1
|
Moawad AW, Janas A, Baid U, Ramakrishnan D, Saluja R, Ashraf N, Maleki N, Jekel L, Yordanov N, Fehringer P, Gkampenis A, Amiruddin R, Manteghinejad A, Adewole M, Albrecht J, Anazodo U, Aneja S, Anwar SM, Bergquist T, Chiang V, Chung V, Conte GM, Dako F, Eddy J, Ezhov I, Khalili N, Farahani K, Iglesias JE, Jiang Z, Johanson E, Kazerooni AF, Kofler F, Krantchev K, LaBella D, Van Leemput K, Li HB, Linguraru MG, Liu X, Meier Z, Menze BH, Moy H, Osenberg K, Piraud M, Reitman Z, Shinohara RT, Wang C, Wiestler B, Wiggins W, Shafique U, Willms K, Avesta A, Bousabarah K, Chakrabarty S, Gennaro N, Holler W, Kaur M, LaMontagne P, Lin M, Lost J, Marcus DS, Maresca R, Merkaj S, Cassinelli Pedersen G, von Reppert M, Sotiras A, Teytelboym O, Tillmans N, Westerhoff M, Youssef A, Godfrey D, Floyd S, Rauschecker A, Villanueva-Meyer J, Pflüger I, Cho J, Bendszus M, Brugnara G, Cramer J, Perez-Carillo GJG, Johnson DR, Kam A, Kwan BYM, Lai L, Lall NU, Memon F, Krycia M, Patro SN, Petrovic B, So TY, Thompson G, Wu L, Schrickel EB, Bansal A, Barkhof F, Besada C, Chu S, Druzgal J, Dusoi A, Farage L, Feltrin F, et alMoawad AW, Janas A, Baid U, Ramakrishnan D, Saluja R, Ashraf N, Maleki N, Jekel L, Yordanov N, Fehringer P, Gkampenis A, Amiruddin R, Manteghinejad A, Adewole M, Albrecht J, Anazodo U, Aneja S, Anwar SM, Bergquist T, Chiang V, Chung V, Conte GM, Dako F, Eddy J, Ezhov I, Khalili N, Farahani K, Iglesias JE, Jiang Z, Johanson E, Kazerooni AF, Kofler F, Krantchev K, LaBella D, Van Leemput K, Li HB, Linguraru MG, Liu X, Meier Z, Menze BH, Moy H, Osenberg K, Piraud M, Reitman Z, Shinohara RT, Wang C, Wiestler B, Wiggins W, Shafique U, Willms K, Avesta A, Bousabarah K, Chakrabarty S, Gennaro N, Holler W, Kaur M, LaMontagne P, Lin M, Lost J, Marcus DS, Maresca R, Merkaj S, Cassinelli Pedersen G, von Reppert M, Sotiras A, Teytelboym O, Tillmans N, Westerhoff M, Youssef A, Godfrey D, Floyd S, Rauschecker A, Villanueva-Meyer J, Pflüger I, Cho J, Bendszus M, Brugnara G, Cramer J, Perez-Carillo GJG, Johnson DR, Kam A, Kwan BYM, Lai L, Lall NU, Memon F, Krycia M, Patro SN, Petrovic B, So TY, Thompson G, Wu L, Schrickel EB, Bansal A, Barkhof F, Besada C, Chu S, Druzgal J, Dusoi A, Farage L, Feltrin F, Fong A, Fung SH, Gray RI, Ikuta I, Iv M, Postma AA, Mahajan A, Joyner D, Krumpelman C, Letourneau-Guillon L, Lincoln CM, Maros ME, Miller E, Morón FEA, Nimchinsky EA, Ozsarlak O, Patel U, Rohatgi S, Saha A, Sayah A, Schwartz ED, Shih R, Shiroishi MS, Small JE, Tanwar M, Valerie J, Weinberg BD, White ML, Young R, Zohrabian VM, Azizova A, Brüßeler MMT, Ghonim M, Ghonim M, Okar A, Pasquini L, Sharifi Y, Singh G, Sollmann N, Soumala T, Taherzadeh M, Vollmuth P, Foltyn-Dumitru M, Malhotra A, Abayazeed AH, Dellepiane F, Lohmann P, Pérez-García VM, Elhalawani H, de Verdier MC, Al-Rubaiey S, Armindo RD, Ashraf K, Asla MM, Badawy M, Bisschop J, Lomer NB, Bukatz J, Chen J, Cimflova P, Corr F, Crawley A, Deptula L, Elakhdar T, Shawali IH, Faghani S, Frick A, Gulati V, Haider MA, Hierro F, Dahl RH, Jacobs SM, Hsieh KCJ, Kandemirli SG, Kersting K, Kida L, Kollia S, Koukoulithras I, Li X, Abouelatta A, Mansour A, Maria-Zamfirescu RC, Marsiglia M, Mateo-Camacho YS, McArthur M, McDonnell O, McHugh M, Moassefi M, Morsi SM, Munteanu A, Nandolia KK, Naqvi SR, Nikanpour Y, Alnoury M, Nouh AMA, Pappafava F, Patel MD, Petrucci S, Rawie E, Raymond S, Roohani B, Sabouhi S, Sanchez-Garcia LM, Shaked Z, Suthar PP, Altes T, Isufi E, Dhemesh Y, Gass J, Thacker J, Tarabishy AR, Turner B, Vacca S, Vilanilam GK, Warren D, Weiss D, Worede F, Yousry S, Lerebo W, Aristizabal A, Karargyris A, Kassem H, Pati S, Sheller M, Link KEE, Calabrese E, Tahon NH, Nada A, Velichko YS, Bakas S, Rudie JD, Aboian M. The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. ARXIV 2024:arXiv:2306.00838v3. [PMID: 37396600 PMCID: PMC10312806] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms. Untreated brain metastases on standard anatomic MRI sequences (T1, T2, FLAIR, T1PG) from eight contributed international datasets were annotated in stepwise method: published UNET algorithms, student, neuroradiologist, final approver neuroradiologist. Segmentations were ranked based on lesion-wise Dice and Hausdorff distance (HD95) scores. False positives (FP) and false negatives (FN) were rigorously penalized, receiving a score of 0 for Dice and a fixed penalty of 374 for HD95. The mean scores for the teams were calculated. Eight datasets comprising 1303 studies were annotated, with 402 studies (3076 lesions) released on Synapse as publicly available datasets to challenge competitors. Additionally, 31 studies (139 lesions) were held out for validation, and 59 studies (218 lesions) were used for testing. Segmentation accuracy was measured as rank across subjects, with the winning team achieving a LesionWise mean score of 7.9. The Dice score for the winning team was 0.65 ± 0.25. Common errors among the leading teams included false negatives for small lesions and misregistration of masks in space. The Dice scores and lesion detection rates of all algorithms diminished with decreasing tumor size, particularly for tumors smaller than 100 mm3. In conclusion, algorithms for BM segmentation require further refinement to balance high sensitivity in lesion detection with the minimization of false positives and negatives. The BraTS-METS 2023 challenge successfully curated well-annotated, diverse datasets and identified common errors, facilitating the translation of BM segmentation across varied clinical environments and providing personalized volumetric reports to patients undergoing BM treatment.
Collapse
Affiliation(s)
| | - Anastasia Janas
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ujjwal Baid
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Divya Ramakrishnan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Rachit Saluja
- Department of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Nader Ashraf
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nazanin Maleki
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leon Jekel
- DKFZ Division of Translational Neurooncology at the WTZ, German Cancer Consortium, DKTK Partner Site, University Hospital Essen, Essen, Germany
| | - Nikolay Yordanov
- Faculty of Medicine, Medical University - Sofia, Sofia, Bulgaria
| | - Pascal Fehringer
- Faculty of Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Raisa Amiruddin
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Maruf Adewole
- Medical Artificial Intelligence Lab, Crestview Radiology, Lagos, Nigeria
| | | | - Udunna Anazodo
- Medical Artificial Intelligence Lab, Crestview Radiology, Lagos, Nigeria
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sanjay Aneja
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Syed Muhammad Anwar
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, D.C., USA
| | | | - Veronica Chiang
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Farouk Dako
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | | - Ivan Ezhov
- Department of Informatics, Technical University Munich, Germany
| | - Nastaran Khalili
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keyvan Farahani
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juan Eugenio Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Zhifan Jiang
- Children’s National Hospital, Washington, D.C., USA
| | - Elaine Johanson
- PrecisionFDA, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Florian Kofler
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Kiril Krantchev
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Dominic LaBella
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Koen Van Leemput
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Hongwei Bran Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Marius George Linguraru
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, D.C., USA
- Departments of Radiology and Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Xinyang Liu
- Children’s National Hospital, Washington, D.C., USA
| | | | - Bjoern H Menze
- Biomedical Image Analysis & Machine Learning, Department of Quantitative Biomedicine, University of Zurich, Switzerland
| | - Harrison Moy
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Klara Osenberg
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Zachary Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Russell Takeshi Shinohara
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | | | - Umber Shafique
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Klara Willms
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Arman Avesta
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology, Neuroradiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Satrajit Chakrabarty
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
- GE HealthCare, San Ramon, CA, USA
| | - Nicolo Gennaro
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Jan Lost
- Department of Neurosurgery, Heinrich-Heine University, Moorenstrasse 5, Dusseldorf, Germany
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Maresca
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | - Aristeidis Sotiras
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Niklas Tillmans
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | | | | | - Devon Godfrey
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Scott Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Andreas Rauschecker
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Irada Pflüger
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jaeyoung Cho
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Justin Cramer
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - Anthony Kam
- Loyola University Medical Center, Hines, IL, USA
| | | | - Lillian Lai
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Fatima Memon
- Carolina Radiology Associates, Myrtle Beach, SC, USA
- McLeod Regional Medical Center, Florence, SC, USA
- Medical University of South Carolina, Charleston, SC, USA
| | - Mark Krycia
- Carolina Radiology Associates, Myrtle Beach, SC, USA
| | | | | | - Tiffany Y. So
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Clinical Neurosciences, NHS Lothian, Edinburgh, United Kingdom
| | - Lei Wu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - E. Brooke Schrickel
- Department of Radiology, Ohio State University College of Medicine, Columbus, OH, USA
| | - Anu Bansal
- Albert Einstein Medical Center, Hartford, CT, USA
| | - Frederik Barkhof
- Amsterdam UMC, location Vrije Universiteir, Netherlands
- University College London, United Kingdom
| | | | - Sammy Chu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | | | - Luciano Farage
- Centro Universitario Euro-Americana (UNIEURO), Brasília, DF, Brazil
| | - Fabricio Feltrin
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amy Fong
- Southern District Health Board, Dunedin, New Zealand
| | - Steve H. Fung
- Department of Radiology, Houston Methodist, Houston, TX, USA
| | - R. Ian Gray
- University of Tennessee Medical Center, Knoxville, TN, USA
| | - Ichiro Ikuta
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Michael Iv
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Alida A. Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Amit Mahajan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - David Joyner
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Chase Krumpelman
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - Christie M Lincoln
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mate E. Maros
- Departments of Neuroradiology & Biomedical Informatics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elka Miller
- Department of Diagnostic and Interventional Radiology, SickKids Hospital, University of Toronto, Canada
| | | | | | - Ozkan Ozsarlak
- Department of Radiology, AZ Monica, Antwerp Area, Belgium
| | - Uresh Patel
- Medicolegal Imaging Experts LLC, Mercer Island, WA, USA
| | - Saurabh Rohatgi
- Department of Radiology, Neuroradiology, Massachusetts General Hospital, Boston, MA, USA
| | - Atin Saha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Anousheh Sayah
- MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Eric D. Schwartz
- Department of Radiology, St.Elizabeth’s Medical Center, Boston, MA, USA
- Department of Radiology, Tufts University School of Medicine, Boston, MA, USA
| | - Robert Shih
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - Juan E. Small
- Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Manoj Tanwar
- Department of Radiology, University of Alabama, Birmingham, AL, USA
| | - Jewels Valerie
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brent D. Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | | - Robert Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vahe M. Zohrabian
- Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Hempstead, New York, NY, USA
| | - Aynur Azizova
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | | | - Mohanad Ghonim
- Department of Radiology, Ain Shams University, Cairo, Egypt
| | - Mohamed Ghonim
- Department of Radiology, Ain Shams University, Cairo, Egypt
| | - Abdullah Okar
- University of Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Pasquini
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasaman Sharifi
- Department of Radiology, Iran University of Medical Sciences, Tehran, Iran
| | - Gagandeep Singh
- Columbia University Irving Medical Center, New York, NY, USA
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Francesco Dellepiane
- Functional and Interventional Neuroradiology Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Víctor M. Pérez-García
- Mathematical Oncology Laboratory & Department of Mathematics, University of Castilla-La Mancha, Spain
| | - Hesham Elhalawani
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Correia de Verdier
- Department of Surgical Sciences, Section of Neuroradiology, Uppsala University, Sweden
- Department of Radiology, University of California San Diego, CA, USA
| | - Sanaria Al-Rubaiey
- Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Rui Duarte Armindo
- Department of Neuroradiology, Western Lisbon Hospital Centre (CHLO), Portugal
| | | | | | - Mohamed Badawy
- Diagnostic Radiology Department, Wayne State University, Detroit, MI
| | - Jeroen Bisschop
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Jan Bukatz
- Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Jim Chen
- Department of Radiology/Division of Neuroradiology, San Diego Veterans Administration Medical Center/UC San Diego Health System, San Diego, CA, USA
| | - Petra Cimflova
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Felix Corr
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, Kalkara, Malta
| | | | - Lisa Deptula
- Ross University School of Medicine, Bridgetown, Barbados
| | | | | | | | - Alexandra Frick
- Department of Neurosurgery, Vivantes Klinikum Neukölln, Berlin, Germany
| | | | | | - Fátima Hierro
- Neuroradiology Department, Pedro Hispano Hospital, Matosinhos, Portugal
| | - Rasmus Holmboe Dahl
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | | | - Sedat G. Kandemirli
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Katharina Kersting
- Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Laura Kida
- Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Sofia Kollia
- National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Xiao Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | | | | - Ruxandra-Catrinel Maria-Zamfirescu
- Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Marcela Marsiglia
- Department of Radiology, Brigham and Women’s Hospital, Massachusetts General Hospital, Boston, MA, USA
| | | | - Mark McArthur
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Maire McHugh
- Department of Radiology Manchester NHS Foundation Trust, North West School of Radiology, Manchester, United Kingdom
| | - Mana Moassefi
- Artificial Intelligence Lab, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Khanak K. Nandolia
- Department of Radiodiagnosis, All India Institute of Medical Sciences Rishikesh, India
| | - Syed Raza Naqvi
- Windsor Regional Hospital, Western University, Ontario, Canada
| | - Yalda Nikanpour
- Artificial Intelligence & Informatics, Mayo Clinic, Rochester, MN, USA
| | - Mostafa Alnoury
- Department of Radiology, University of Pennsylvania, PA, USA
| | | | - Francesca Pappafava
- Department of Medicine and Surgery, Università degli Studi di Perugia, Italy
| | - Markand D. Patel
- Department of Neuroradiology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Samantha Petrucci
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Eric Rawie
- Department of Radiology, Michigan Medicine, Ann Arbor, MI, USA
| | - Scott Raymond
- Department of Radiology, University of Vermont Medical Center, Burlington, VT, USA
| | - Borna Roohani
- University of Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sadeq Sabouhi
- Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zoe Shaked
- Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | | | - Talissa Altes
