HD therapy. This review provides an overview of current HD treatments, discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in the field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (H.T.); (T.Y.); (S.X.); (X.L.); (L.L.); (G.Z.); (S.Y.); (S.Y.)
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (H.T.); (T.Y.); (S.X.); (X.L.); (L.L.); (G.Z.); (S.Y.); (S.Y.)
| |
Collapse
|
19
|
Scarian E, Viola C, Dragoni F, Di Gerlando R, Rizzo B, Diamanti L, Gagliardi S, Bordoni M, Pansarasa O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2698. [PMID: 38473944 DOI: 10.3390/ijms25052698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.
Collapse
Affiliation(s)
- Eveljn Scarian
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Camilla Viola
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
20
|
Kapil L, Kumar V, Kaur S, Sharma D, Singh C, Singh A. Role of Autophagy and Mitophagy in Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:367-383. [PMID: 36974405 DOI: 10.2174/1871527322666230327092855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.
Collapse
Affiliation(s)
- Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics (School of Pharmacy), H.N.B. Garhwal University, Srinagar - 246174, Garhwal (Uttarakhand), India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
21
|
He H, Zhang H, Chen H, He F, Yin F, Stauber T, Zou X, Peng J. Functional analysis of two SLC9A6 frameshift variants in lymphoblastoid cells from patients with Christianson syndrome. CNS Neurosci Ther 2023; 29:4059-4069. [PMID: 37381736 PMCID: PMC10651982 DOI: 10.1111/cns.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Christianson syndrome (CS) is caused by mutations in SLC9A6 and is characterized by global developmental delay, epilepsy, hyperkinesis, ataxia, microcephaly, and behavioral disorder. However, the molecular mechanism by which these SLC9A6 mutations cause CS in humans is not entirely understood, and there is no objective method to determine the pathogenicity of single SLC9A6 variants. METHODS Trio-based whole exome sequencing (WES) was carried out on two individuals with suspicion of CS. qRT-PCR, western blot analysis, filipin staining, lysosomal enzymatic assays, and electron microscopy examination, using EBV-LCLs established from the two patients, were performed. RESULTS Trio-based WES identified a hemizygous SLC9A6 c.1560dupT, p.T521Yfs*23 variant in proband 1 and a hemizygous SLC9A6 c.608delA, p.H203Lfs*10 variant in proband 2. Both children exhibited typical phenotypes associated with CS. Expression analysis in EBV-LCLs derived from the two patients showed a significant decrease in mRNA levels and no detectable normal NHE6 protein. EBV-LCLs showed a statistically significant increase in unesterified cholesterol in patient 1, but only non-significant increase in patient 2 when stained with filipin. Activities of lysosomal enzymes (β-hexosaminidase A, β-hexosaminidase A + B, β-galactosidase, galactocerebrosidase, arylsulfatase A) of EBV-LCLs did not significantly differ between the two patients and six controls. Importantly, by electron microscopy we detected an accumulation of lamellated membrane structures, deformed mitochondria, and lipid droplets in the patients' EBV-LCLs. CONCLUSIONS The SLC9A6 p.T521Yfs*23 and p.H203Lfs*10 variants in our patients result in loss of NHE6. Alterations of mitochondria and lipid metabolism may play a role in the pathogenesis of CS. Moreover, the combination of filipin staining with electron microscopy examination of patient lymphoblastoid cells can serve as a useful complementary diagnostic method for CS.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Chen
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangChina
| | - Fang He
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| | - Fei Yin
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| | - Tobias Stauber
- Department of Human Medicine and Institute for Molecular MedicineMSH Medical School HamburgHamburgGermany
| | - Xiaomin Zou
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| | - Jing Peng
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| |
Collapse
|
22
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
23
|
Clemons MR, Dimico RH, Black C, Schlussler MK, Camerino MJ, Aldinger-Gibson K, Bartle A, Reynolds N, Eisenbrandt D, Rogers A, Andrianu J, Bruce B, Elliot A, Breazeal T, Griffin H, Murphy MK, Fuerst PG. The rod synapse in aging wildtype and Dscaml1 mutant mice. PLoS One 2023; 18:e0290257. [PMID: 37910517 PMCID: PMC10619811 DOI: 10.1371/journal.pone.0290257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 11/03/2023] Open
Abstract
The retina is an intricately organized neural tissue built on cone and rod pathways for color and night vision. Genetic mutations that disrupt the proper function of the rod circuit contribute to blinding diseases including retinitis pigmentosa and congenital stationary night blindness (CSNB). Down Syndrome cell adhesion molecule like 1 (Dscaml1) is expressed by rods, rod bipolar cells (RBCs), and sub-populations of amacrine cells, and has been linked to a middle age onset of CSNB in humans. However, how Dscaml1 contributes to this visual deficit remains unexplored. Here, we probed Dscaml1's role in the maintenance of the rod-to-RBC synapse using a loss of function mouse model. We used immunohistochemistry to investigate the anatomical formation and maintenance of the rod-to-RBC synapse in the young, adult, and aging retina. We generated 3D reconstructions, using serial electron micrographs, of rod spherules and RBCs to measure the number of invaginating neurites, RBC dendritic tip number, and RBC mitochondrial morphology. We find that while rod-to-RBC synapses form and are maintained, similar to wildtype, that there is an increase in the number of invaginating neurites in rod spherules, a reduction in RBC dendritic tips, and reduced mitochondrial volume and complexity in the Dscaml1 mutant retina compared to controls. We also observed precocious sprouting of RBC dendrites into the outer nuclear layer (ONL) of the Dscaml1 mutant retina compared to controls. These results contribute to our knowledge of Dscaml1's role in rod circuit development and maintenance and give additional insight into possible genetic therapy targets for blinding diseases and disorders like CSNB.
