1
|
Costa A, Breccia M. SOHO State of the Art Updates and Next Questions: Combination Therapy in Chronic Myeloid Leukemia in Chronic Phase. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:421-431. [PMID: 39920000 DOI: 10.1016/j.clml.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 02/09/2025]
Abstract
Therapeutic strategies for chronic myeloid leukemia (CML) are rapidly evolving, with novel agents emerging to address the limitations of current treatments. Goals of CML management are disease control and achieve a deep and sustained molecular response for a possible successful treatment-free remission (TFR). However, a significant proportion of patients fail to reach adequate molecular response and require sequential therapies. A crucial aspect of treatment resistance lies in the persistence of leukemic stem cells (LSCs), which serve as a reservoir for disease recurrence. Increasing focus is placed on combination strategies to overcome the constraints of TKI monotherapy. Various strategies have been explored, starting with the combination of interferon (IFN) and TKIs. The investigation of alternative administration methods, dosing regimens, or extended treatment durations in clinical trials involving IFN represents potential avenues to address current conflicting results. Additionally, the combination of ATP-competitive TKIs with asciminib has shown encouraging preclinical and clinical results, with further data needed for a comprehensive safety profile. Recently, efforts to inhibit other signaling pathways have been explored but with contrasting results. Despite ongoing advancements, TKIs remain the cornerstone of both current and future combination therapies. Their integration with personalized approaches is crucial to overcome complex biological challenges and ensure long-term, effective and safe treatment for CML patients.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy.
| |
Collapse
|
2
|
Costa A, Scalzulli E, Carmosino I, Ielo C, Bisegna ML, Martelli M, Breccia M. Pharmacotherapeutic advances for chronic myelogenous leukemia: beyond tyrosine kinase inhibitors. Expert Opin Pharmacother 2024; 25:189-202. [PMID: 38488824 DOI: 10.1080/14656566.2024.2331778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Despite the notable success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML), a subset of patients experiences resistance, or relapse after discontinuation. This challenge is attributed to the Ph+ leukemia stem cells (LSCs) pool not fully involved in the inhibition process due to the current therapeutic approach. AREAS COVERED Current pharmacological advancements in CML therapy focus on targeting LSCs, intervening in self-renewal pathways, and exploiting biological vulnerabilities. Beyond BCR::ABL1 inhibition, innovative approaches include immunotherapy, epigenetic modulation, and interference with microenvironmental mechanisms. EXPERT OPINION Diverse therapeutic strategies beyond TKIs are under investigation. Immunotherapy with interferon-α (IFN-α) shows some biological effects, although further research is needed for optimal application in enhancing discontinuation rates. Other compounds were able to mobilize Ph+ LSCs from the bone marrow niche (DPP-IV inhibitor vildagliptin or PAI-1 inhibitor TM5614) increasing the LSC clearance or target the CD26, a Ph+ specific surface receptor. It is noteworthy that the majority of these alternative strategies still incorporate TKIs. In conclusion, novel therapeutic perspectives are emerging for CML, holding the potential for substantial advancements in disease treatment.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Ida Carmosino
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maria Laura Bisegna
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
3
|
Valent P, Sadovnik I, Peter B, Ivanov D, Schulenburg A, Hadzijusufovic E, Willmann M, Rülicke T, Herrmann H, Rabitsch W, Karlic H, Gleixner KV, Sperr WR, Hoermann G, Dahlhoff M, Pfeilstöcker M, Keil F, Lion T, Grunt TW. Vienna Cancer Stem Cell Club (VCSCC): 20 year jubilee and future perspectives. Expert Rev Hematol 2023; 16:659-670. [PMID: 37493441 DOI: 10.1080/17474086.2023.2232545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION The Vienna Cancer Stem Cell Club (VCSCC) was launched by a group of scientists in Vienna in 2002. AREAS COVERED Major aims of the VCSCC are to support research on cancer stem cells (CSC) in hematopoietic malignancies and to translate CSC-related markers and targets into clinical application. A primary focus of research in the VCSCC is the leukemic stem cell (LSC). Between 2013 and 2021, members of the VCSCC established a special research program on myeloproliferative neoplasms and since 2008, members of the VCSCC run the Ludwig Boltzmann Institute for Hematology and Oncology. In all these years, the VCSCC provided a robust intellectual platform for translational hematology and LSC research in Vienna. Furthermore, the VCSCC interacts with several national and international study groups and societies in the field. Representatives of the VCSCC also organized a number of international meetings and conferences on neoplastic stem cells, including LSC, in the past 15 years, and contributed to the definition and classification of CSC/LSC and related pre-malignant and malignant conditions. EXPERT OPINION The VCSCC will continue to advance the field and to develop LSC-detecting and LSC-eradicating concepts through which diagnosis, prognostication, and therapy of blood cancer patients should improve.