- Radiology Department, University of Missouri, Columbia, MO, USA
| | - Edvin Isufi
- Radiology Department, University of Missouri, Columbia, MO, USA
| | - Yaseen Dhemesh
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jaime Gass
- Radiology Department, University of Missouri, Columbia, MO, USA
| | | | - Abdul Rahman Tarabishy
- Department of NeuroRadiology, Rockefeller Neuroscience Institute, West Virginia University. Morgantown, WV, USA
| | | | - Sebastiano Vacca
- University of Cagliari, School of Medicine and Surgery, Cagliari, Italy
| | | | - Daniel Warren
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - David Weiss
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Fikadu Worede
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Wondwossen Lerebo
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | - Sarthak Pati
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, USA
- MLCommons, San Francisco, CA, USA
- Center For Federated Learning in Medicine, Indiana University, Indianapolis, IN, USA
| | - Micah Sheller
- MLCommons, San Francisco, CA, USA
- Intel Corporation, Hillsboro, OR, USA
| | | | - Evan Calabrese
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | | - Ayman Nada
- Radiology Department, University of Missouri, Columbia, MO, USA
| | - Yuri S. Velichko
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
- Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jeffrey D. Rudie
- Department of Radiology, University of California San Diego, CA, USA
- Department of Radiology, Scripps Clinic Medical Group, CA, USA
| | - Mariam Aboian
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Li HB, Conte GM, Hu Q, Anwar SM, Kofler F, Ezhov I, van Leemput K, Piraud M, Diaz M, Cole B, Calabrese E, Rudie J, Meissen F, Adewole M, Janas A, Kazerooni AF, LaBella D, Moawad AW, Farahani K, Eddy J, Bergquist T, Chung V, Shinohara RT, Dako F, Wiggins W, Reitman Z, Wang C, Liu X, Jiang Z, Familiar A, Johanson E, Meier Z, Davatzikos C, Freymann J, Kirby J, Bilello M, Fathallah-Shaykh HM, Wiest R, Kirschke J, Colen RR, Kotrotsou A, Lamontagne P, Marcus D, Milchenko M, Nazeri A, Weber MA, Mahajan A, Mohan S, Mongan J, Hess C, Cha S, Villanueva-Meyer J, Colak E, Crivellaro P, Jakab A, Albrecht J, Anazodo U, Aboian M, Yu T, Chung V, Bergquist T, Eddy J, Albrecht J, Baid U, Bakas S, Linguraru MG, Menze B, Iglesias JE, Wiestler B. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). ARXIV 2024:arXiv:2305.09011v6. [PMID: 37608932 PMCID: PMC10441440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.
Collapse
Affiliation(s)
- Hongwei Bran Li
- University of Zurich, Switzerland
- Department of Informatics, Technical University Munich, Germany
- Klinikum rechts der Isar, Technical University of Munich, Germany
| | | | - Qingqiao Hu
- University of Zurich, Switzerland
- Department of Informatics, Technical University Munich, Germany
- Klinikum rechts der Isar, Technical University of Munich, Germany
- Mayo Clinic, Rochester, USA
- Helmholtz AI, Helmholtz Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Germany
- Children's National Hospital, Washington DC, USA and George Washington University, USA
- Finnish Center for Artificial Intelligence, Finland
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, USA
- Medical Artificial Intelligence (MAI) Lab, Crestview Radiology, Lagos, Nigeria
- Children's National Hospital, Washington DC, USA
- George Washington University, Washington DC, USA
- Center for AI and Data Science for Integrated Diagnostics (AI2D) I& Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Yale University, New Haven, CT, USA
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Duke University Medical Center, Department of Radiation Oncology, USA
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- Mercy Catholic Medical Center, Darby, PA, USA
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
- Sage Bionetworks, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Duke University Medical Center, Department of Radiology, USA
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
- Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
- PrecisionFDA, U.S. Food and Drug Administration, Silver Spring, MD, USA
- Booz Allen Hamilton, McLean, VA, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
- Support Centre for Advanced Neuroimaging Inselspital, Institute for Diagnostic and Interventional Neuroradiology, Bern University Hospital, Bern, Switzerland
- University of Pittsburgh Medical Center, PA, USA
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Psychology, Washington University, St. Louis, MO, USA
- Neuroimaging Informatics and Analysis Center, Washington University, St. Louis, MO, USA
- Department of Radiology, Washington University, St. Louis, MO, USA
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
- University of California San Francisco, CA, USA
- University of Toronto, Toronto, ON, Canada
- University of Debrecen, Hungary Stony Brook University, NY, USA
| | - Syed Muhammad Anwar
- Children's National Hospital, Washington DC, USA
- George Washington University, Washington DC, USA
| | - Florian Kofler
- Helmholtz AI, Helmholtz Munich, Germany
- Department of Informatics, Technical University Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Ivan Ezhov
- Department of Informatics, Technical University Munich, Germany
| | | | | | | | | | - Evan Calabrese
- Duke University Medical Center, Department of Radiology, USA
- University of California San Francisco, CA, USA
| | - Jeff Rudie
- University of California San Francisco, CA, USA
| | - Felix Meissen
- Department of Informatics, Technical University Munich, Germany
| | - Maruf Adewole
- Medical Artificial Intelligence (MAI) Lab, Crestview Radiology, Lagos, Nigeria
| | | | - Anahita Fathi Kazerooni
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Center for AI and Data Science for Integrated Diagnostics (AI2D) I& Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Dominic LaBella
- Duke University Medical Center, Department of Radiation Oncology, USA
| | | | - Keyvan Farahani
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | | | - Russell Takeshi Shinohara
- Center for AI and Data Science for Integrated Diagnostics (AI2D) I& Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Farouk Dako
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter Wiggins
- Duke University Medical Center, Department of Radiology, USA
| | - Zachary Reitman
- Duke University Medical Center, Department of Radiation Oncology, USA
| | - Chunhao Wang
- Duke University Medical Center, Department of Radiation Oncology, USA
| | - Xinyang Liu
- Children's National Hospital, Washington DC, USA
- George Washington University, Washington DC, USA
| | - Zhifan Jiang
- Children's National Hospital, Washington DC, USA
- George Washington University, Washington DC, USA
| | - Ariana Familiar
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine Johanson
- PrecisionFDA, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Christos Davatzikos
- Center for AI and Data Science for Integrated Diagnostics (AI2D) I& Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Freymann
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Justin Kirby
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Michel Bilello
- Center for AI and Data Science for Integrated Diagnostics (AI2D) I& Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Roland Wiest
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
- Support Centre for Advanced Neuroimaging Inselspital, Institute for Diagnostic and Interventional Neuroradiology, Bern University Hospital, Bern, Switzerland
| | - Jan Kirschke
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Rivka R Colen
- University of Pittsburgh Medical Center, PA, USA
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aikaterini Kotrotsou
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Daniel Marcus
- Neuroimaging Informatics and Analysis Center, Washington University, St. Louis, MO, USA
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Mikhail Milchenko
- Neuroimaging Informatics and Analysis Center, Washington University, St. Louis, MO, USA
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Arash Nazeri
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Abhishek Mahajan
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Suyash Mohan
- Center for AI and Data Science for Integrated Diagnostics (AI2D) I& Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Mongan
- University of California San Francisco, CA, USA
| | | | - Soonmee Cha
- University of California San Francisco, CA, USA
| | | | | | | | - Andras Jakab
- University of Debrecen, Hungary Stony Brook University, NY, USA
| | | | - Udunna Anazodo
- Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | | | - Thomas Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, USA
| | | | | | | | | | - Ujjwal Baid
- Center for AI and Data Science for Integrated Diagnostics (AI2D) I& Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Spyridon Bakas
- Center for AI and Data Science for Integrated Diagnostics (AI2D) I& Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
3
|
Kazerooni AF, Khalili N, Liu X, Haldar D, Jiang Z, Anwar SM, Albrecht J, Adewole M, Anazodo U, Anderson H, Bagheri S, Baid U, Bergquist T, Borja AJ, Calabrese E, Chung V, Conte GM, Dako F, Eddy J, Ezhov I, Familiar A, Farahani K, Haldar S, Iglesias JE, Janas A, Johansen E, Jones BV, Kofler F, LaBella D, Lai HA, Van Leemput K, Li HB, Maleki N, McAllister AS, Meier Z, Menze B, Moawad AW, Nandolia KK, Pavaine J, Piraud M, Poussaint T, Prabhu SP, Reitman Z, Rodriguez A, Rudie JD, Shaikh IS, Shah LM, Sheth N, Shinohara RT, Tu W, Viswanathan K, Wang C, Ware JB, Wiestler B, Wiggins W, Zapaishchykova A, Aboian M, Bornhorst M, de Blank P, Deutsch M, Fouladi M, Hoffman L, Kann B, Lazow M, Mikael L, Nabavizadeh A, Packer R, Resnick A, Rood B, Vossough A, Bakas S, Linguraru MG. The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs). ARXIV 2024:arXiv:2305.17033v7. [PMID: 37292481 PMCID: PMC10246083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for AI & Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Nastaran Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xinyang Liu
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington DC, USA
| | - Debanjan Haldar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Thomas Jefferson University Hospital, PA, USA
| | - Zhifan Jiang
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington DC, USA
| | - Syed Muhammed Anwar
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington DC, USA
| | | | - Maruf Adewole
- Medical Artificial Intelligence (MAI) Lab, Crestview Radiology, Lagos, Nigeria
| | - Udunna Anazodo
- Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Hannah Anderson
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sina Bagheri
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ujjwal Baid
- Center for AI & Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Austin J. Borja
- Department of Neurosurgery at the University of Southern California, CA, USA
| | - Evan Calabrese
- Department of Radiology, Duke University Medical Center, USA
| | | | | | - Farouk Dako
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ivan Ezhov
- Department of Informatics, Technical University Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Germany
| | - Ariana Familiar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keyvan Farahani
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shuvanjan Haldar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Biomedical Engineering Rutgers University, New Brunswick, NJ, USA
| | - Juan Eugenio Iglesias
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | | | - Elaine Johansen
- PrecisionFDA, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Dominic LaBella
- Department of Radiation Oncology, Duke University Medical Center, USA
| | - Hollie Anne Lai
- Department of Radiology, Children’s Health Orange County, CA, USA
| | - Koen Van Leemput
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Hongwei Bran Li
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Bjoern Menze
- Biomedical Image Analysis & Machine Learning, Department of Quantitative Biomedicine, University of Zurich, Switzerland
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | | | - Khanak K Nandolia
- Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Rishikesh, India
| | - Julija Pavaine
- Department of Paediatric Radiology, Royal Manchester Children’s Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Tina Poussaint
- Dana-Farber Brigham Cancer Center & Boston Children’s Hospital, Boston, MA, USA
| | - Sanjay P Prabhu
- Division of Neuroradiology, Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary Reitman
- Department of Radiation Oncology, Duke University Medical Center, USA
| | - Andres Rodriguez
- Department of Diagnostic & Interventional Imaging, Neuroradiology section. The University of Texas Health Sciences Center at Houston
| | | | | | | | - Nakul Sheth
- Department of Radiology, The Children’s Hospital of Philadelphia, PA, USA
| | - Russel Taki Shinohara
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Wenxin Tu
- College of Arts and Sciences, University of Pennsylvania, PA, USA
| | - Karthik Viswanathan
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University Medical Center, USA
| | - Jeffrey B Ware
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Walter Wiggins
- Department of Radiology, Duke University Medical Center, USA
| | - Anna Zapaishchykova
- Dana-Farber Brigham Cancer Center & Boston Children’s Hospital, Boston, MA, USA
| | | | - Miriam Bornhorst
- Brain Tumor Institute, Children’s National Hospital, Washington, DC, USA
| | - Peter de Blank
- Brain Tumor Center, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Michelle Deutsch
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, US
| | - Maryam Fouladi
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, US
| | - Lindsey Hoffman
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ, US
| | - Benjamin Kann
- Dana-Farber Brigham Cancer Center & Boston Children’s Hospital, Boston, MA, USA
| | - Margot Lazow
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, US
| | - Leonie Mikael
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, US
| | - Ali Nabavizadeh
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roger Packer
- Brain Tumor Institute, Children’s National Hospital, Washington, DC, USA
| | - Adam Resnick
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Rood
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - Arastoo Vossough
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, The Children’s Hospital of Philadelphia, PA, USA
| | - Spyridon Bakas
- Center for AI & Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marius George Linguraru
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington DC, USA
- Departments of Radiology and Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
4
|
Tan SH, Guan CA, Bujang MA, Lai WH, Voon PJ, Sim EUH. Identification of phenomic data in the pathogenesis of cancers of the gastrointestinal (GI) tract in the UK biobank. Sci Rep 2024; 14:1997. [PMID: 38263244 PMCID: PMC10805853 DOI: 10.1038/s41598-024-52421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
Gastrointestinal (GI) cancers account for a significant incidence and mortality rates of cancers globally. Utilization of a phenomic data approach allows researchers to reveal the mechanisms and molecular pathogenesis of these conditions. We aimed to investigate the association between the phenomic features and GI cancers in a large cohort study. We included 502,369 subjects aged 37-73 years in the UK Biobank recruited since 2006, followed until the date of the first cancer diagnosis, date of death, or the end of follow-up on December 31st, 2016, whichever occurred first. Socio-demographic factors, blood chemistry, anthropometric measurements and lifestyle factors of participants collected at baseline assessment were analysed. Unvariable and multivariable logistic regression were conducted to determine the significant risk factors for the outcomes of interest, based on the odds ratio (OR) and 95% confidence intervals (CI). The analysis included a total of 441,141 participants, of which 7952 (1.8%) were incident GI cancer cases and 433,189 were healthy controls. A marker, cystatin C was associated with total and each gastrointestinal cancer (adjusted OR 2.43; 95% CI 2.23-2.64). In this cohort, compared to Asians, the Whites appeared to have a higher risk of developing gastrointestinal cancers. Several other factors were associated with distinct GI cancers. Cystatin C and race appear to be important features in GI cancers, suggesting some overlap in the molecular pathogenesis of GI cancers. Given the small proportion of Asians within the UK Biobank, the association between race and GI cancers requires further confirmation.