Collapse
Affiliation(s)
- Mellisa R. Clemons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Ren H. Dimico
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cailyn Black
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Megan K. Schlussler
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Michael J. Camerino
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Kirah Aldinger-Gibson
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Amaris Bartle
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Nathan Reynolds
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Dylan Eisenbrandt
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Aspen Rogers
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - John Andrianu
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Bradley Bruce
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, United States of America
| | - Arthur Elliot
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Tom Breazeal
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Hannah Griffin
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Molly K. Murphy
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Natural Sciences, North Idaho College, Coeur d’Alene, Idaho, United States of America
| | - Peter G. Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, United States of America
- Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| |
Collapse
|
24
|
Hamzeh O, Rabiei F, Shakeri M, Parsian H, Saadat P, Rostami-Mansoor S. Mitochondrial dysfunction and inflammasome activation in neurodegenerative diseases: Mechanisms and therapeutic implications. Mitochondrion 2023; 73:S1567-7249(23)00087-9. [PMID: 39492438 DOI: 10.1016/j.mito.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/05/2024]
Abstract
Impaired mitochondrial function is crucial to the pathogenesis of several neurodegenerative diseases. It causes the release of mitochondrial DNA (mtDNA), mitochondrial reactive oxygen species (mtROS), ATP, and cardiolipin, which activate the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. NLRP3 inflammasome is an important innate immune system element contributing to neuroinflammation and neurodegeneration. Therefore, targeting the NLRP3 inflammasome has become an interesting therapeutic approach for treating neurodegenerative diseases. This review describes the role of mitochondrial abnormalities and over-activated inflammasomes in the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Friedrich ataxia (FRDA). We also discuss the therapeutic strategies focusing on signaling pathways associated with inflammasome activation, which potentially alleviate neurodegenerative symptoms and impede disease progression.
Collapse
Affiliation(s)
- Olia Hamzeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Shakeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
25
|
Merino M, González S, Tronch MC, Sánchez-Sánchez AV, Clares MP, García-España A, García-España E, Mullor JL. Small Molecule Pytren-4QMn Metal Complex Slows down Huntington's Disease Progression in Male zQ175 Transgenic Mice. Int J Mol Sci 2023; 24:15153. [PMID: 37894844 PMCID: PMC10607077 DOI: 10.3390/ijms242015153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder considered a rare disease with a prevalence of 5.7 per 100,000 people. It is caused by an autosomal dominant mutation consisting of expansions of trinucleotide repeats that translate into poly-glutamine enlarged mutant huntingtin proteins (mHTT), which are particularly deleterious in brain tissues. Since there is no cure for this progressive fatal disease, searches for new therapeutic approaches are much needed. The small molecule pytren-4QMn (4QMn), a highly water-soluble mimic of the enzyme superoxide dismutase, has shown in vivo beneficial anti-inflammatory activity in mice and was able to remove mHTT deposits in a C. elegans model of HD. In this study, we assessed 4QMn therapeutic potential in zQ175 neo-deleted knock-in mice, a model of HD that closely mimics the heterozygosity, genetic injury, and progressive nature of the human disease. We provide evidence that 4QMn has good acute and chronic tolerability, and can cross the blood-brain barrier, and in male, but not female, zQ175 mice moderately ameliorate HD-altered gene expression, mHtt aggregation, and HD disease phenotype. Our data highlight the importance of considering sex-specific differences when testing new therapies using animal models and postulate 4QMn as a potential novel type of small water-soluble metal complex that could be worth further investigating for its therapeutic potential in HD, as well as in other polyglutamine diseases.
Collapse
Affiliation(s)
- Marián Merino
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Sonia González
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Mª Carmen Tronch
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Ana Virginia Sánchez-Sánchez
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Mª Paz Clares
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain; (M.P.C.); (E.G.-E.)
| | - Antonio García-España
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Enrique García-España
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain; (M.P.C.); (E.G.-E.)
| | - José L. Mullor
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| |
Collapse
|
26
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
27
|
Xu C, Chen S, Chen X, Ho KH, Park C, Yoo H, Lee SH, Park H. Altered exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of cultured striatal neurons in a knock-in mouse model of Huntington's disease. Front Mol Neurosci 2023; 16:1175522. [PMID: 37664244 PMCID: PMC10470468 DOI: 10.3389/fnmol.2023.1175522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Huntington's disease (HD) is a progressive dominantly inherited neurodegenerative disease caused by the expansion of a cytosine-adenine-guanine (CAG) trinucleotide repeat in the huntingtin gene, which encodes the mutant huntingtin protein containing an expanded polyglutamine tract. One of neuropathologic hallmarks of HD is selective degeneration in the striatum. Mechanisms underlying selective neurodegeneration in the striatum of HD remain elusive. Neurodegeneration is suggested to be preceded by abnormal synaptic transmission at the early stage of HD. However, how mutant huntingtin protein affects synaptic vesicle exocytosis at single presynaptic terminals of HD striatal neurons is poorly understood. Here, we measured synaptic vesicle exocytosis at single presynaptic terminals of cultured striatal neurons (mainly inhibitory neurons) in a knock-in mouse model of HD (zQ175) during electrical field stimulation using real-time imaging of FM 1-43 (a lipophilic dye). We found a significant decrease in bouton density and exocytosis of synaptic vesicles at single presynaptic terminals in cultured striatal neurons. Real-time imaging of VGAT-CypHer5E (a pH sensitive dye conjugated to an antibody against vesicular GABA transporter (VGAT)) for inhibitory synaptic vesicles revealed a reduction in bouton density and exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of HD striatal neurons. Thus, our results suggest that the mutant huntingtin protein decreases bouton density and exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of striatal neurons, causing impaired inhibitory synaptic transmission, eventually leading to the neurodegeneration in the striatum of HD.