Collapse
Affiliation(s)
- Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Irina Sadovnik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Barbara Peter
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Axel Schulenburg
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Vienna, Austria
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals and Horses, University Clinic for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Willmann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals and Horses, University Clinic for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Institute of in vivo and in vitro Models, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Vienna, Austria
| | - Heidrun Karlic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Karoline V Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - Maik Dahlhoff
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Institute of in vivo and in vitro Models, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Pfeilstöcker
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Third Medical Department for Hematology and Oncology, Hanusch Hospital, Vienna, Austria
| | - Felix Keil
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Third Medical Department for Hematology and Oncology, Hanusch Hospital, Vienna, Austria
| | - Thomas Lion
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- St.Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Thomas W Grunt
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Division of Clinical Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Su R, Li C, Wang X, Li Z, Wen Z, Yin Z, Huang G, Liu Y, Yang J, Hu H, Nie H, Zhang K, Fei J. PPFIA1-targeting miR-181a mimic and saRNA overcome imatinib resistance in BCR-ABL1-independent chronic myeloid leukemia by suppressing leukemia stem cell regeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:729-742. [PMID: 37234746 PMCID: PMC10208829 DOI: 10.1016/j.omtn.2023.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
A large proportion of patients with chronic myeloid leukemia (CML; 20%-50%) develop resistance to imatinib in a BCR-ABL1-independent manner. Therefore, new therapeutic strategies for use in this subset of imatinib-resistant CML patients are urgently needed. In this study, we used a multi-omics approach to show that PPFIA1 was targeted by miR-181a. We demonstrate that both miR-181a and PPFIA1-siRNA reduced the cell viability and proliferative capacity of CML cells in vitro, as well as prolonged the survival of B-NDG mice harboring human BCR-ABL1-independent imatinib-resistant CML cells. Furthermore, treatment with miR-181a mimic and PPFIA1-siRNA inhibited the self-renewal of c-kit+ and CD34+ leukemic stem cells and promoted their apoptosis. Small activating (sa)RNAs targeting the promoter of miR-181a increased the expression of endogenous primitive miR-181a (pri-miR-181a). Transfection with saRNA 1-3 inhibited the proliferation of imatinib-sensitive and -resistant CML cells. However, only saRNA-3 showed a stronger and more sustained inhibitory effect than the miR-181a mimic. Collectively, these results show that miR-181a and PPFIA1-siRNA may overcome the imatinib resistance of BCR-ABL1-independent CML, partially by inhibiting the self-renewal of leukemia stem cells and promoting their apoptosis. Moreover, exogenous saRNAs represent promising therapeutic agents in the treatment of imatinib-resistant BCR-ABL1-independent CML.
Collapse
Affiliation(s)
- Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Xiuyuan Wang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhendong Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Ziqi Wen
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Haiyan Hu
- Clinical Trial Center of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hong Nie
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| |
Collapse
|
5
|
Pacelli P, Santoni A, Sicuranza A, Abruzzese E, Giai V, Crugnola M, Annunziata M, Galimberti S, Iurlo A, Luciano L, Sorà F, Fava C, Bestoso E, Marzano C, Cartocci A, Defina M, Sammartano V, Cencini E, Raspadori D, Bocchia M. Prospective monitoring of chronic myeloid leukemia patients from the time of TKI discontinuation: the fate of peripheral blood CD26 + leukemia stem cells. Front Pharmacol 2023; 14:1194712. [PMID: 37305536 PMCID: PMC10250640 DOI: 10.3389/fphar.2023.1194712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: In chronic myeloid leukemia (CML), about half of the patients achieving a deep and stable molecular response with tyrosine kinase inhibitors (TKIs) may discontinue TKI treatment without disease recurrence. As such, treatment-free remission (TFR) has become an ambitious goal of treatment. Given the evidence that deepness and duration of molecular response are necessary but not sufficient requisites for a successful TFR, additional biological criteria are needed to identify CML patients suitable for efficacious discontinuation. Leukemia stem cells (LSCs) are supposed to be the reservoir of the disease. Previously, we demonstrated that residual circulating CD34+/CD38-/CD26+ LSCs were still detectable in a consistent number of CML patients during TFR. Methods: CML LSCs could be easily identified by flow-cytometry as they express the CD34+/CD38-/CD26+ phenotype. In this study, we explored the role of these cells and their correlation with molecular response in a cohort of 109 consecutive chronic phase CML patients prospectively monitored from the time of TKI discontinuation. Results: After a median observation time of 33 months from TKI discontinuation, 38/109 (35%) patients failed TFR after a median time of 4 months, while 71/109 (65%) patients are still in TFR. At TKI discontinuation, peripheral blood CD26+LSCs were undetectable in 48/109 (44%) patients and detectable in 61/109 (56%). No statistically significant correlation