Collapse
Affiliation(s)
- Shirin Hui Tan
- Clinical Research Centre, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia.
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia.
| | - Catherina Anak Guan
- Clinical Research Centre, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Mohamad Adam Bujang
- Clinical Research Centre, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Wei Hong Lai
- Clinical Research Centre, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Pei Jye Voon
- Department of Radiotherapy, Oncology and Palliative Care, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Edmund Ui Hang Sim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia
| |
Collapse
|
5
|
Rezaeijo SM, Chegeni N, Baghaei Naeini F, Makris D, Bakas S. Within-Modality Synthesis and Novel Radiomic Evaluation of Brain MRI Scans. Cancers (Basel) 2023; 15:3565. [PMID: 37509228 PMCID: PMC10377568 DOI: 10.3390/cancers15143565] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
One of the most common challenges in brain MRI scans is to perform different MRI sequences depending on the type and properties of tissues. In this paper, we propose a generative method to translate T2-Weighted (T2W) Magnetic Resonance Imaging (MRI) volume from T2-weight-Fluid-attenuated-Inversion-Recovery (FLAIR) and vice versa using Generative Adversarial Networks (GAN). To evaluate the proposed method, we propose a novel evaluation schema for generative and synthetic approaches based on radiomic features. For the evaluation purpose, we consider 510 pair-slices from 102 patients to train two different GAN-based architectures Cycle GAN and Dual Cycle-Consistent Adversarial network (DC2Anet). The results indicate that generative methods can produce similar results to the original sequence without significant change in the radiometric feature. Therefore, such a method can assist clinics to make decisions based on the generated image when different sequences are not available or there is not enough time to re-perform the MRI scans.
Collapse
Affiliation(s)
- Seyed Masoud Rezaeijo
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (S.M.R.)
| | - Nahid Chegeni
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (S.M.R.)
| | - Fariborz Baghaei Naeini
- Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Road Campus, Kingston upon Thames, London KT1 2EE, UK; (F.B.N.); (D.M.)
| | - Dimitrios Makris
- Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Road Campus, Kingston upon Thames, London KT1 2EE, UK; (F.B.N.); (D.M.)
| | - Spyridon Bakas
- Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Road Campus, Kingston upon Thames, London KT1 2EE, UK; (F.B.N.); (D.M.)
- Richards Medical Research Laboratories, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Floor 7, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Adewole M, Rudie JD, Gbdamosi A, Toyobo O, Raymond C, Zhang D, Omidiji O, Akinola R, Suwaid MA, Emegoakor A, Ojo N, Aguh K, Kalaiwo C, Babatunde G, Ogunleye A, Gbadamosi Y, Iorpagher K, Calabrese E, Aboian M, Linguraru M, Albrecht J, Wiestler B, Kofler F, Janas A, LaBella D, Kzerooni AF, Li HB, Iglesias JE, Farahani K, Eddy J, Bergquist T, Chung V, Shinohara RT, Wiggins W, Reitman Z, Wang C, Liu X, Jiang Z, Familiar A, Van Leemput K, Bukas C, Piraud M, Conte GM, Johansson E, Meier Z, Menze BH, Baid U, Bakas S, Dako F, Fatade A, Anazodo UC. The Brain Tumor Segmentation (BraTS) Challenge 2023: Glioma Segmentation in Sub-Saharan Africa Patient Population (BraTS-Africa). ARXIV 2023:arXiv:2305.19369v1. [PMID: 37396608 PMCID: PMC10312814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Gliomas are the most common type of primary brain tumors. Although gliomas are relatively rare, they are among the deadliest types of cancer, with a survival rate of less than 2 years after diagnosis. Gliomas are challenging to diagnose, hard to treat and inherently resistant to conventional therapy. Years of extensive research to improve diagnosis and treatment of gliomas have decreased mortality rates across the Global North, while chances of survival among individuals in low- and middle-income countries (LMICs) remain unchanged and are significantly worse in Sub-Saharan Africa (SSA) populations. Long-term survival with glioma is associated with the identification of appropriate pathological features on brain MRI and confirmation by histopathology. Since 2012, the Brain Tumor Segmentation (BraTS) Challenge have evaluated state-of-the-art machine learning methods to detect, characterize, and classify gliomas. However, it is unclear if the state-of-the-art methods can be widely implemented in SSA given the extensive use of lower-quality MRI technology, which produces poor image contrast and resolution and more importantly, the propensity for late presentation of disease at advanced stages as well as the unique characteristics of gliomas in SSA (i.e., suspected higher rates of gliomatosis cerebri). Thus, the BraTS-Africa Challenge provides a unique opportunity to include brain MRI glioma cases from SSA in global efforts through the BraTS Challenge to develop and evaluate computer-aided-diagnostic (CAD) methods for the detection and characterization of glioma in resource-limited settings, where the potential for CAD tools to transform healthcare are more likely.
Collapse
Affiliation(s)
- Maruf Adewole
- Medical Artificial Intelligence Laboratory (MAI Lab), Lagos, Nigeria
- Department of Radiation Biology, Radiotherapy and Radiodiagnosis, University of Lagos, Lagos, Nigeria
| | - Jeffrey D Rudie
- Department of Radiology, University of California, San Diego
| | - Anu Gbdamosi
- Medical Artificial Intelligence Laboratory (MAI Lab), Lagos, Nigeria
- Crestview Radiology Limited, Lagos, Nigeria
| | - Oluyemisi Toyobo
- Medical Artificial Intelligence Laboratory (MAI Lab), Lagos, Nigeria
- Crestview Radiology Limited, Lagos, Nigeria
| | | | - Dong Zhang
- Medical Artificial Intelligence Laboratory (MAI Lab), Lagos, Nigeria
| | - Olubukola Omidiji
- Medical Artificial Intelligence Laboratory (MAI Lab), Lagos, Nigeria
- Lagos University Teaching Hospital, Lagos, Nigeria
| | - Rachel Akinola
- Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | | | - Adaobi Emegoakor
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Nancy Ojo
- Federal Medical Centre, Abeokuta, Ogun State, Nigeria
| | - Kenneth Aguh
- Federal Medical Centre, Umahia, Abia State, Nigeria
| | | | | | | | | | - Kator Iorpagher
- Benue State University Teaching Hospital, Markurdi, Benue State, Nigeria
| | - Evan Calabrese
- Duke University Medical Center, Department of Radiology, USA
- University of California San Francisco, CA, USA
| | | | - Marius Linguraru
- Children's National Hospital, Washington DC, USA
- George Washington University, Washington DC, USA
| | | | - Benedikt Wiestler
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Florian Kofler
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- Helmholtz Research Center, Munich, Germany
| | | | - Dominic LaBella
- Duke University Medical Center, Department of Radiation Oncology, USA
| | - Anahita Fathi Kzerooni
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Center for AI and Data Science for Integrated Diagnostics (AI2D) & Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Hongwei Bran Li
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- University of Zurich, Switzerland
| | - Juan Eugenio Iglesias
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Keyvan Farahani
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | | | - Russell Takeshi Shinohara
- Center for AI and Data Science for Integrated Diagnostics (AI2D) & Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Walter Wiggins
- Duke University Medical Center, Department of Radiology, USA
| | - Zachary Reitman
- Duke University Medical Center, Department of Radiation Oncology, USA
| | - Chunhao Wang
- Duke University Medical Center, Department of Radiation Oncology, USA
| | - Xinyang Liu
- Children's National Hospital, Washington DC, USA
- George Washington University, Washington DC, USA
| | - Zhifan Jiang
- Children's National Hospital, Washington DC, USA
- George Washington University, Washington DC, USA
| | - Ariana Familiar
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Koen Van Leemput
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | | | | | | | - Elaine Johansson
- Precision FDA, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Bjoern H Menze
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- University of Zurich, Switzerland
| | - Ujjwal Baid
- Center for AI and Data Science for Integrated Diagnostics (AI2D) & Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Spyridon Bakas
- Center for AI and Data Science for Integrated Diagnostics (AI2D) & Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Farouk Dako
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abiodun Fatade
- Medical Artificial Intelligence Laboratory (MAI Lab), Lagos, Nigeria
- Crestview Radiology Limited, Lagos, Nigeria
| | - Udunna C Anazodo
- Medical Artificial Intelligence Laboratory (MAI Lab), Lagos, Nigeria
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Medicine, University of Cape Town, South Africa
- Department of Radiation Medicine, University of Cape Town, South Africa
| |
Collapse
|
7
|
Pati S, Thakur SP, Hamamcı İE, Baid U, Baheti B, Bhalerao M, Güley O, Mouchtaris S, Lang D, Thermos S, Gotkowski K, González C, Grenko C, Getka A, Edwards B, Sheller M, Wu J, Karkada D, Panchumarthy R, Ahluwalia V, Zou C, Bashyam V, Li Y, Haghighi B, Chitalia R, Abousamra S, Kurc TM, Gastounioti A, Er S, Bergman M, Saltz JH, Fan Y, Shah P, Mukhopadhyay A, Tsaftaris SA, Menze B, Davatzikos C, Kontos D, Karargyris A, Umeton R, Mattson P, Bakas S. GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows. COMMUNICATIONS ENGINEERING 2023; 2:23. [PMCID: PMC10956028 DOI: 10.1038/s44172-023-00066-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/27/2023] [Indexed: 01/06/2025]
Abstract
Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL development, training, and inference more stable, reproducible, interpretable, and scalable, without requiring an extensive technical background. GaNDLF aims to provide an end-to-end solution for all DL-related tasks in computational precision medicine. We demonstrate the ability of GaNDLF to analyze both radiology and histology images, with built-in support for k -fold cross-validation, data augmentation, multiple modalities and output classes. Our quantitative performance evaluation on numerous use cases, anatomies, and computational tasks supports GaNDLF as a robust application framework for deployment in clinical workflows. The increasing complexity of the implementation and operation of deep learning techniques hinders their reproducibility and deployment at scale, especially in healthcare. Pati and colleagues introduce a deep learning framework to analyse healthcare data without requiring extensive computational experience, facilitating the integration of artificial intelligence in clinical workflows.