Collapse
Affiliation(s)
- Chen Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Ka Hei Ho
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Construction Robotics (InnoHK-HKCRC), Hong Kong Science Park, Sha Tin, Hong Kong SAR, China
| | - Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
28
|
Giménez-Bejarano A, Alegre-Cortés E, Yakhine-Diop SMS, Gómez-Suaga P, Fuentes JM. Mitochondrial Dysfunction in Repeat Expansion Diseases. Antioxidants (Basel) 2023; 12:1593. [PMID: 37627588 PMCID: PMC10451345 DOI: 10.3390/antiox12081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Repeat expansion diseases are a group of neuromuscular and neurodegenerative disorders characterized by expansions of several successive repeated DNA sequences. Currently, more than 50 repeat expansion diseases have been described. These disorders involve diverse pathogenic mechanisms, including loss-of-function mechanisms, toxicity associated with repeat RNA, or repeat-associated non-ATG (RAN) products, resulting in impairments of cellular processes and damaged organelles. Mitochondria, double membrane organelles, play a crucial role in cell energy production, metabolic processes, calcium regulation, redox balance, and apoptosis regulation. Its dysfunction has been implicated in the pathogenesis of repeat expansion diseases. In this review, we provide an overview of the signaling pathways or proteins involved in mitochondrial functioning described in these disorders. The focus of this review will be on the analysis of published data related to three representative repeat expansion diseases: Huntington's disease, C9orf72-frontotemporal dementia/amyotrophic lateral sclerosis, and myotonic dystrophy type 1. We will discuss the common effects observed in all three repeat expansion disorders and their differences. Additionally, we will address the current gaps in knowledge and propose possible new lines of research. Importantly, this group of disorders exhibit alterations in mitochondrial dynamics and biogenesis, with specific proteins involved in these processes having been identified. Understanding the underlying mechanisms of mitochondrial alterations in these disorders can potentially lead to the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Alberto Giménez-Bejarano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Sokhna M. S. Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Patricia Gómez-Suaga
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (A.G.-B.); (E.A.-C.); (S.M.S.Y.-D.); (P.G.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salus Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| |
Collapse
|
29
|
Jurcau A, Jurcau CM. Mitochondria in Huntington's disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen Res 2023; 18:1472-1477. [PMID: 36571344 PMCID: PMC10075114 DOI: 10.4103/1673-5374.360289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative stress and mitochondrial calcium dyshomeostasis in the pathogenesis of the disorder. Unfortunately, conventional mitochondrial-targeted molecules, such as cysteamine, creatine, coenzyme Q10, or triheptanoin, yielded negative or inconclusive results. However, future therapeutic strategies, aiming to restore mitochondrial biogenesis, improving the fission/fusion balance, and improving mitochondrial trafficking, could prove useful tools in improving the phenotype of Huntington's disease and, used in combination with genome-editing methods, could lead to a cure for the disease.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea; Neurology 3 Ward, Clinical Emergency Hospital, Oradea, Romania
| | | |
Collapse
|
30
|
Wang L, Liu F, Fang Y, Ma J, Wang J, Qu L, Yang Q, Wu W, Jin L, Sun D. Advances in Zebrafish as a Comprehensive Model of Mental Disorders. Depress Anxiety 2023; 2023:6663141. [PMID: 40224594 PMCID: PMC11921866 DOI: 10.1155/2023/6663141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 04/09/2025] Open
Abstract
As an important part in international disease, mental disorders seriously damage human health and social stability, which show the complex pathogenesis and increasing incidence year by year. In order to analyze the pathogenesis of mental disorders as soon as possible and to look for the targeted drug treatment for psychiatric diseases, a more reasonable animal model is imperious demands. Benefiting from its high homology with the human genome, its brain tissue is highly similar to that of humans, and it is easy to realize whole-body optical visualization and high-throughput screening; zebrafish stands out among many animal models of mental disorders. Here, valuable qualified zebrafish mental disorders models could be established through behavioral test and sociological analysis, which are simulated to humans, and combined with molecular analyses and other detection methods. This review focuses on the advances in the zebrafish model to simulate the human mental disorders; summarizes the various behavioral characterization means, the use of equipment, and operation principle; sums up the various mental disorder zebrafish model modeling methods; puts forward the current challenges and future development trend, which is to contribute the theoretical supports for the exploration of the mechanisms and treatment strategies of mental disorders.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiawei Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
- Wenzhou City and Wenzhou OuTai Medical Laboratory Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
31
|
Lam XJ, Xu B, Yeo PL, Cheah PS, Ling KH. Mitochondria dysfunction and bipolar disorder: From pathology to therapy. IBRO Neurosci Rep 2023; 14:407-418. [PMID: 37388495 PMCID: PMC10300489 DOI: 10.1016/j.ibneur.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/08/2023] [Indexed: 07/01/2023] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric diseases in which the impairment of mitochondrial functions has been closely connected or associated with the disease pathologies. Different lines of evidence of the close connection between mitochondria dysfunction and BD were discussed with a particular focus on (1) dysregulation of energy metabolism, (2) effect of genetic variants, (3) oxidative stress, cell death and apoptosis, (4) dysregulated calcium homeostasis and electrophysiology, and (5) current as well as potential treatments targeting at restoring mitochondrial functions. Currently, pharmacological interventions generally provide limited efficacy in preventing relapses or recovery from mania or depression episodes. Thus, understanding mitochondrial pathology in BD will lead to novel agents targeting mitochondrial dysfunction and formulating new effective therapy for BD.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, 132 Daxuecheng Outer Ring E Rd, Panyu Qu, Guangzhou Shi, Guangdong 511434, People's Republic of China
| | - Pei-Ling Yeo
- School of Postgraduate Studies and Research, International Medical University, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
32
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
33
|
Lim WQ, Michelle Luk KH, Lee KY, Nurul N, Loh SJ, Yeow ZX, Wong QX, Daniel Looi QH, Chong PP, How CW, Hamzah S, Foo JB. Small Extracellular Vesicles' miRNAs: Biomarkers and Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15041216. [PMID: 37111701 PMCID: PMC10143523 DOI: 10.3390/pharmaceutics15041216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.