between detectable/undetectable CD26+LSCs and the rate of TFR loss was found (p = 0.616). The incidence of TFR loss based on the type of TKI treatment was statistically significant for imatinib treatment compared to that of nilotinib (p = 0.039). Exploring the behavior of CD26+LSCs during TFR, we observed fluctuating values that were very variable between patients, and they were not predictive of TFR loss. Discussion: Up to date, our results confirm that CD26+LSCs are detectable at the time of TKI discontinuation and during TFR. Moreover, at least for the observation median time of the study, the persistence of "fluctuating" values of residual CD26+LSCs does not hamper the possibility to maintain a stable TFR. On the contrary, even patients discontinuing TKI with undetectable CD26+LSCs could undergo TFR loss. Our results suggest that factors other than residual LSCs "burden" playing an active role in controlling disease recurrence. Additional studies evaluating CD26+LSCs' ability to modulate the immune system and their interaction in CML patients with very long stable TFR are ongoing.
Collapse
Affiliation(s)
- Paola Pacelli
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Adele Santoni
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Anna Sicuranza
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Valentina Giai
- Division of Hematology, Città Della Salute e Della Scienza, Turin, Italy
| | - Monica Crugnola
- Ematologia e Centro BMT, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigiana Luciano
- Hematology, Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Federica Sorà
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmen Fava
- Azienda Ospedaliera Ordine Mauriziano di Torino, Turin, Italy
| | - Elena Bestoso
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Cristina Marzano
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Marzia Defina
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Vincenzo Sammartano
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Emanuele Cencini
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Donatella Raspadori
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Monica Bocchia
- Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
6
|
BH3 mimetics and TKI combined therapy for Chronic Myeloid Leukemia. Biochem J 2023; 480:161-176. [PMID: 36719792 DOI: 10.1042/bcj20210608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023]
Abstract
Chronic myeloid leukemia (CML) was considered for a long time one of the most hostile leukemia that was incurable for most of the patients, predominantly due to the extreme resistance to chemotherapy. Part of the resistance to cell death (apoptosis) is the result of increased levels of anti-apoptotic and decreased levels of pro-apoptotic member of the BCL-2 family induced by the BCR-ABL1 oncoprotein. BCR-ABL1 is a constitutively active tyrosine kinase responsible for initiating multiple and oncogenic signaling pathways. With the development of specific BCR-ABL1 tyrosine kinase inhibitors (TKIs) CML became a much more tractable disease. Nevertheless, TKIs do not cure CML patients and a substantial number of them develop intolerance or become resistant to the treatment. Therefore, novel anti-cancer strategies must be developed to treat CML patients independently or in combination with TKIs. Here, we will discuss the mechanisms of BCR-ABL1-dependent and -independent resistance to TKIs and the use of BH3-mimetics as a potential tool to fight CML.
Collapse
|
7
|
Szczepanek E, Chukwu O, Kamińska M, Wysogląd H, Cenda A, Zawada M, Jakóbczyk M, Wącław J, Sacha T. Long-term outcomes of patients with Chronic Myeloid Leukemia who commenced treatment with imatinib: a 20-year single-centre experience. Leuk Lymphoma 2022; 63:2213-2223. [DOI: 10.1080/10428194.2022.2068000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elżbieta Szczepanek
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
- Doctoral School in Medical Sciences and Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Ositadima Chukwu
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
| | - Magdalena Kamińska
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
| | - Hubert Wysogląd
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cenda
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
| | - Magdalena Zawada
- Department of Hematology Diagnostics, The University Hospital, Cracow, Poland
| | | | - Joanna Wącław
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Sacha
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
8
|
BCR-ABL1 Tyrosine Kinase Complex Signaling Transduction: Challenges to Overcome Resistance in Chronic Myeloid Leukemia. Pharmaceutics 2022; 14:pharmaceutics14010215. [PMID: 35057108 PMCID: PMC8780254 DOI: 10.3390/pharmaceutics14010215] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The constitutively active BCR-ABL1 tyrosine kinase, found in t(9;22)(q34;q11) chromosomal translocation-derived leukemia, initiates an extremely complex signaling transduction cascade that induces a strong state of resistance to chemotherapy. Targeted therapies based on tyrosine kinase inhibitors (TKIs), such as imatinib, dasatinib, nilotinib, bosutinib, and ponatinib, have revolutionized the treatment of BCR-ABL1-driven leukemia, particularly chronic myeloid leukemia (CML). However, TKIs do not cure CML patients, as some develop TKI resistance and the majority relapse upon withdrawal from treatment. Importantly, although BCR-ABL1 tyrosine kinase is necessary to initiate and establish the malignant phenotype of Ph-related leukemia, in the later advanced phase of the disease, BCR-ABL1-independent mechanisms are also in place. Here, we present an overview of the signaling pathways initiated by BCR-ABL1 and discuss the major challenges regarding immunologic/pharmacologic combined therapies.