Collapse
Affiliation(s)
- Sarthak Pati
- MLCommons, Medical Working Group, San Francisco, CA USA
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Informatics, Technical University of Munich, Munich, Bavaria Germany
| | - Siddhesh P. Thakur
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - İbrahim Ethem Hamamcı
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- International School of Medicine, Istanbul Medipol University, Istanbul, Marmara Turkey
| | - Ujjwal Baid
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Bhakti Baheti
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Megh Bhalerao
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Orhun Güley
- Department of Informatics, Technical University of Munich, Munich, Bavaria Germany
| | - Sofia Mouchtaris
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - David Lang
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
- Department of Mathematics, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA USA
| | - Spyridon Thermos
- Institute for Digital Communications, School of Engineering, The University of Edinburgh, Scotland, UK
| | - Karol Gotkowski
- Department of Computer Science, Technical University of Darmstadt, Darmstadt, Hesse Germany
| | - Camila González
- Department of Computer Science, Technical University of Darmstadt, Darmstadt, Hesse Germany
| | - Caleb Grenko
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Alexander Getka
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | | | - Micah Sheller
- MLCommons, Medical Working Group, San Francisco, CA USA
- Intel Corporation, Santa Clara, CA USA
| | - Junwen Wu
- Intel Corporation, Santa Clara, CA USA
| | | | | | - Vinayak Ahluwalia
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Chunrui Zou
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Vishnu Bashyam
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Yuemeng Li
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Babak Haghighi
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Rhea Chitalia
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Shahira Abousamra
- Department of Computer Science, Stony Brook University, Stony Brook, New York, NY USA
| | - Tahsin M. Kurc
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, NY USA
| | - Aimilia Gastounioti
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Sezgin Er
- International School of Medicine, Istanbul Medipol University, Istanbul, Marmara Turkey
| | - Mark Bergman
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Joel H. Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, NY USA
| | - Yong Fan
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | | | - Anirban Mukhopadhyay
- Department of Computer Science, Technical University of Darmstadt, Darmstadt, Hesse Germany
| | - Sotirios A. Tsaftaris
- Institute for Digital Communications, School of Engineering, The University of Edinburgh, Scotland, UK
| | - Bjoern Menze
- Department of Informatics, Technical University of Munich, Munich, Bavaria Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Christos Davatzikos
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Despina Kontos
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Alexandros Karargyris
- MLCommons, Medical Working Group, San Francisco, CA USA
- Institute of Image-Guided Surgery of Strasbourg, Strasbourg, France
| | - Renato Umeton
- MLCommons, Medical Working Group, San Francisco, CA USA
- Department of Informatics & Analytics, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Department of Biological Engineering, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA USA
| | - Peter Mattson
- MLCommons, Medical Working Group, San Francisco, CA USA
- Google, Menlo Park, CA USA
| | - Spyridon Bakas
- MLCommons, Medical Working Group, San Francisco, CA USA
- Center For Artificial Intelligence And Data Science For Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
8
|
Qureshi SA, Hussain L, Ibrar U, Alabdulkreem E, Nour MK, Alqahtani MS, Nafie FM, Mohamed A, Mohammed GP, Duong TQ. Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans. Sci Rep 2023; 13:3291. [PMID: 36841898 PMCID: PMC9961309 DOI: 10.1038/s41598-023-30309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.
Collapse
Affiliation(s)
- Shahzad Ahmad Qureshi
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.
| | - Lal Hussain
- Department of Computer Science and IT, Neelum Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan. .,Department of Computer Science and IT, King Abdullah Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan. .,Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY, 10467, USA.
| | - Usama Ibrar
- grid.461150.7Farooq Hospital, Lahore, Pakistan
| | - Eatedal Alabdulkreem
- grid.449346.80000 0004 0501 7602Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671 Saudi Arabia
| | - Mohamed K. Nour
- grid.412832.e0000 0000 9137 6644Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohammed S. Alqahtani
- grid.412144.60000 0004 1790 7100Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421 Saudi Arabia
| | - Faisal Mohammed Nafie
- grid.449051.d0000 0004 0441 5633Department of Computer Science, College of Science and Humanities at Alghat, Majmaah University, Al-Majmaah, 11952 Saudi Arabia
| | - Abdullah Mohamed
- grid.440865.b0000 0004 0377 3762Research Centre, Future University in Egypt, New Cairo, 11845 Egypt
| | - Gouse Pasha Mohammed
- grid.449553.a0000 0004 0441 5588Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Tim Q. Duong
- grid.240283.f0000 0001 2152 0791Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467 USA
| |
Collapse
|
9
|
Singh A, Horng H, Chitalia R, Roshkovan L, Katz SI, Noël P, Shinohara RT, Kontos D. Resampling and harmonization for mitigation of heterogeneity in image parameters of baseline scans. Sci Rep 2022; 12:21505. [PMID: 36513760 PMCID: PMC9747915 DOI: 10.1038/s41598-022-26083-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Our study investigates the effects of heterogeneity in image parameters on the reproducibility of prognostic performance of models built using radiomic biomarkers. We compare the prognostic performance of models derived from the heterogeneity-mitigated features with that of models obtained from raw features, to assess whether reproducibility of prognostic scores improves upon application of our methods. We used two datasets: The Breast I-SPY1 dataset-Baseline DCE-MRI scans of 156 women with locally advanced breast cancer, treated with neoadjuvant chemotherapy, publicly available via The Cancer Imaging Archive (TCIA); The NSCLC IO dataset-Baseline CT scans of 107 patients with stage 4 non-small cell lung cancer (NSCLC), treated with pembrolizumab immunotherapy at our institution. Radiomic features (n = 102) are extracted from the tumor ROIs. We use a variety of resampling and harmonization scenarios to mitigate the heterogeneity in image parameters. The patients were divided into groups based on batch variables. For each group, the radiomic phenotypes are combined with the clinical covariates into a prognostic model. The performance of the groups is assessed using the c-statistic, derived from a Cox proportional hazards model fitted on all patients within a group. The heterogeneity-mitigation scenario (radiomic features, derived from images that have been resampled to minimum voxel spacing, are harmonized using the image acquisition parameters as batch variables) gave models with highest prognostic scores (for e.g., IO dataset; batch variable: high kernel resolution-c-score: 0.66). The prognostic performance of patient groups is not comparable in case of models built using non-heterogeneity mitigated features (for e.g., I-SPY1 dataset; batch variable: small pixel spacing-c-score: 0.54, large pixel spacing-c-score: 0.65). The prognostic performance of patient groups is closer in case of heterogeneity-mitigated scenarios (for e.g., scenario-harmonize by voxel spacing parameters: IO dataset; thin slice-c-score: 0.62, thick slice-c-score: 0.60). Our results indicate that accounting for heterogeneity in image parameters is important to obtain more reproducible prognostic scores, irrespective of image site or modality. For non-heterogeneity mitigated models, the prognostic scores are not comparable across patient groups divided based on batch variables. This study can be a step in the direction of constructing reproducible radiomic biomarkers, thus increasing their application in clinical decision making.
Collapse
Affiliation(s)
- Apurva Singh
- grid.25879.310000 0004 1936 8972Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Hannah Horng
- grid.25879.310000 0004 1936 8972Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Rhea Chitalia
- grid.25879.310000 0004 1936 8972Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Leonid Roshkovan
- grid.25879.310000 0004 1936 8972Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sharyn I. Katz
- grid.25879.310000 0004 1936 8972Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Peter Noël
- grid.25879.310000 0004 1936 8972Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Russell T. Shinohara
- grid.25879.310000 0004 1936 8972Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Despina Kontos
- grid.25879.310000 0004 1936 8972Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| |
Collapse
|
10
|
Pati S, Baid U, Edwards B, Sheller M, Wang SH, Reina GA, Foley P, Gruzdev A, Karkada D, Davatzikos C, Sako C, Ghodasara S, Bilello M, Mohan S, Vollmuth P, Brugnara G, Preetha CJ, Sahm F, Maier-Hein K, Zenk M, Bendszus M, Wick W, Calabrese E, Rudie J, Villanueva-Meyer J, Cha S, Ingalhalikar M, Jadhav M, Pandey U, Saini J, Garrett J, Larson M, Jeraj R, Currie S, Frood R, Fatania K, Huang RY, Chang K, Balaña C, Capellades J, Puig J, Trenkler J, Pichler J, Necker G, Haunschmidt A, Meckel S, Shukla G, Liem S, Alexander GS, Lombardo J, Palmer JD, Flanders AE, Dicker AP, Sair HI, Jones CK, Venkataraman A, Jiang M, So TY, Chen C, Heng PA, Dou Q, Kozubek M, Lux F, Michálek J, Matula P, Keřkovský M, Kopřivová T, Dostál M, Vybíhal V, Vogelbaum MA, Mitchell JR, Farinhas J, Maldjian JA, Yogananda CGB, Pinho MC, Reddy D, Holcomb J, Wagner BC, Ellingson BM, Cloughesy TF, Raymond C, Oughourlian T, Hagiwara A, Wang C, To MS, Bhardwaj S, Chong C, Agzarian M, Falcão AX, Martins SB, Teixeira BCA, Sprenger F, Menotti D, Lucio DR, LaMontagne P, Marcus D, Wiestler B, Kofler F, Ezhov I, Metz M, et alPati S, Baid U, Edwards B, Sheller M, Wang SH, Reina GA, Foley P, Gruzdev A, Karkada D, Davatzikos C, Sako C, Ghodasara S, Bilello M, Mohan S, Vollmuth P, Brugnara G, Preetha CJ, Sahm F, Maier-Hein K, Zenk M, Bendszus M, Wick W, Calabrese E, Rudie J, Villanueva-Meyer J, Cha S, Ingalhalikar M, Jadhav M, Pandey U, Saini J, Garrett J, Larson M, Jeraj R, Currie S, Frood R, Fatania K, Huang RY, Chang K, Balaña C, Capellades J, Puig J, Trenkler J, Pichler J, Necker G, Haunschmidt A, Meckel S, Shukla G, Liem S, Alexander GS, Lombardo J, Palmer JD, Flanders AE, Dicker AP, Sair HI, Jones CK, Venkataraman A, Jiang M, So TY, Chen C, Heng PA, Dou Q, Kozubek M, Lux F, Michálek J, Matula P, Keřkovský M, Kopřivová T, Dostál M, Vybíhal V, Vogelbaum MA, Mitchell JR, Farinhas J, Maldjian JA, Yogananda CGB, Pinho MC, Reddy D, Holcomb J, Wagner BC, Ellingson BM, Cloughesy TF, Raymond C, Oughourlian T, Hagiwara A, Wang C, To MS, Bhardwaj S, Chong C, Agzarian M, Falcão AX, Martins SB, Teixeira BCA, Sprenger F, Menotti D, Lucio DR, LaMontagne P, Marcus D, Wiestler B, Kofler F, Ezhov I, Metz M, Jain R, Lee M, Lui YW, McKinley R, Slotboom J, Radojewski P, Meier R, Wiest R, Murcia D, Fu E, Haas R, Thompson J, Ormond DR, Badve C, Sloan AE, Vadmal V, Waite K, Colen RR, Pei L, Ak M, Srinivasan A, Bapuraj JR, Rao A, Wang N, Yoshiaki O, Moritani T, Turk S, Lee J, Prabhudesai S, Morón F, Mandel J, Kamnitsas K, Glocker B, Dixon LVM, Williams M, Zampakis P, Panagiotopoulos V, Tsiganos P, Alexiou S, Haliassos I, Zacharaki EI, Moustakas K, Kalogeropoulou C, Kardamakis DM, Choi YS, Lee SK, Chang JH, Ahn SS, Luo B, Poisson L, Wen N, Tiwari P, Verma R, Bareja R, Yadav I, Chen J, Kumar N, Smits M, van der Voort SR, Alafandi A, Incekara F, Wijnenga MMJ, Kapsas G, Gahrmann R, Schouten JW, Dubbink HJ, Vincent AJPE, van den Bent MJ, French PJ, Klein S, Yuan Y, Sharma S, Tseng TC, Adabi S, Niclou SP, Keunen O, Hau AC, Vallières M, Fortin D, Lepage M, Landman B, Ramadass K, Xu K, Chotai S, Chambless LB, Mistry A, Thompson RC, Gusev Y, Bhuvaneshwar K, Sayah A, Bencheqroun C, Belouali A, Madhavan S, Booth TC, Chelliah A, Modat M, Shuaib H, Dragos C, Abayazeed A, Kolodziej K, Hill M, Abbassy A, Gamal S, Mekhaimar M, Qayati M, Reyes M, Park JE, Yun J, Kim HS, Mahajan A, Muzi M, Benson S, Beets-Tan RGH, Teuwen J, Herrera-Trujillo A, Trujillo M, Escobar W, Abello A, Bernal J, Gómez J, Choi J, Baek S, Kim Y, Ismael H, Allen B, Buatti JM, Kotrotsou A, Li H, Weiss T, Weller M, Bink A, Pouymayou B, Shaykh HF, Saltz J, Prasanna P, Shrestha S, Mani KM, Payne D, Kurc T, Pelaez E, Franco-Maldonado H, Loayza F, Quevedo S, Guevara P, Torche E, Mendoza C, Vera F, Ríos E, López E, Velastin SA, Ogbole G, Soneye M, Oyekunle D, Odafe-Oyibotha O, Osobu B, Shu'aibu M, Dorcas A, Dako F, Simpson AL, Hamghalam M, Peoples JJ, Hu R, Tran A, Cutler D, Moraes FY, Boss MA, Gimpel J, Veettil DK, Schmidt K, Bialecki B, Marella S, Price C, Cimino L, Apgar C, Shah P, Menze B, Barnholtz-Sloan JS, Martin J, Bakas S. Federated learning enables big data for rare cancer boundary detection. Nat Commun 2022; 13:7346. [PMID: 36470898 PMCID: PMC9722782 DOI: 10.1038/s41467-022-33407-5] [Show More Authors] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/16/2022] [Indexed: 12/12/2022] Open
Abstract
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.