Collapse
Affiliation(s)
- Wei Qing Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kie Hoon Michelle Luk
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Nasuha Nurul
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Sin Jade Loh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Zhen Xiong Yeow
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Xuan Wong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Hao Daniel Looi
- My CytoHealth Sdn. Bhd., Lab 6, DMC Level 2, Hive 5, Taman Teknologi MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
34
|
Dadashkhan S, Mirmotalebisohi SA, Poursheykhi H, Sameni M, Ghani S, Abbasi M, Kalantari S, Zali H. Deciphering crucial genes in multiple sclerosis pathogenesis and drug repurposing: A systems biology approach. J Proteomics 2023; 280:104890. [PMID: 36966969 DOI: 10.1016/j.jprot.2023.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/10/2023]
Abstract
This study employed systems biology and high-throughput technologies to analyze complex molecular components of MS pathophysiology, combining data from multiple omics sources to identify potential biomarkers and propose therapeutic targets and repurposed drugs for MS treatment. This study analyzed GEO microarray datasets and MS proteomics data using geWorkbench, CTD, and COREMINE to identify differentially expressed genes associated with MS disease. Protein-protein interaction networks were constructed using Cytoscape and its plugins, and functional enrichment analysis was performed to identify crucial molecules. A drug-gene interaction network was also created using DGIdb to propose medications. This study identified 592 differentially expressed genes (DEGs) associated with MS disease using GEO, proteomics, and text-mining datasets. 37 DEGs were found to be important by topographical network studies, and 6 were identified as the most significant for MS pathophysiology. Additionally, we proposed six drugs that target these key genes. Crucial molecules identified in this study were dysregulated in MS and likely play a key role in the disease mechanism, warranting further research. Additionally, we proposed repurposing certain FDA-approved drugs for MS treatment. Our in silico results were supported by previous experimental research on some of the target genes and drugs. SIGNIFICANCE: As the long-lasting investigations continue to discover new pathological territories in neurodegeneration, here we apply a systems biology approach to determine multiple sclerosis's molecular and pathophysiological origin and identify multiple sclerosis crucial genes that contribute to candidating new biomarkers and proposing new medications.
Collapse
Affiliation(s)
- Sadaf Dadashkhan
- Molecular Medicine Research Centre, Universitätsklinikum Jena, Jena, Germany; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Poursheykhi
- Department of New Scientist, Faculty of Medical Sciences, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sima Kalantari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Pereira CADS, Medaglia NDC, Ureshino RP, Bincoletto C, Antonioli M, Fimia GM, Piacentini M, Pereira GJDS, Erustes AG, Smaili SS. NAADP-Evoked Ca2+ Signaling Leads to Mutant Huntingtin Aggregation and Autophagy Impairment in Murine Astrocytes. Int J Mol Sci 2023; 24:ijms24065593. [PMID: 36982672 PMCID: PMC10058390 DOI: 10.3390/ijms24065593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disease characterized by mutations in the huntingtin gene (mHtt), causing an unstable repeat of the CAG trinucleotide, leading to abnormal long repeats of polyglutamine (poly-Q) in the N-terminal region of the huntingtin, which form abnormal conformations and aggregates. Alterations in Ca2+ signaling are involved in HD models and the accumulation of mutated huntingtin interferes with Ca2+ homeostasis. Lysosomes are intracellular Ca2+ storages that participate in endocytic and lysosomal degradation processes, including autophagy. Nicotinic acid adenine dinucleotide phosphate (NAADP) is an intracellular second messenger that promotes Ca2+ release from the endo-lysosomal system via Two-Pore Channels (TPCs) activation. Herein, we show the impact of lysosomal Ca2+ signals on mHtt aggregation and autophagy blockade in murine astrocytes overexpressing mHtt-Q74. We observed that mHtt-Q74 overexpression causes an increase in NAADP-evoked Ca2+ signals and mHtt aggregation, which was inhibited in the presence of Ned-19, a TPC antagonist, or BAPTA-AM, a Ca2+ chelator. Additionally, TPC2 silencing revert the mHtt aggregation. Furthermore, mHtt has been shown co-localized with TPC2 which may contribute to its effects on lysosomal homeostasis. Moreover, NAADP-mediated autophagy was also blocked since its function is dependent on lysosomal functionality. Taken together, our data show that increased levels of cytosolic Ca2+ mediated by NAADP causes mHtt aggregation. Additionally, mHtt co-localizes with the lysosomes, where it possibly affects organelle functions and impairs autophagy.