Collapse
|
9
|
Chen Y, Zou J, Cheng F, Li W. Treatment-Free Remission in Chronic Myeloid Leukemia and New Approaches by Targeting Leukemia Stem Cells. Front Oncol 2021; 11:769730. [PMID: 34778088 PMCID: PMC8581243 DOI: 10.3389/fonc.2021.769730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic landscape for chronic myeloid leukemia (CML) has improved significantly with the approval of tyrosine kinase inhibitors (TKIs) for therapeutic use. Most patients with optimal responses to TKIs can have a normal life expectancy. Treatment-free remission (TFR) after discontinuing TKI has increasingly become a new goal for CML treatment. However, TKI only "control" CML, and relapse after discontinuation has become a key factor hindering patient access to attempt TFR. In this study, we reviewed studies on TKI discontinuation, including both first and second-generation TKI. We also reviewed predictors of relapse, new monitoring methods, and strategies targeting leukemic stem cells.
Collapse
Affiliation(s)
| | | | | | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Exosomes from Bone Marrow Microenvironment-Derived Mesenchymal Stem Cells Affect CML Cells Growth and Promote Drug Resistance to Tyrosine Kinase Inhibitors. Stem Cells Int 2020; 2020:8890201. [PMID: 33414831 PMCID: PMC7752271 DOI: 10.1155/2020/8890201] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Although major advances have been achieved in the treatment of chronic myeloid leukemia (CML) by using tyrosine kinase inhibitors, patients relapse after withdrawal and need long-term medication. This reflects the CML clones have not been eliminated completely. The precise mechanisms for the maintenance of CML cells are not yet fully understood. The bone marrow microenvironment constitutes the sanctuary for leukemic cells. Mesenchymal stem cells (MSC) are an important component of the bone marrow microenvironment (BM). It plays an important role in the development and drug resistance of CML. Accumulating evidence indicates that exosomes play a vital role in cell-to-cell communication. We successfully isolated and purified exosomes from human bone marrow microenvironment-derived mesenchymal stem cells (hBMMSC-Exo) by serial centrifugation. In the present study, we investigated the effect of hBMMSC-Exo on the proliferation, apoptosis, and drug resistance of CML cells. The results demonstrated that hBMMSC-Exo had the ability to inhibit the proliferation of CML cells in vitro via miR-15a and arrest cell cycle in the G0/G1 phase. However, the results obtained from BALB/c nu/nu mice studies apparently contradicted the in vitro results. In fact, hBMMSC-Exo increased tumor incidence and promoted tumor growth in vivo. Further study showed the antiapoptotic protein Bcl-2 expression increased, whereas the Caspase3 expression decreased. Moreover, the in vivo study in the xenograft tumor model showed that hBMMSC-Exo promoted the proliferation and decreased the sensitivity of CML cells to tyrosine kinase inhibitors, resulting in drug resistance. These results demonstrated that hBMMSC-Exo supported the maintenance of CML cells and drug resistance in BM by cell-extrinsic protective mechanisms. They also suggested that hBMMSC-Exo might be a potential target to overcome the microenvironment-mediated drug resistance.