Collapse
Affiliation(s)
- Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Informatics, Technical University of Munich, Munich, Bavaria, Germany
| | - Ujjwal Baid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satyam Ghodasara
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michel Bilello
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Zenk
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany
| | - Evan Calabrese
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Rudie
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Javier Villanueva-Meyer
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Soonmee Cha
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, Maharashtra, India
| | - Manali Jadhav
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, Maharashtra, India
| | - Umang Pandey
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, Maharashtra, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - John Garrett
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Matthew Larson
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Robert Jeraj
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Stuart Currie
- Leeds Teaching Hospitals Trust, Department of Radiology, Leeds, UK
| | - Russell Frood
- Leeds Teaching Hospitals Trust, Department of Radiology, Leeds, UK
| | - Kavi Fatania
- Leeds Teaching Hospitals Trust, Department of Radiology, Leeds, UK
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Josep Puig
- Department of Radiology (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain
| | - Johannes Trenkler
- Institute of Neuroradiology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
| | - Josef Pichler
- Department of Neurooncology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
| | - Georg Necker
- Institute of Neuroradiology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
| | - Andreas Haunschmidt
- Institute of Neuroradiology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
| | - Stephan Meckel
- Institute of Neuroradiology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
- Institute of Diagnostic and Interventional Neuroradiology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Gaurav Shukla
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Christiana Care Health System, Philadelphia, PA, USA
| | - Spencer Liem
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gregory S Alexander
- Department of Radiation Oncology, University of Maryland, Baltimore, MD, USA
| | - Joseph Lombardo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Adam E Flanders
- Department of Radiology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Haris I Sair
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Craig K Jones
- The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Archana Venkataraman
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Meirui Jiang
- The Chinese University of Hong Kong, Hong Kong, China
| | - Tiffany Y So
- The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng Chen
- The Chinese University of Hong Kong, Hong Kong, China
| | | | - Qi Dou
- The Chinese University of Hong Kong, Hong Kong, China
| | - Michal Kozubek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Filip Lux
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Jan Michálek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Petr Matula
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Brno, Czech Republic
| | - Tereza Kopřivová
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Brno, Czech Republic
| | - Marek Dostál
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Brno, Czech Republic
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Václav Vybíhal
- Department of Neurosurgery, Faculty of Medicine, Masaryk University, Brno, and University Hospital and Czech Republic, Brno, Czech Republic
| | - Michael A Vogelbaum
- Department of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - J Ross Mitchell
- University of Alberta, Edmonton, AB, Canada
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Joaquim Farinhas
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Marco C Pinho
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Divya Reddy
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Holcomb
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CaA, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CaA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Talia Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Akifumi Hagiwara
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Minh-Son To
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sargam Bhardwaj
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Chee Chong
- South Australia Medical Imaging, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marc Agzarian
- South Australia Medical Imaging, Flinders Medical Centre, Bedford Park, SA, Australia
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Bernardo C A Teixeira
- Instituto de Neurologia de Curitiba, Curitiba, Paraná, Brazil
- Department of Radiology, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Flávia Sprenger
- Department of Radiology, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - David Menotti
- Department of Informatics, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Diego R Lucio
- Department of Informatics, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Pamela LaMontagne
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Marcus
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Klinikum rechts der Isar, Munich, Germany
| | - Florian Kofler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Klinikum rechts der Isar, Munich, Germany
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ivan Ezhov
- Department of Informatics, Technical University of Munich, Munich, Bavaria, Germany
- TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Klinikum rechts der Isar, Munich, Germany
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
| | - Marie Metz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rajan Jain
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Matthew Lee
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yvonne W Lui
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Richard McKinley
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Johannes Slotboom
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Raphael Meier
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Derrick Murcia
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Eric Fu
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Rourke Haas
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - John Thompson
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - David Ryan Ormond
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Chaitra Badve
- Department of Radiology, University Hospitals Cleveland, Cleveland, OH, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, University Hospitals-Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vachan Vadmal
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kristin Waite
- National Cancer Institute, National Institute of Health, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Rivka R Colen
- Department of Radiology, Neuroradiology Division, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linmin Pei
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Murat Ak
- Department of Radiology, Neuroradiology Division, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashok Srinivasan
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - J Rajiv Bapuraj
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ota Yoshiaki
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - Toshio Moritani
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - Sevcan Turk
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - Joonsang Lee
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Snehal Prabhudesai
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Fanny Morón
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Mandel
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Konstantinos Kamnitsas
- Department of Computing, Imperial College London, London, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Ben Glocker
- Department of Computing, Imperial College London, London, UK
| | - Luke V M Dixon
- Department of Radiology, Imperial College NHS Healthcare Trust, London, UK
| | - Matthew Williams
- Computational Oncology Group, Institute for Global Health Innovation, Imperial College London, London, UK
| | - Peter Zampakis
- Department of NeuroRadiology, University of Patras, Patras, Greece
| | | | - Panagiotis Tsiganos
- Clinical Radiology Laboratory, Department of Medicine, University of Patras, Patras, Greece
| | - Sotiris Alexiou
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Ilias Haliassos
- Department of Neuro-Oncology, University of Patras, Patras, Greece
| | - Evangelia I Zacharaki
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | | | | | | | | | | | | | - Sung Soo Ahn
- Yonsei University College of Medicine, Seoul, Korea
| | - Bing Luo
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Laila Poisson
- Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Ning Wen
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
- SJTU-Ruijin-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | | | - Ruchika Verma
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
- Case Western Reserve University, Cleveland, OH, USA
| | - Rohan Bareja
- Case Western Reserve University, Cleveland, OH, USA
| | - Ipsa Yadav
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Neeraj Kumar
- University of Alberta, Edmonton, AB, Canada
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Sebastian R van der Voort
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Ahmed Alafandi
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Fatih Incekara
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten M J Wijnenga
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Georgios Kapsas
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Renske Gahrmann
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Joost W Schouten
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Arnaud J P E Vincent
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Stefan Klein
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Yading Yuan
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonam Sharma
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tzu-Chi Tseng
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saba Adabi
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Olivier Keunen
- Translation Radiomics, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology, Laboratoire National De Santé, Luxembourg, Luxembourg
| | - Martin Vallières
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalière Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - David Fortin
- Centre de Recherche du Centre Hospitalière Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Division of Neurosurgery and Neuro-Oncology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Lepage
- Centre de Recherche du Centre Hospitalière Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Centre, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bennett Landman
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Karthik Ramadass
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kaiwen Xu
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Silky Chotai
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lola B Chambless
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Akshitkumar Mistry
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Reid C Thompson
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Anousheh Sayah
- Division of Neuroradiology & Neurointerventional Radiology, Department of Radiology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Camelia Bencheqroun
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Anas Belouali
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Neuroradiology, Ruskin Wing, King's College Hospital NHS Foundation Trust, London, UK
| | - Alysha Chelliah
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Haris Shuaib
- Stoke Mandeville Hospital, Mandeville Road, Aylesbury, UK
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Carmen Dragos
- Stoke Mandeville Hospital, Mandeville Road, Aylesbury, UK
| | | | | | | | | | - Shady Gamal
- University of Cairo School of Medicine, Giza, Egypt
| | | | | | | | - Ji Eun Park
- Department of Radiology, Asan Medical Center, Seoul, South Korea
| | - Jihye Yun
- Department of Radiology, Asan Medical Center, Seoul, South Korea
| | - Ho Sung Kim
- Department of Radiology, Asan Medical Center, Seoul, South Korea
| | - Abhishek Mahajan
- The Clatterbridge Cancer Centre NHS Foundation Trust Pembroke Place, Liverpool, UK
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Sean Benson
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, Netherlands
- GROW School of Oncology and Developmental Biology, Maastricht, Netherlands
| | - Jonas Teuwen
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | - William Escobar
- Clínica Imbanaco Grupo Quirón Salud, Cali, Colombia
- Universidad del Valle, Cali, Colombia
| | | | - Jose Bernal
- Universidad del Valle, Cali, Colombia
- The University of Edinburgh, Edinburgh, UK
| | | | - Joseph Choi
- Department of Industrial and Systems Engineering, University of Iowa, Iowa, USA
| | - Stephen Baek
- Department of Industrial and Systems Engineering, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Yusung Kim
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Heba Ismael
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Bryan Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | | | - Hongwei Li
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bertrand Pouymayou
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Sampurna Shrestha
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Kartik M Mani
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
- Department of Radiation Oncology, Stony Brook University, Stony Brook, NY, USA
| | - David Payne
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Tahsin Kurc
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
- Scientific Data Group, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Enrique Pelaez
- Escuela Superior Politecnica del Litoral, Guayaquil, Guayas, Ecuador
| | | | - Francis Loayza
- Escuela Superior Politecnica del Litoral, Guayaquil, Guayas, Ecuador
| | | | | | | | | | - Franco Vera
- Universidad de Concepción, Concepción, Biobío, Chile
| | - Elvis Ríos
- Universidad de Concepción, Concepción, Biobío, Chile
| | - Eduardo López
- Universidad de Concepción, Concepción, Biobío, Chile
| | - Sergio A Velastin
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
| | - Godwin Ogbole
- Department of Radiology, University College Hospital Ibadan, Oyo, Nigeria
| | - Mayowa Soneye
- Department of Radiology, University College Hospital Ibadan, Oyo, Nigeria
| | - Dotun Oyekunle
- Department of Radiology, University College Hospital Ibadan, Oyo, Nigeria
| | | | - Babatunde Osobu
- Department of Radiology, University College Hospital Ibadan, Oyo, Nigeria
| | - Mustapha Shu'aibu
- Department of Radiology, Muhammad Abdullahi Wase Teaching Hospital, Kano, Nigeria
| | - Adeleye Dorcas
- Department of Radiology, Obafemi Awolowo University Ile-Ife, Ile-Ife, Osun, Nigeria
| | - Farouk Dako
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber L Simpson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Mohammad Hamghalam
- School of Computing, Queen's University, Kingston, ON, Canada
- Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Jacob J Peoples
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Ricky Hu
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Anh Tran
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Danielle Cutler
- The Faculty of Arts & Sciences, Queen's University, Kingston, ON, Canada
| | - Fabio Y Moraes
- Department of Oncology, Queen's University, Kingston, ON, Canada
| | - Michael A Boss
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - James Gimpel
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Deepak Kattil Veettil
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Kendall Schmidt
- Data Science Institute, American College of Radiology, Reston, VA, USA
| | - Brian Bialecki
- Data Science Institute, American College of Radiology, Reston, VA, USA
| | - Sailaja Marella
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Cynthia Price
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Lisa Cimino
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Charles Apgar
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | | | - Bjoern Menze
- Department of Informatics, Technical University of Munich, Munich, Bavaria, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jill S Barnholtz-Sloan
- National Cancer Institute, National Institute of Health, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
- Center for Biomedical Informatics and Information Technology, National Cancer Institute (NCI), National Institute of Health, Bethesda, MD, USA
| | | | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Pati S, Baid U, Edwards B, Sheller MJ, Foley P, Reina GA, Thakur S, Sako C, Bilello M, Davatzikos C, Martin J, Shah P, Menze B, Bakas S. The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research. Phys Med Biol 2022; 67:10.1088/1361-6560/ac9449. [PMID: 36137534 PMCID: PMC9592188 DOI: 10.1088/1361-6560/ac9449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
Objective.De-centralized data analysis becomes an increasingly preferred option in the healthcare domain, as it alleviates the need for sharing primary patient data across collaborating institutions. This highlights the need for consistent harmonized data curation, pre-processing, and identification of regions of interest based on uniform criteria.Approach.Towards this end, this manuscript describes theFederatedTumorSegmentation (FeTS) tool, in terms of software architecture and functionality.Main results.The primary aim of the FeTS tool is to facilitate this harmonized processing and the generation of gold standard reference labels for tumor sub-compartments on brain magnetic resonance imaging, and further enable federated training of a tumor sub-compartment delineation model across numerous sites distributed across the globe, without the need to share patient data.Significance.Building upon existing open-source tools such as the Insight Toolkit and Qt, the FeTS tool is designed to enable training deep learning models targeting tumor delineation in either centralized or federated settings. The target audience of the FeTS tool is primarily the computational researcher interested in developing federated learning models, and interested in joining a global federation towards this effort. The tool is open sourced athttps://github.com/FETS-AI/Front-End.