Collapse
Affiliation(s)
- Cássia Arruda de Souza Pereira
- Departament of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Natalia de Castro Medaglia
- Departament of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Rodrigo Portes Ureshino
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, Brazil
| | - Claudia Bincoletto
- Departament of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS “L. Spallanzani”, 00149 Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS “L. Spallanzani”, 00149 Rome, Italy
- Department of Molecular Medicine, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS “L. Spallanzani”, 00149 Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gustavo José da Silva Pereira
- Departament of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Adolfo Garcia Erustes
- Departament of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
- Correspondence: ; Tel.: +55-11-5576-4449
| | - Soraya Soubhi Smaili
- Departament of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| |
Collapse
|
36
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
37
|
Wu GH, Smith-Geater C, Galaz-Montoya JG, Gu Y, Gupte SR, Aviner R, Mitchell PG, Hsu J, Miramontes R, Wang KQ, Geller NR, Hou C, Danita C, Joubert LM, Schmid MF, Yeung S, Frydman J, Mobley W, Wu C, Thompson LM, Chiu W. CryoET reveals organelle phenotypes in huntington disease patient iPSC-derived and mouse primary neurons. Nat Commun 2023; 14:692. [PMID: 36754966 PMCID: PMC9908936 DOI: 10.1038/s41467-023-36096-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin gene, yielding a Huntingtin protein with an expanded polyglutamine tract. While experiments with patient-derived induced pluripotent stem cells (iPSCs) can help understand disease, defining pathological biomarkers remains challenging. Here, we used cryogenic electron tomography to visualize neurites in HD patient iPSC-derived neurons with varying CAG repeats, and primary cortical neurons from BACHD, deltaN17-BACHD, and wild-type mice. In HD models, we discovered sheet aggregates in double membrane-bound organelles, and mitochondria with distorted cristae and enlarged granules, likely mitochondrial RNA granules. We used artificial intelligence to quantify mitochondrial granules, and proteomics experiments reveal differential protein content in isolated HD mitochondria. Knockdown of Protein Inhibitor of Activated STAT1 ameliorated aberrant phenotypes in iPSC- and BACHD neurons. We show that integrated ultrastructural and proteomic approaches may uncover early HD phenotypes to accelerate diagnostics and the development of targeted therapeutics for HD.
Collapse
Affiliation(s)
- Gong-Her Wu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Charlene Smith-Geater
- Department of Psychiatry & Human Behavior University of California Irvine, Irvine, CA, 92697, USA
| | - Jesús G Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Yingli Gu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037-0662, USA
| | - Sanket R Gupte
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Ranen Aviner
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Patrick G Mitchell
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Joy Hsu
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Ricardo Miramontes
- Department of Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA
| | - Keona Q Wang
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 96267, USA
| | - Nicolette R Geller
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 96267, USA
| | - Cathy Hou
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Cristina Danita
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Lydia-Marie Joubert
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Serena Yeung
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - William Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037-0662, USA
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037-0662, USA
| | - Leslie M Thompson
- Department of Psychiatry & Human Behavior University of California Irvine, Irvine, CA, 92697, USA.
- Department of Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 96267, USA.
- Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 96267, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92617, USA.
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
38
|
Maddison DC, Mattedi F, Vagnoni A, Smith GA. Analysis of Mitochondrial Dynamics in Adult Drosophila Axons. Cold Spring Harb Protoc 2023; 2023:75-83. [PMID: 36180217 DOI: 10.1101/pdb.top107819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal survival depends on the generation of ATP from an ever-changing mitochondrial network. This requires a fine balance between the constant degradation of damaged mitochondria, biogenesis of new mitochondria, movement along microtubules, dynamic processes, and adequate functional capacity to meet firing demands. The distribution of mitochondria needs to be tightly controlled throughout the entire neuron, including its projections. Axons in particular can be enormous structures compared to the size of the cell soma, and how mitochondria are maintained in these compartments is poorly defined. Mitochondrial dysfunction in neurons is associated with aging and neurodegenerative diseases, with the axon being preferentially vulnerable to destruction. Drosophila offer a unique way to study these organelles in fully differentiated adult neurons in vivo. Here, we briefly review the regulation of neuronal mitochondria in health, aging, and disease and introduce two methodological approaches to study mitochondrial dynamics and transport in axons using the Drosophila wing system.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Gaynor Ann Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
39
|
Gharaba S, Paz O, Feld L, Abashidze A, Weinrab M, Muchtar N, Baransi A, Shalem A, Sprecher U, Wolf L, Wolfenson H, Weil M. Perturbed actin cap as a new personalized biomarker in primary fibroblasts of Huntington's disease patients. Front Cell Dev Biol 2023; 11:1013721. [PMID: 36743412 PMCID: PMC9889876 DOI: 10.3389/fcell.2023.1013721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Primary fibroblasts from patient's skin biopsies are directly isolated without any alteration in the genome, retaining in culture conditions their endogenous cellular characteristics and biochemical properties. The aim of this study was to identify a distinctive cell phenotype for potential drug evaluation in fibroblasts from Huntington's Disease (HD) patients, using image-based high content analysis. We show that HD fibroblasts have a distinctive nuclear morphology associated with a nuclear actin cap deficiency. This in turn affects cell motility in a similar manner to fibroblasts from Hutchinson-Gilford progeria syndrome (HGPS) patients used as known actin cap deficient cells. Moreover, treatment of the HD cells with either Latrunculin B, used to disrupt actin cap formation, or the antioxidant agent Mitoquinone, used to improve mitochondrial activity, show expected opposite effects on actin cap associated morphological features and cell motility. Deep data analysis allows strong cluster classification within HD cells according to patients' disease severity score which is distinct from HGPS and matching controls supporting that actin cap is a biomarker in HD patients' cells correlated with HD severity status that could be modulated by pharmacological agents as tool for personalized drug evaluation.
Collapse
Affiliation(s)
- Saja Gharaba
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Omri Paz
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Lea Feld
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Anastasia Abashidze
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, Israel
| | - Maydan Weinrab
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Noam Muchtar
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Adam Baransi
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Shalem
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Uri Sprecher
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Lior Wolf
- The Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Miguel Weil
- Laboratory for Personalized Medicine and Neurodegenerative Diseases, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Podvin S, Mosier C, Poon W, Wei E, Rossitto LA, Hook V. Dysregulation of Human Juvenile Huntington's Disease Brain Proteomes in Cortex and Putamen Involves Mitochondrial and Neuropeptide Systems. J Huntingtons Dis 2023; 12:315-333. [PMID: 38108356 DOI: 10.3233/jhd-230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat CAG expansions in the human HTT gene. Early onset juvenile HD (JHD) in children is the most severe form of the disease caused by high CAG repeat numbers of the HTT gene. OBJECTIVE To gain understanding of human HD mechanisms hypothesized to involve dysregulated proteomes of brain regions that regulate motor and cognitive functions, this study analyzed the proteomes of human JHD cortex and putamen brain regions compared to age-matched controls. METHODS JHD and age-matched control brain tissues were assessed for CAG repeat numbers of HTT by PCR. Human brain JHD brain cortex regions of BA4 and BA6 with the putamen region (n = 5) were analyzed by global proteomics, compared to age-matched controls (n = 7). Protein interaction pathways were assessed by gene ontology (GO), STRING-db, and KEGG bioinformatics. RESULTS JHD brain tissues were heterozygous for one mutant HTT allele containing 60 to 120 CAG repeats, and one normal HTT allele with 10 to 19 CAG repeats. Proteomics data for JHD brain regions showed dysregulated mitochondrial energy pathways and changes in synaptic systems including peptide neurotransmitters. JHD compared to control proteomes of cortex and putamen displayed (a) proteins present only in JHD, (b) proteins absent in JHD, and (c) proteins that were downregulated or upregulated. CONCLUSIONS Human JHD brain cortex and putamen regions display significant dysregulation of proteomes representing deficits in mitochondrial and synaptic neurotransmission functions. These findings advance understanding of JHD brain molecular mechanisms associated with HD disabilities.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leigh-Ana Rossitto
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
41
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
42
|
Mandik F, Kanana Y, Rody J, Misera S, Wilken B, Laabs von Holt BH, Klein C, Vos M. A new model for fatty acid hydroxylase-associated neurodegeneration reveals mitochondrial and autophagy abnormalities. Front Cell Dev Biol 2022; 10:1000553. [PMID: 36589738 PMCID: PMC9794614 DOI: 10.3389/fcell.2022.1000553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Fatty acid hydroxylase-associated neurodegeneration (FAHN) is a rare disease that exhibits brain modifications and motor dysfunctions in early childhood. The condition is caused by a homozygous or compound heterozygous mutation in fatty acid 2 hydroxylase (FA2H), whose encoded protein synthesizes 2-hydroxysphingolipids and 2-hydroxyglycosphingolipids and is therefore involved in sphingolipid metabolism. A few FAHN model organisms have already been established and give the first insight into symptomatic effects. However, they fail to establish the underlying cellular mechanism of FAHN so far. Drosophila is an excellent model for many neurodegenerative disorders; hence, here, we have characterized and validated the first FAHN Drosophila model. The investigation of loss of dfa2h lines revealed behavioral abnormalities, including motor impairment and flying disability, in addition to a shortened lifespan. Furthermore, alterations in mitochondrial dynamics, and autophagy were identified. Analyses of patient-derived fibroblasts, and rescue experiments with human FA2H, indicated that these defects are evolutionarily conserved. We thus present a FAHN Drosophila model organism that provides new insights into the cellular mechanism of FAHN.