Collapse
Affiliation(s)
- Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ujjwal Baid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Siddhesh Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michel Bilello
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Bjoern Menze
- Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Moya‐Sáez E, Navarro‐González R, Cepeda S, Pérez‐Núñez Á, de Luis‐García R, Aja‐Fernández S, Alberola‐López C. Synthetic MRI improves radiomics-based glioblastoma survival prediction. NMR IN BIOMEDICINE 2022; 35:e4754. [PMID: 35485596 PMCID: PMC9542221 DOI: 10.1002/nbm.4754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Glioblastoma is an aggressive and fast-growing brain tumor with poor prognosis. Predicting the expected survival of patients with glioblastoma is a key task for efficient treatment and surgery planning. Survival predictions could be enhanced by means of a radiomic system. However, these systems demand high numbers of multicontrast images, the acquisitions of which are time consuming, giving rise to patient discomfort and low healthcare system efficiency. Synthetic MRI could favor deployment of radiomic systems in the clinic by allowing practitioners not only to reduce acquisition time, but also to retrospectively complete databases or to replace artifacted images. In this work we analyze the replacement of an actually acquired MR weighted image by a synthesized version to predict survival of glioblastoma patients with a radiomic system. Each synthesized version was realistically generated from two acquired images with a deep learning synthetic MRI approach based on a convolutional neural network. Specifically, two weighted images were considered for the replacement one at a time, a T2w and a FLAIR, which were synthesized from the pairs T1w and FLAIR, and T1w and T2w, respectively. Furthermore, a radiomic system for survival prediction, which can classify patients into two groups (survival >480 days and ≤ 480 days), was built. Results show that the radiomic system fed with the synthesized image achieves similar performance compared with using the acquired one, and better performance than a model that does not include this image. Hence, our results confirm that synthetic MRI does add to glioblastoma survival prediction within a radiomics-based approach.
Collapse
Affiliation(s)
- Elisa Moya‐Sáez
- Laboratorio de Procesado de ImagenUniversidad de ValladolidValladolid
| | | | - Santiago Cepeda
- Departamento de NeurocirugíaHospital Universitario Río HortegaValladolidSpain
| | - Ángel Pérez‐Núñez
- Departamento de NeurocirugíaHospital Universitario 12 de OctubreMadridSpain
| | | | | | | |
Collapse
|
13
|
Bakas S, Sako C, Akbari H, Bilello M, Sotiras A, Shukla G, Rudie JD, Santamaría NF, Kazerooni AF, Pati S, Rathore S, Mamourian E, Ha SM, Parker W, Doshi J, Baid U, Bergman M, Binder ZA, Verma R, Lustig RA, Desai AS, Bagley SJ, Mourelatos Z, Morrissette J, Watt CD, Brem S, Wolf RL, Melhem ER, Nasrallah MP, Mohan S, O'Rourke DM, Davatzikos C. The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics. Sci Data 2022; 9:453. [PMID: 35906241 PMCID: PMC9338035 DOI: 10.1038/s41597-022-01560-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.
Collapse
Affiliation(s)
- Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michel Bilello
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aristeidis Sotiras
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology and Institute for Informatics, Washington University, School of Medicine, St. Louis, MO, USA
| | - Gaurav Shukla
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Christiana Care Health System, Philadelphia, PA, USA
| | - Jeffrey D Rudie
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Natali Flores Santamaría
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Rathore
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology and Institute for Informatics, Washington University, School of Medicine, St. Louis, MO, USA
| | - William Parker
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ujjwal Baid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Bergman
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ragini Verma
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arati S Desai
- Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Bagley
- Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D Watt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald L Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Chitalia R, Pati S, Bhalerao M, Thakur SP, Jahani N, Belenky V, McDonald ES, Gibbs J, Newitt DC, Hylton NM, Kontos D, Bakas S. Expert tumor annotations and radiomics for locally advanced breast cancer in DCE-MRI for ACRIN 6657/I-SPY1. Sci Data 2022; 9:440. [PMID: 35871247 PMCID: PMC9308769 DOI: 10.1038/s41597-022-01555-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is one of the most pervasive forms of cancer and its inherent intra- and inter-tumor heterogeneity contributes towards its poor prognosis. Multiple studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of having consistency in: a) data quality, b) quality of expert annotation of pathology, and c) availability of baseline results from computational algorithms. To address these limitations, here we propose the enhancement of the I-SPY1 data collection, with uniformly curated data, tumor annotations, and quantitative imaging features. Specifically, the proposed dataset includes a) uniformly processed scans that are harmonized to match intensity and spatial characteristics, facilitating immediate use in computational studies, b) computationally-generated and manually-revised expert annotations of tumor regions, as well as c) a comprehensive set of quantitative imaging (also known as radiomic) features corresponding to the tumor regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.
Collapse
Affiliation(s)
- Rhea Chitalia
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Megh Bhalerao
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Siddhesh Pravin Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nariman Jahani
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivian Belenky
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica Gibbs
- University of California San Francisco (UCSF), San Francisco, CA, 94115, USA
| | - David C Newitt
- University of California San Francisco (UCSF), San Francisco, CA, 94115, USA
| | - Nola M Hylton
- University of California San Francisco (UCSF), San Francisco, CA, 94115, USA
| | - Despina Kontos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Singh A, Horng H, Roshkovan L, Weeks JK, Hershman M, Noël P, Luna JM, Cohen EA, Pantalone L, Shinohara RT, Bauml JM, Thompson JC, Aggarwal C, Carpenter EL, Katz SI, Kontos D. Development of a robust radiomic biomarker of progression-free survival in advanced non-small cell lung cancer patients treated with first-line immunotherapy. Sci Rep 2022; 12:9993. [PMID: 35705618 PMCID: PMC9200843 DOI: 10.1038/s41598-022-14160-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
We aim to determine the feasibility of a novel radiomic biomarker that can integrate with other established clinical prognostic factors to predict progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC) undergoing first-line immunotherapy. Our study includes 107 patients with stage 4 NSCLC treated with pembrolizumab-based therapy (monotherapy: 30%, combination chemotherapy: 70%). The ITK-SNAP software was used for 3D tumor volume segmentation from pre-therapy CT scans. Radiomic features (n = 102) were extracted using the CaPTk software. Impact of heterogeneity introduced by image physical dimensions (voxel spacing parameters) and acquisition parameters (contrast enhancement and CT reconstruction kernel) was mitigated by resampling the images to the minimum voxel spacing parameters and harmonization by a nested ComBat technique. This technique was initialized with radiomic features, clinical factors of age, sex, race, PD-L1 expression, ECOG status, body mass index (BMI), smoking status, recurrence event and months of progression-free survival, and image acquisition parameters as batch variables. Two phenotypes were identified using unsupervised hierarchical clustering of harmonized features. Prognostic factors, including PDL1 expression, ECOG status, BMI and smoking status, were combined with radiomic phenotypes in Cox regression models of PFS and Kaplan Meier (KM) curve-fitting. Cox model based on clinical factors had a c-statistic of 0.57, which increased to 0.63 upon addition of phenotypes derived from harmonized features. There were statistically significant differences in survival outcomes stratified by clinical covariates, as measured by the log-rank test (p = 0.034), which improved upon addition of phenotypes (p = 0.00022). We found that mitigation of heterogeneity by image resampling and nested ComBat harmonization improves prognostic value of phenotypes, resulting in better prediction of PFS when added to other prognostic variables.
Collapse
Affiliation(s)
- Apurva Singh
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hannah Horng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leonid Roshkovan
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Joanna K Weeks
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Michelle Hershman
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Peter Noël
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - José Marcio Luna
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Eric A Cohen
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Lauren Pantalone
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joshua M Bauml
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeffrey C Thompson
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Charu Aggarwal
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erica L Carpenter
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sharyn I Katz
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Despina Kontos
- Department of Radiology, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Rm D702 Richards Bldg., 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Sayah A, Bencheqroun C, Bhuvaneshwar K, Belouali A, Bakas S, Sako C, Davatzikos C, Alaoui A, Madhavan S, Gusev Y. Enhancing the REMBRANDT MRI collection with expert segmentation labels and quantitative radiomic features. Sci Data 2022; 9:338. [PMID: 35701399 PMCID: PMC9198015 DOI: 10.1038/s41597-022-01415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/24/2022] [Indexed: 01/26/2023] Open
Abstract
Malignancy of the brain and CNS is unfortunately a common diagnosis. A large subset of these lesions tends to be high grade tumors which portend poor prognoses and low survival rates, and are estimated to be the tenth leading cause of death worldwide. The complex nature of the brain tissue environment in which these lesions arise offers a rich opportunity for translational research. Magnetic Resonance Imaging (MRI) can provide a comprehensive view of the abnormal regions in the brain, therefore, its applications in the translational brain cancer research is considered essential for the diagnosis and monitoring of disease. Recent years has seen rapid growth in the field of radiogenomics, especially in cancer, and scientists have been able to successfully integrate the quantitative data extracted from medical images (also known as radiomics) with genomics to answer new and clinically relevant questions. In this paper, we took raw MRI scans from the REMBRANDT data collection from public domain, and performed volumetric segmentation to identify subregions of the brain. Radiomic features were then extracted to represent the MRIs in a quantitative yet summarized format. This resulting dataset now enables further biomedical and integrative data analysis, and is being made public via the NeuroImaging Tools & Resources Collaboratory (NITRC) repository ( https://www.nitrc.org/projects/rembrandt_brain/ ).
Collapse
Affiliation(s)
- Anousheh Sayah
- Medstar Georgetown University Hospital, Washington, DC, USA
| | - Camelia Bencheqroun
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA.
| | - Anas Belouali
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Adil Alaoui
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA.
| |
Collapse
|
17
|
Thakur SP, Pati S, Panchumarthy R, Karkada D, Wu J, Kurtaev D, Sako C, Shah P, Bakas S. Optimization of Deep Learning Based Brain Extraction in MRI for Low Resource Environments. BRAINLESION : GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES. BRAINLES (WORKSHOP) 2022; 12962:151-167. [PMID: 36331281 PMCID: PMC9627678 DOI: 10.1007/978-3-031-08999-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain extraction is an indispensable step in neuro-imaging with a direct impact on downstream analyses. Most such methods have been developed for non-pathologically affected brains, and hence tend to suffer in performance when applied on brains with pathologies, e.g., gliomas, multiple sclerosis, traumatic brain injuries. Deep Learning (DL) methodologies for healthcare have shown promising results, but their clinical translation has been limited, primarily due to these methods suffering from i) high computational cost, and ii) specific hardware requirements, e.g., DL acceleration cards. In this study, we explore the potential of mathematical optimizations, towards making DL methods amenable to application in low resource environments. We focus on both the qualitative and quantitative evaluation of such optimizations on an existing DL brain extraction method, designed for pathologically-affected brains and agnostic to the input modality. We conduct direct optimizations and quantization of the trained model (i.e., prior to inference on new data). Our results yield substantial gains, in terms of speedup, latency, through-put, and reduction in memory usage, while the segmentation performance of the initial and the optimized models remains stable, i.e., as quantified by both the Dice Similarity Coefficient and the Hausdorff Distance. These findings support post-training optimizations as a promising approach for enabling the execution of advanced DL methodologies on plain commercial-grade CPUs, and hence contributing to their translation in limited- and low- resource clinical environments.
Collapse
Affiliation(s)
- Siddhesh P Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ravi Panchumarthy
- Intel Health and Life Sciences, Intel Corporation, Santa Clara, CA, USA
| | - Deepthi Karkada
- Intel Health and Life Sciences, Intel Corporation, Santa Clara, CA, USA
| | - Junwen Wu
- Intel Health and Life Sciences, Intel Corporation, Santa Clara, CA, USA
| | - Dmitry Kurtaev
- Intel Health and Life Sciences, Intel Corporation, Santa Clara, CA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prashant Shah
- Intel Health and Life Sciences, Intel Corporation, Santa Clara, CA, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Predicting Short-Term Survival after Gross Total or Near Total Resection in Glioblastomas by Machine Learning-Based Radiomic Analysis of Preoperative MRI. Cancers (Basel) 2021; 13:cancers13205047. [PMID: 34680199 PMCID: PMC8533879 DOI: 10.3390/cancers13205047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023] Open
Abstract
Radiomics, in combination with artificial intelligence, has emerged as a powerful tool for the development of predictive models in neuro-oncology. Our study aims to find an answer to a clinically relevant question: is there a radiomic profile that can identify glioblastoma (GBM) patients with short-term survival after complete tumor resection? A retrospective study of GBM patients who underwent surgery was conducted in two institutions between January 2019 and January 2020, along with cases from public databases. Cases with gross total or near total tumor resection were included. Preoperative structural multiparametric magnetic resonance imaging (mpMRI) sequences were pre-processed, and a total of 15,720 radiomic features were extracted. After feature reduction, machine learning-based classifiers were used to predict early mortality (<6 months). Additionally, a survival analysis was performed using the random survival forest (RSF) algorithm. A total of 203 patients were enrolled in this study. In the classification task, the naive Bayes classifier obtained the best results in the test data set, with an area under the curve (AUC) of 0.769 and classification accuracy of 80%. The RSF model allowed the stratification of patients into low- and high-risk groups. In the test data set, this model obtained values of C-Index = 0.61, IBS = 0.123 and integrated AUC at six months of 0.761. In this study, we developed a reliable predictive model of short-term survival in GBM by applying open-source and user-friendly computational means. These new tools will assist clinicians in adapting our therapeutic approach considering individual patient characteristics.