Collapse
Affiliation(s)
- Frida Mandik
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Yuliia Kanana
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Jost Rody
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Sophie Misera
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Bernd Wilken
- Department of Neuropediatrics, Klinikum Kassel, Kassel, Germany
| | | | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Melissa Vos
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany,*Correspondence: Melissa Vos,
| |
Collapse
|
43
|
Kumar V, Singh C, Singh A. Neuroprotective Potential of Hydroalcoholic Extract of Centella asiatica Against 3-Nitropropionic Acid-Induced Huntington's Like Symptoms in Adult Zebrafish. Rejuvenation Res 2022; 25:260-274. [PMID: 36150031 DOI: 10.1089/rej.2022.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease. 3-Nitropropionic acid (3-NP) causes increased reactive oxygen species production and neuroinflammation. Centella asiatica (CA) is a strong antioxidant. The aim of this study is to investigate the effect of hydroalcoholic extract of C. asiatica (HA-CA) on 3-NP-induced HD in adult zebrafish. Adult zebrafish (∼5-6 months old) weighing 470 to 530 mg was used and treated with 3-NP (5 mg/kg intraperitoneal [i.p.]). The animals received HA-CA (80 and 100 mg/L) daily for up to 28 days in water. Tetrabenazine (3 mg/kg i.p.) was used as a standard drug. We have done an open field test (for locomotor activity), a novel tank diving test (for anxiety), and a light and dark tank test (for memory), followed by biochemical analysis (acetyl-cholinesterase [AchEs], nitrite, lipid peroxidation [LPO], and glutathione [GSH]) and histopathology to further confirm memory dysfunctions. 3-NP-treated zebrafish exhibit reductions in body weight, progressive neuronal damage, cognition, and locomotor activity. The HA-CA group significantly reduced the 3-NP-induced increase in LPO, AchEs, and nitrite levels while decreasing GSH levels. Oral administration of HA-CA (80 or 100 mg/L) significantly reduces 3-NP-induced changes in body weight and behaviors, in addition to neuroinflammation in the brain by lowering tumor necrosis factor-α and interleukin-1β levels. Moreover, HA-CA significantly decreases the 3-NP-induced neuronal damage in the brain. HA-CA ameliorates neurotoxicity and neurobehavioral deficits in 3-NP-induced HD-like symptoms in adult zebrafish.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| |
Collapse
|
44
|
Coenzyme Q10: Role in Less Common Age-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11112293. [DOI: 10.3390/antiox11112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In this article we have reviewed the potential role of coenzyme Q10 (CoQ10) in the pathogenesis and treatment of a number of less common age-related disorders, for many of which effective therapies are not currently available. For most of these disorders, mitochondrial dysfunction, oxidative stress and inflammation have been implicated in the disease process, providing a rationale for the potential therapeutic use of CoQ10, because of its key roles in mitochondrial function, as an antioxidant, and as an anti-inflammatory agent. Disorders reviewed in the article include multi system atrophy, progressive supranuclear palsy, sporadic adult onset ataxia, and pulmonary fibrosis, together with late onset versions of Huntington’s disease, Alexander disease, lupus, anti-phospholipid syndrome, lysosomal storage disorders, fibromyalgia, Machado-Joseph disease, acyl-CoA dehydrogenase deficiency, and Leber’s optic neuropathy.
Collapse
|
45
|
Bains M, Kaur J, Akhtar A, Kuhad A, Sah SP. Anti-inflammatory effects of ellagic acid and vanillic acid against quinolinic acid-induced rat model of Huntington's disease by targeting IKK-NF-κB pathway. Eur J Pharmacol 2022; 934:175316. [DOI: 10.1016/j.ejphar.2022.175316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
|
46
|
Yefimova MG. Myelinosome organelles in pathological retinas: ubiquitous presence and dual role in ocular proteostasis maintenance. Neural Regen Res 2022; 18:1009-1016. [PMID: 36254982 PMCID: PMC9827766 DOI: 10.4103/1673-5374.355753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The timely and efficient elimination of aberrant proteins and damaged organelles, formed in response to various genetic and environmental stressors, is a vital need for all cells of the body. Recent lines of evidence point out several non-classical strategies employed by ocular tissues to cope with aberrant constituents generated in the retina and in the retinal pigmented epithelium cells exposed to various stressors. Along with conventional strategies relying upon the intracellular degradation of aberrant constituents through ubiquitin-proteasome and/or lysosome-dependent autophagy proteolysis, two non-conventional mechanisms also contribute to proteostasis maintenance in ocular tissues. An exosome-mediated clearing and a myelinosome-driven secretion mechanism do not require intracellular degradation but provide the export of aberrant constituents and "waste proteins" outside of the cells. The current review is centered on the non-degradative myelinosome-driven secretion mechanism, which operates in the retina of transgenic Huntington's disease R6/1 model mice. Myelinosome-driven secretion is supported by rare organelles myelinosomes that are detected not only in degenerative Huntington's disease R6/1 retina but also in various pathological states of the retina and of the retinal pigmented epithelium. The intra-retinal traffic and inter-cellular exchange of myelinosomes was discussed in the context of a dual role of the myelinosome-driven secretion mechanism for proteostasis maintenance in different ocular compartments. Special focus was made on the interplay between degradative and non-degradative strategies in ocular pathophysiology, to delineate potential therapeutic approaches to counteract several vision diseases.
Collapse
Affiliation(s)
- Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg, Russia,Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers, France,Correspondence to: Marina G. Yefimova, .
| |
Collapse
|
47
|
Bild W, Vasincu A, Rusu RN, Ababei DC, Stana AB, Stanciu GD, Savu B, Bild V. Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules 2022; 12:1429. [PMID: 36291638 PMCID: PMC9599929 DOI: 10.3390/biom12101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Brain neurodegenerative diseases (BND) are debilitating conditions that are especially characteristic of a certain period of life and considered major threats to human health. Current treatments are limited, meaning that there is a challenge in developing new options that can efficiently tackle the different components and pathophysiological processes of these conditions. The renin-angiotensin-aldosterone system (RAS) is an endocrine axis with important peripheral physiological functions such as blood pressure and cardiovascular homeostasis, as well as water and sodium balance and systemic vascular resistance-functions which are well-documented. However, recent work has highlighted the paracrine and autocrine functions of RAS in different tissues, including the central nervous system (CNS). It is known that RAS hyperactivation has pro-inflammatory and pro-oxidant effects, thus suggesting that its pharmacological modulation could be used in the management of these conditions. The present paper underlines the involvement of RAS and its components in the pathophysiology of BNDs such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), Huntington's disease (HD), motor neuron disease (MND), and prion disease (PRD), as well as the identification of drugs and pharmacologically active substances that act upon RAS, which could alleviate their symptomatology or evolution, and thus, contribute to novel therapeutic approaches.
Collapse
Affiliation(s)
- Walther Bild
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Aurelian Bogdan Stana
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Bogdan Savu
- Department of Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Bild
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
48
|
Beatriz M, Vilaça R, Anjo SI, Manadas B, Januário C, Rego AC, Lopes C. Defective mitochondria-lysosomal axis enhances the release of extracellular vesicles containing mitochondrial DNA and proteins in Huntington's disease. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e65. [PMID: 38939215 PMCID: PMC11080813 DOI: 10.1002/jex2.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 06/29/2024]
Abstract
Mitochondrial and autophagy dysfunction are mechanisms proposed to be involved in the pathogenesis of several neurodegenerative diseases. Huntington's disease (HD) is a progressive neurodegenerative disorder associated with mutant Huntingtin-induced abnormalities in neuronal mitochondrial dynamics and quality control. Former studies suggest that the removal of defective mitochondria may be compromised in HD. Mitochondrial quality control (MQC) is a complex, well-orchestrated pathway that can be compromised through mitophagy dysregulation or impairment in the mitochondria-lysosomal axis. Another mitochondrial stress response is the generation of mitochondrial-derived vesicles that fuse with the endolysosomal system and form multivesicular bodies that are extruded from cells as extracellular vesicles (EVs). In this work, we aimed to study the presence of mitochondrial components in human EVs and the relation to the dysfunction of both mitochondria and the autophagy pathway. We comprehensively characterized the mitochondrial and autophagy alterations in premanifest and manifest HD carriers and performed a proteomic and genomic EVs profile. We observed that manifest HD patients exhibit mitochondrial and autophagy impairment associated with enhanced EVs release. Furthermore, we detected mitochondrial DNA and proteins in EVs released by HD cells and in neuronal-derived EVs including VDAC-1 and alpha and beta subunits of ATP synthase F1. HD-extracellular vesicles transport higher levels of mitochondrial genetic material in manifest HD patients, suggesting an alternative pathway for the secretion of reactive mitochondrial components. This study provides a novel framework connecting EVs enhanced release of mitochondrial components to mitochondrial and lysosomal dysfunction in HD.
Collapse
Affiliation(s)
- Margarida Beatriz
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- IIIUC‐Institute for Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
| | - Rita Vilaça
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- IIIUC‐Institute for Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
| | - Sandra I. Anjo
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Multidisciplinary Institute of AgeingUniversity of CoimbraCoimbraPortugal
| | - Bruno Manadas
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
| | | | - A. Cristina Rego
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- FMUC‐Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Carla Lopes
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- IIIUC‐Institute for Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
49
|
Pradhan SS, Thota SM, Rajaratnam S, Bhagavatham SKS, Pulukool SK, Rathnakumar S, Phalguna KS, Dandamudi RB, Pargaonkar A, Joseph P, Joshy EV, Sivaramakrishnan V. Integrated multi-omics analysis of Huntington disease identifies pathways that modulate protein aggregation. Dis Model Mech 2022; 15:dmm049492. [PMID: 36052548 PMCID: PMC10655815 DOI: 10.1242/dmm.049492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease associated with polyglutamine expansion in the protein huntingtin (HTT). Although the length of the polyglutamine repeat correlates with age at disease onset and severity, psychological, cognitive and behavioral complications point to the existence of disease modifiers. Mitochondrial dysfunction and metabolic deregulation are both associated with the HD but, despite multi-omics characterization of patients and model systems, their mechanisms have remained elusive. Systems analysis of multi-omics data and its validation by using a yeast model could help to elucidate pathways that modulate protein aggregation. Metabolomics analysis of HD patients and of a yeast model of HD was, therefore, carried out. Our analysis showed a considerable overlap of deregulated metabolic pathways. Further, the multi-omics analysis showed deregulated pathways common in human, mice and yeast model systems, and those that are unique to them. The deregulated pathways include metabolic pathways of various amino acids, glutathione metabolism, longevity, autophagy and mitophagy. The addition of certain metabolites as well as gene knockouts targeting the deregulated metabolic and autophagy pathways in the yeast model system showed that these pathways do modulate protein aggregation. Taken together, our results showed that the modulation of deregulated pathways influences protein aggregation in HD, and has implications for progression and prognosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sai S. Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai M. Thota
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai K. S. Bhagavatham
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sujith K. Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Kanikaram S. Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Rajesh B. Dandamudi
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515 134, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - Prasanth Joseph
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - E. V. Joshy
- Department of Neurology, Sri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bengaluru, Karnataka 560066, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| |
Collapse
|
50
|
de Oliveira Furlam T, Roque IG, Machado da Silva EW, Vianna PP, Costa Valadão PA, Guatimosim C, Teixeira AL, de Miranda AS. Inflammasome activation and assembly in Huntington's disease. Mol Immunol 2022; 151:134-142. [PMID: 36126501 DOI: 10.1016/j.molimm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Inflammasomes are multiprotein complexes capable of sensing pathogen-associated and damage-associated molecular patterns, triggering innate immune pathways. Activation of inflammasomes results in a pro-inflammatory cascade involving, among other molecules, caspases and interleukins. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3) is the most studied inflammasome complex, and its activation results in caspase-1 mediated cleavage of the pro-interleukins IL-1β and IL-18 into their mature forms, also inducing a gasdermin D mediated form of pro-inflammatory cell death, i.e. pyroptosis. Accumulating evidence has implicated NLRP3 inflammasome complex in neurodegenerative diseases. The evidence in HD is still scant and mostly derived from pre-clinical studies. This review aims to present the available evidence on NLRP3 inflammasome activation in HD and to discuss whether targeting this innate immune system complex might be a promising therapeutic strategy to alleviate its symptoms.
Collapse
Affiliation(s)
| | | | | | - Pedro Parenti Vianna
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Cristina Guatimosim
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Faculdade Santa Casa BH, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|