Collapse
|
19
|
Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression. BRAINLESION : GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES. BRAINLES (WORKSHOP) 2021; 12658:157-167. [PMID: 34514469 DOI: 10.1007/978-3-030-72084-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma ( GBM ) is arguably the most aggressive, infiltrative, and heterogeneous type of adult brain tumor. Biophysical modeling of GBM growth has contributed to more informed clinical decision-making. However, deploying a biophysical model to a clinical environment is challenging since underlying computations are quite expensive and can take several hours using existing technologies. Here we present a scheme to accelerate the computation. In particular, we present a deep learning ( DL )-based logistic regression model to estimate the GBM's biophysical growth in seconds. This growth is defined by three tumor-specific parameters: 1) a diffusion coefficient in white matter ( Dw ), which prescribes the rate of infiltration of tumor cells in white matter, 2) a mass-effect parameter ( Mp ), which defines the average tumor expansion, and 3) the estimated time ( T ) in number of days that the tumor has been growing. Preoperative structural multi-parametric MRI ( mpMRI ) scans from n = 135 subjects of the TCGA-GBM imaging collection are used to quantitatively evaluate our approach. We consider the mpMRI intensities within the region defined by the abnormal FLAIR signal envelope for training one DL model for each of the tumor-specific growth parameters. We train and validate the DL-based predictions against parameters derived from biophysical inversion models. The average Pearson correlation coefficients between our DL-based estimations and the biophysical parameters are 0.85 for Dw, 0.90 for Mp, and 0.94 for T, respectively. This study unlocks the power of tumor-specific parameters from biophysical tumor growth estimation. It paves the way towards their clinical translation and opens the door for leveraging advanced radiomic descriptors in future studies by means of a significantly faster parameter reconstruction compared to biophysical growth modeling approaches.
Collapse
|
20
|
Abstract
Radiomics is a novel technique in which quantitative phenotypes or features are extracted from medical images. Machine learning enables analysis of large quantities of medical imaging data generated by radiomic feature extraction. A growing number of studies based on these methods have developed tools for neuro-oncology applications. Despite the initial promises, many of these imaging tools remain far from clinical implementation. One major limitation hindering the use of these models is their lack of reproducibility when applied across different institutions and clinical settings. In this article, we discuss the importance of standardization of methodology and reporting in our effort to improve reproducibility. Ongoing efforts of standardization for neuro-oncological imaging are reviewed. Challenges related to standardization and potential disadvantages in over-standardization are also described. Ultimately, greater multi-institutional collaborative effort is needed to provide and implement standards for data acquisition and analysis methods to facilitate research results to be interoperable and reliable for integration into different practice environments.
Collapse
Affiliation(s)
- Xiao Tian Li
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Pati S, Verma R, Akbari H, Bilello M, Hill VB, Sako C, Correa R, Beig N, Venet L, Thakur S, Serai P, Ha SM, Blake GD, Shinohara RT, Tiwari P, Bakas S. Reproducibility analysis of multi-institutional paired expert annotations and radiomic features of the Ivy Glioblastoma Atlas Project (Ivy GAP) dataset. Med Phys 2020; 47:6039-6052. [PMID: 33118182 DOI: 10.1002/mp.14556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/26/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address two critical challenges with regard to developing robust radiomic approaches: (a) the lack of availability of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e., enhancing tumor, non-enhancing tumor core, peritumoral edematous/infiltrated tissue) and (b) identifying "reproducible" radiomic features that are robust to segmentation variability across readers/sites. ACQUISITION AND VALIDATION METHODS From TCIA's Ivy GAP cohort, we obtained a paired set (n = 31) of expert annotations approved by two board-certified neuroradiologists at the Hospital of the University of Pennsylvania (UPenn) and at Case Western Reserve University (CWRU). For these studies, we performed a reproducibility study that assessed the variability in (a) segmentation labels and (b) radiomic features, between these paired annotations. The radiomic variability was assessed on a comprehensive panel of 11 700 radiomic features including intensity, volumetric, morphologic, histogram-based, and textural parameters, extracted for each of the paired sets of annotations. Our results demonstrated (a) a high level of inter-rater agreement (median value of DICE ≥0.8 for all sub-compartments), and (b) ≈24% of the extracted radiomic features being highly correlated (based on Spearman's rank correlation coefficient) to annotation variations. These robust features largely belonged to morphology (describing shape characteristics), intensity (capturing intensity profile statistics), and COLLAGE (capturing heterogeneity in gradient orientations) feature families. DATA FORMAT AND USAGE NOTES We make publicly available on TCIA's Analysis Results Directory (https://doi.org/10.7937/9j41-7d44), the complete set of (a) multi-institutional expert annotations for the tumor sub-compartments, (b) 11 700 radiomic features, and (c) the associated reproducibility meta-analysis. POTENTIAL APPLICATIONS The annotations and the associated meta-data for Ivy GAP are released with the purpose of enabling researchers toward developing image-based biomarkers for prognostic/predictive applications in GBM.
Collapse
Affiliation(s)
- Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruchika Verma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michel Bilello
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Virginia B Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Correa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Niha Beig
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ludovic Venet
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Siddhesh Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Prashant Serai
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Computer Science and Engineering, The Ohio State University, OH, 43210, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Geri D Blake
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Russell Taki Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Penn Statistical Imaging and Visualization Endeavor (PennSIVE), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pallavi Tiwari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Fathi Kazerooni A, Akbari H, Shukla G, Badve C, Rudie JD, Sako C, Rathore S, Bakas S, Pati S, Singh A, Bergman M, Ha SM, Kontos D, Nasrallah M, Bagley SJ, Lustig RA, O'Rourke DM, Sloan AE, Barnholtz-Sloan JS, Mohan S, Bilello M, Davatzikos C. Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma. JCO Clin Cancer Inform 2020; 4:234-244. [PMID: 32191542 PMCID: PMC7113126 DOI: 10.1200/cci.19.00121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To construct a multi-institutional radiomic model that supports upfront prediction of progression-free survival (PFS) and recurrence pattern (RP) in patients diagnosed with glioblastoma multiforme (GBM) at the time of initial diagnosis. PATIENTS AND METHODS We retrospectively identified data for patients with newly diagnosed GBM from two institutions (institution 1, n = 65; institution 2, n = 15) who underwent gross total resection followed by standard adjuvant chemoradiation therapy, with pathologically confirmed recurrence, sufficient follow-up magnetic resonance imaging (MRI) scans to reliably determine PFS, and available presurgical multiparametric MRI (MP-MRI). The advanced software suite Cancer Imaging Phenomics Toolkit (CaPTk) was leveraged to analyze standard clinical brain MP-MRI scans. A rich set of imaging features was extracted from the MP-MRI scans acquired before the initial resection and was integrated into two distinct imaging signatures for predicting mean shorter or longer PFS and near or distant RP. The predictive signatures for PFS and RP were evaluated on the basis of different classification schemes: single-institutional analysis, multi-institutional analysis with random partitioning of the data into discovery and replication cohorts, and multi-institutional assessment with data from institution 1 as the discovery cohort and data from institution 2 as the replication cohort. RESULTS These predictors achieved cross-validated classification performance (ie, area under the receiver operating characteristic curve) of 0.88 (single-institution analysis) and 0.82 to 0.83 (multi-institution analysis) for prediction of PFS and 0.88 (single-institution analysis) and 0.56 to 0.71 (multi-institution analysis) for prediction of RP. CONCLUSION Imaging signatures of presurgical MP-MRI scans reveal relatively high predictability of time and location of GBM recurrence, subject to the patients receiving standard first-line chemoradiation therapy. Through its graphical user interface, CaPTk offers easy accessibility to advanced computational algorithms for deriving imaging signatures predictive of clinical outcome and could similarly be used for a variety of radiomic and radiogenomic analyses.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gaurav Shukla
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiation Oncology, Christiana Care Helen F. Graham Cancer Center and Research Institute, Newark, DE.,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chaitra Badve
- Department of Radiology, University Hospitals-Seidman Cancer Center, Cleveland, OH.,Case Comprehensive Cancer Center, Cleveland, OH
| | - Jeffrey D Rudie
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Saima Rathore
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarthak Pati
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark Bergman
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Despina Kontos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - MacLean Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephen J Bagley
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Donald M O'Rourke
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Andrew E Sloan
- Case Western Reserve University School of Medicine, Cleveland, OH.,Case Comprehensive Cancer Center, Cleveland, OH.,Department of Neurologic Surgery, University Hospitals-Seidman Cancer Center, Cleveland, OH
| | - Jill S Barnholtz-Sloan
- Case Western Reserve University School of Medicine, Cleveland, OH.,Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michel Bilello
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Bakas S, Shukla G, Akbari H, Erus G, Sotiras A, Rathore S, Sako C, Min Ha S, Rozycki M, Shinohara RT, Bilello M, Davatzikos C. Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities. J Med Imaging (Bellingham) 2020; 7:031505. [PMID: 32566694 DOI: 10.1117/1.jmi.7.3.031505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose: Glioblastoma, the most common and aggressive adult brain tumor, is considered noncurative at diagnosis, with 14 to 16 months median survival following treatment. There is increasing evidence that noninvasive integrative analysis of radiomic features can predict overall and progression-free survival, using advanced multiparametric magnetic resonance imaging (Adv-mpMRI). If successfully applicable, such noninvasive markers can considerably influence patient management. However, most patients prior to initiation of therapy typically undergo only basic structural mpMRI (Bas-mpMRI, i.e., T1, T1-Gd, T2, and T2-fluid-attenuated inversion recovery) preoperatively, rather than Adv-mpMRI that provides additional vascularization (dynamic susceptibility contrast-MRI) and cell-density (diffusion tensor imaging) related information. Approach: We assess a retrospective cohort of 101 glioblastoma patients with available Adv-mpMRI from a previous study, which has shown that an initial feature panel (IFP, i.e., intensity, volume, location, and growth model parameters) extracted from Adv-mpMRI can yield accurate overall survival stratification. We focus on demonstrating that equally accurate prediction models can be constructed using augmented radiomic feature panels (ARFPs, i.e., integrating morphology and textural descriptors) extracted solely from widely available Bas-mpMRI, obviating the need for using Adv-mpMRI. We extracted 1612 radiomic features from distinct tumor subregions to build multivariate models that stratified patients as long-, intermediate-, or short-survivors. Results: The classification accuracy of the model utilizing Adv-mpMRI protocols and the IFP was 72.77% and degraded to 60.89% when using only Bas-mpMRI. However, utilizing the ARFP on Bas-mpMRI improved the accuracy to 74.26%. Furthermore, Kaplan-Meier analysis demonstrated superior classification of subjects into short-, intermediate-, and long-survivor classes when using ARFP extracted from Bas-mpMRI. Conclusions: This quantitative evaluation indicates that accurate survival prediction in glioblastoma patients is feasible using solely Bas-mpMRI and integrative advanced radiomic features, which can compensate for the lack of Adv-mpMRI. Our finding holds promise for generalization across multiple institutions that may not have access to Adv-mpMRI and to better inform clinical decision-making about aggressive interventions and clinical trials.
Collapse
Affiliation(s)
- Spyridon Bakas
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Pathology and Laboratory Medicine, Philadelphia, PA, United States
| | - Gaurav Shukla
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Radiation Oncology, Philadelphia, PA, United States
| | - Hamed Akbari
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States
| | - Guray Erus
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States
| | - Aristeidis Sotiras
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States.,Washington University in St. Louis, School of Medicine, Institute for Informatics, Saint Louis, MO, United States.,Washington University in St. Louis, Department of Radiology, Saint Louis, MO, United States
| | - Saima Rathore
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States
| | - Chiharu Sako
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States
| | - Sung Min Ha
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States
| | - Martin Rozycki
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States
| | - Russell T Shinohara
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, PA, United States
| | - Michel Bilello
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States
| | - Christos Davatzikos
- University of Pennsylvania, Perelman School of Medicine, Center for Biomedical Image Computing and Analytics, Richards Medical Research Laboratories, Philadelphia, PA, United States.,University of Pennsylvania, Perelman School of Medicine, Richards Medical Research Laboratories, Department of Radiology, Philadelphia, PA, United States
| |
Collapse
|
24
|
Mang A, Bakas S, Subramanian S, Davatzikos C, Biros G. Integrated Biophysical Modeling and Image Analysis: Application to Neuro-Oncology. Annu Rev Biomed Eng 2020; 22:309-341. [PMID: 32501772 PMCID: PMC7520881 DOI: 10.1146/annurev-bioeng-062117-121105] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Central nervous system (CNS) tumors come with vastly heterogeneous histologic, molecular, and radiographic landscapes, rendering their precise characterization challenging. The rapidly growing fields of biophysical modeling and radiomics have shown promise in better characterizing the molecular, spatial, and temporal heterogeneity of tumors. Integrative analysis of CNS tumors, including clinically acquired multi-parametric magnetic resonance imaging (mpMRI) and the inverse problem of calibrating biophysical models to mpMRI data, assists in identifying macroscopic quantifiable tumor patterns of invasion and proliferation, potentially leading to improved (a) detection/segmentation of tumor subregions and (b) computer-aided diagnostic/prognostic/predictive modeling. This article presents a summary of (a) biophysical growth modeling and simulation,(b) inverse problems for model calibration, (c) these models' integration with imaging workflows, and (d) their application to clinically relevant studies. We anticipate that such quantitative integrative analysis may even be beneficial in a future revision of the World Health Organization (WHO) classification for CNS tumors, ultimately improving patient survival prospects.
Collapse
Affiliation(s)
- Andreas Mang
- Department of Mathematics, University of Houston, Houston, Texas 77204, USA;
| | - Spyridon Bakas
- Department of Mathematics, University of Houston, Houston, Texas 77204, USA;
| | - Shashank Subramanian
- Oden Institute of Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA; ,
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA); Department of Radiology; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - George Biros
- Oden Institute of Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA; ,
| |
Collapse
|
25
|
Pati S, Singh A, Rathore S, Gastounioti A, Bergman M, Ngo P, Ha SM, Bounias D, Minock J, Murphy G, Li H, Bhattarai A, Wolf A, Sridaran P, Kalarot R, Akbari H, Sotiras A, Thakur SP, Verma R, Shinohara RT, Yushkevich P, Fan Y, Kontos D, Davatzikos C, Bakas S. The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview. BRAINLESION : GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES. BRAINLES (WORKSHOP) 2020; 11993:380-394. [PMID: 32754723 PMCID: PMC7402244 DOI: 10.1007/978-3-030-46643-5_38] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this manuscript is to provide an overview of the technical specifications and architecture of the Cancer imaging Phenomics Toolkit (CaPTk www.cbica.upenn.edu/captk), a cross-platform, open-source, easy-to-use, and extensible software platform for analyzing 2D and 3D images, currently focusing on radiographic scans of brain, breast, and lung cancer. The primary aim of this platform is to enable swift and efficient translation of cutting-edge academic research into clinically useful tools relating to clinical quantification, analysis, predictive modeling, decision-making, and reporting workflow. CaPTk builds upon established open-source software toolkits, such as the Insight Toolkit (ITK) and OpenCV, to bring together advanced computational functionality. This functionality describes specialized, as well as general-purpose, image analysis algorithms developed during active multi-disciplinary collaborative research studies to address real clinical requirements. The target audience of CaPTk consists of both computational scientists and clinical experts. For the former it provides i) an efficient image viewer offering the ability of integrating new algorithms, and ii) a library of readily-available clinically-relevant algorithms, allowing batch-processing of multiple subjects. For the latter it facilitates the use of complex algorithms for clinically-relevant studies through a user-friendly interface, eliminating the prerequisite of a substantial computational background. CaPTk's long-term goal is to provide widely-used technology to make use of advanced quantitative imaging analytics in cancer prediction, diagnosis and prognosis, leading toward a better understanding of the biological mechanisms of cancer development.
Collapse
Affiliation(s)
- Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Rathore
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimilia Gastounioti
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Bergman
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Phuc Ngo
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitrios Bounias
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - James Minock
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Grayson Murphy
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Hongming Li
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Bhattarai
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Wolf
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Patmaa Sridaran
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Ratheesh Kalarot
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aristeidis Sotiras
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology and Institute for Informatics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, USA
| | - Siddhesh P Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Ragini Verma
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Yushkevich
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Lab., University of Pennsylvania (PICSL), Philadelphia, PA, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Despina Kontos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Thakur SP, Doshi J, Pati S, Ha SM, Sako C, Talbar S, Kulkarni U, Davatzikos C, Erus G, Bakas S. Skull-Stripping of Glioblastoma MRI Scans Using 3D Deep Learning. BRAINLESION : GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES. BRAINLES (WORKSHOP) 2019; 11992:57-68. [PMID: 32577629 PMCID: PMC7311100 DOI: 10.1007/978-3-030-46640-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Skull-stripping is an essential pre-processing step in computational neuro-imaging directly impacting subsequent analyses. Existing skull-stripping methods have primarily targeted non-pathologicallyaffected brains. Accordingly, they may perform suboptimally when applied on brain Magnetic Resonance Imaging (MRI) scans that have clearly discernible pathologies, such as brain tumors. Furthermore, existing methods focus on using only T1-weighted MRI scans, even though multi-parametric MRI (mpMRI) scans are routinely acquired for patients with suspected brain tumors. Here we present a performance evaluation of publicly available implementations of established 3D Deep Learning architectures for semantic segmentation (namely DeepMedic, 3D U-Net, FCN), with a particular focus on identifying a skull-stripping approach that performs well on brain tumor scans, and also has a low computational footprint. We have identified a retrospective dataset of 1,796 mpMRI brain tumor scans, with corresponding manually-inspected and verified gold-standard brain tissue segmentations, acquired during standard clinical practice under varying acquisition protocols at the Hospital of the University of Pennsylvania. Our quantitative evaluation identified DeepMedic as the best performing method (Dice = 97.9, Hausdorf f 95 = 2.68). We release this pre-trained model through the Cancer Imaging Phenomics Toolkit (CaPTk) platform.
Collapse
Affiliation(s)
- Siddhesh P Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Shri Guru Gobind Singhji Institute of Engineering and Technology (SGGS), Nanded, Maharashtra, India
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjay Talbar
- Shri Guru Gobind Singhji Institute of Engineering and Technology (SGGS), Nanded, Maharashtra, India
| | - Uday Kulkarni
- Shri Guru Gobind Singhji Institute of Engineering and Technology (SGGS), Nanded, Maharashtra, India
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Aliotta E, Nourzadeh H, Batchala PP, Schiff D, Lopes MB, Druzgal JT, Mukherjee S, Patel SH. Molecular Subtype Classification in Lower-Grade Glioma with Accelerated DTI. AJNR Am J Neuroradiol 2019; 40:1458-1463. [PMID: 31413006 DOI: 10.3174/ajnr.a6162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Image-based classification of lower-grade glioma molecular subtypes has substantial prognostic value. Diffusion tensor imaging has shown promise in lower-grade glioma subtyping but currently requires lengthy, nonstandard acquisitions. Our goal was to investigate lower-grade glioma classification using a machine learning technique that estimates fractional anisotropy from accelerated diffusion MR imaging scans containing only 3 diffusion-encoding directions. MATERIALS AND METHODS Patients with lower-grade gliomas (n = 41) (World Health Organization grades II and III) with known isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status were imaged preoperatively with DTI. Whole-tumor volumes were autodelineated using conventional anatomic MR imaging sequences. In addition to conventional ADC and fractional anisotropy reconstructions, fractional anisotropy estimates were computed from 3-direction DTI subsets using DiffNet, a neural network that directly computes fractional anisotropy from raw DTI data. Differences in whole-tumor ADC, fractional anisotropy, and estimated fractional anisotropy were assessed between IDH-wild-type and IDH-mutant lower-grade gliomas with and without 1p/19q codeletion. Multivariate classification models were developed using whole-tumor histogram and texture features from ADC, ADC + fractional anisotropy, and ADC + estimated fractional anisotropy to identify the added value provided by fractional anisotropy and estimated fractional anisotropy. RESULTS ADC (P = .008), fractional anisotropy (P < .001), and estimated fractional anisotropy (P < .001) significantly differed between IDH-wild-type and IDH-mutant lower-grade gliomas. ADC (P < .001) significantly differed between IDH-mutant gliomas with and without codeletion. ADC-only multivariate classification predicted IDH mutation status with an area under the curve of 0.81 and codeletion status with an area under the curve of 0.83. Performance improved to area under the curve = 0.90/0.94 for the ADC + fractional anisotropy classification and to area under the curve = 0.89/0.89 for the ADC + estimated fractional anisotropy classification. CONCLUSIONS Fractional anisotropy estimates made from accelerated 3-direction DTI scans add value in classifying lower-grade glioma molecular status.
Collapse
Affiliation(s)
- E Aliotta
- From the Departments of Radiation Oncology (E.A., H.N.)
| | - H Nourzadeh
- From the Departments of Radiation Oncology (E.A., H.N.)
| | | | | | - M B Lopes
- Pathology (Neuropathology) (M.B.L.), University of Virginia, Charlottesville, Virginia
| | | | | | - S H Patel
- Radiology (P.P.B., J.T.D., S.M., S.H.P.)
| |
Collapse
|
28
|
Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 2019; 46:2638-2655. [PMID: 31240330 DOI: 10.1007/s00259-019-04391-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Radiomics in nuclear medicine is rapidly expanding. Reproducibility of radiomics studies in multicentre settings is an important criterion for clinical translation. We therefore performed a meta-analysis to investigate reproducibility of radiomics biomarkers in PET imaging and to obtain quantitative information regarding their sensitivity to variations in various imaging and radiomics-related factors as well as their inherent sensitivity. Additionally, we identify and describe data analysis pitfalls that affect the reproducibility and generalizability of radiomics studies. After a systematic literature search, 42 studies were included in the qualitative synthesis, and data from 21 were used for the quantitative meta-analysis. Data concerning measurement agreement and reliability were collected for 21 of 38 different factors associated with image acquisition, reconstruction, segmentation and radiomics-specific processing steps. Variations in voxel size, segmentation and several reconstruction parameters strongly affected reproducibility, but the level of evidence remained weak. Based on the meta-analysis, we also assessed inherent sensitivity to variations of 110 PET image biomarkers. SUVmean and SUVmax were found to be reliable, whereas image biomarkers based on the neighbourhood grey tone difference matrix and most biomarkers based on the size zone matrix were found to be highly sensitive to variations, and should be used with care in multicentre settings. Lastly, we identify 11 data analysis pitfalls. These pitfalls concern model validation and information leakage during model development, but also relate to reporting and the software used for data analysis. Avoiding such pitfalls is essential for minimizing bias in the results and to enable reproduction and validation of radiomics studies.
Collapse
Affiliation(s)
- Alex Zwanenburg
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S. Emerging Applications of Artificial Intelligence in Neuro-Oncology. Radiology 2019; 290:607-618. [PMID: 30667332 DOI: 10.1148/radiol.2018181928] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Due to the exponential growth of computational algorithms, artificial intelligence (AI) methods are poised to improve the precision of diagnostic and therapeutic methods in medicine. The field of radiomics in neuro-oncology has been and will likely continue to be at the forefront of this revolution. A variety of AI methods applied to conventional and advanced neuro-oncology MRI data can already delineate infiltrating margins of diffuse gliomas, differentiate pseudoprogression from true progression, and predict recurrence and survival better than methods used in daily clinical practice. Radiogenomics will also advance our understanding of cancer biology, allowing noninvasive sampling of the molecular environment with high spatial resolution and providing a systems-level understanding of underlying heterogeneous cellular and molecular processes. By providing in vivo markers of spatial and molecular heterogeneity, these AI-based radiomic and radiogenomic tools have the potential to stratify patients into more precise initial diagnostic and therapeutic pathways and enable better dynamic treatment monitoring in this era of personalized medicine. Although substantial challenges remain, radiologic practice is set to change considerably as AI technology is further developed and validated for clinical use.
Collapse
Affiliation(s)
- Jeffrey D Rudie
- From the Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 (J.D.R., C.D., S.M.); Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.M.R.); and Department of Diagnostic Medicine, Dell Medical School, University of Texas, Austin, Tex (R.N.B.)
| | - Andreas M Rauschecker
- From the Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 (J.D.R., C.D., S.M.); Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.M.R.); and Department of Diagnostic Medicine, Dell Medical School, University of Texas, Austin, Tex (R.N.B.)
| | - R Nick Bryan
- From the Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 (J.D.R., C.D., S.M.); Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.M.R.); and Department of Diagnostic Medicine, Dell Medical School, University of Texas, Austin, Tex (R.N.B.)
| | - Christos Davatzikos
- From the Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 (J.D.R., C.D., S.M.); Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.M.R.); and Department of Diagnostic Medicine, Dell Medical School, University of Texas, Austin, Tex (R.N.B.)
| | - Suyash Mohan
- From the Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 (J.D.R., C.D., S.M.); Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.M.R.); and Department of Diagnostic Medicine, Dell Medical School, University of Texas, Austin, Tex (R.N.B.)
| |
Collapse
|