Collapse
|
11
|
Polymethine Dye-Functionalized Nanoparticles for Targeting CML Stem Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:372-381. [PMID: 32913887 PMCID: PMC7452122 DOI: 10.1016/j.omto.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
In chronic myelogenous leukemia (CML), treatment with tyrosine kinase inhibitors (TKI) is unable to eradicate leukemic stem cells (LSC). Polymethine dye-functionalized nanoparticles can be internalized by specific cell types using transmembrane carrier proteins. In this study we investigated the uptake behavior of various polymethine dyes on leukemia cell lines and searched for carrier proteins that guide dye transport using RNA interference. The results show that the uptake of DY-635 is dependent on organic anion transport protein 1B3 (OATP1B3) in CML cells and immature myeloid precursor cells of CML patients. In contrast to nonspecific poly(lactide-co-glycolic acid) (PLGA) nanoparticle constructs, DY-635-functionalization of nanoparticles led to an uptake in CML cells. Investigation of these nanoparticles on bone marrow of CML patients showed a preferred uptake in LSC. The transcription of OATP1B3 is known to be induced under hypoxic conditions via the hypoxia-inducing factor 1 alpha (HIF1α), thus also in the stem cells niche. Since these cells have the potential to repopulate the bone marrow after CML treatment discontinuation, eliminating them by means of drug-loaded DY-635-functionalized PLGA nanoparticles deployed as a selective delivery system to LSC is highly relevant to the ongoing search for curative treatment options for CML patients.
Collapse
|
12
|
Rothe K, Babaian A, Nakamichi N, Chen M, Chafe SC, Watanabe A, Forrest DL, Mager DL, Eaves CJ, Dedhar S, Jiang X. Integrin-Linked Kinase Mediates Therapeutic Resistance of Quiescent CML Stem Cells to Tyrosine Kinase Inhibitors. Cell Stem Cell 2020; 27:110-124.e9. [DOI: 10.1016/j.stem.2020.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/25/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
|
13
|
Silvestri G, Trotta R, Stramucci L, Ellis JJ, Harb JG, Neviani P, Wang S, Eisfeld AK, Walker CJ, Zhang B, Srutova K, Gambacorti-Passerini C, Pineda G, Jamieson CHM, Stagno F, Vigneri P, Nteliopoulos G, May PC, Reid AG, Garzon R, Roy DC, Moutuou MM, Guimond M, Hokland P, Deininger MW, Fitzgerald G, Harman C, Dazzi F, Milojkovic D, Apperley JF, Marcucci G, Qi J, Polakova KM, Zou Y, Fan X, Baer MR, Calabretta B, Perrotti D. Persistence of Drug-Resistant Leukemic Stem Cells and Impaired NK Cell Immunity in CML Patients Depend on MIR300 Antiproliferative and PP2A-Activating Functions. Blood Cancer Discov 2020; 1:48-67. [PMID: 32974613 PMCID: PMC7510943 DOI: 10.1158/0008-5472.bcd-19-0039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/27/2019] [Accepted: 02/11/2020] [Indexed: 12/26/2022] Open
Abstract
Persistence of drug-resistant quiescent leukemic stem cells (LSC) and impaired natural killer (NK) cell immune response account for relapse of chronic myelogenous leukemia (CML). Inactivation of protein phosphatase 2A (PP2A) is essential for CML-quiescent LSC survival and NK cell antitumor activity. Here we show that MIR300 has antiproliferative and PP2A-activating functions that are dose dependently differentially induced by CCND2/CDK6 and SET inhibition, respectively. MIR300 is upregulated in CML LSCs and NK cells by bone marrow microenvironment (BMM) signals to induce quiescence and impair immune response, respectively. Conversely, BCR-ABL1 downregulates MIR300 in CML progenitors to prevent growth arrest and PP2A-mediated apoptosis. Quiescent LSCs escape apoptosis by upregulating TUG1 long noncoding RNA that uncouples and limits MIR300 function to cytostasis. Genetic and pharmacologic MIR300 modulation and/or PP2A-activating drug treatment restore NK cell activity, inhibit BMM-induced growth arrest, and selectively trigger LSC apoptosis in vitro and in patient-derived xenografts; hence, the importance of MIR300 and PP2A activity for CML development and therapy.
Collapse
Affiliation(s)
- Giovannino Silvestri
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rossana Trotta
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lorenzo Stramucci
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Justin J Ellis
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jason G Harb
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Paolo Neviani
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Shuzhen Wang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ann-Kathrin Eisfeld
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Christopher J Walker
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Bin Zhang
- Division of Hematopoietic Stem Cell and Leukemia Research, City of Hope National Medical Center, Duarte, California
| | - Klara Srutova
- Institute of Hematology and Blood Transfusion, University of Prague, Prague, Czech Republic
| | | | - Gabriel Pineda
- Department of Health Sciences, School of Health and Human Services, National University, San Diego, California
| | - Catriona H M Jamieson
- Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Fabio Stagno
- Division of Hematology and Unit of Medical Oncology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Paolo Vigneri
- Division of Hematology and Unit of Medical Oncology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Georgios Nteliopoulos
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Philippa C May
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Alistair G Reid
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Ramiro Garzon
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Denis-Claude Roy
- Department of Hematology and Cellular Therapy Laboratory, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Moutuaata M Moutuou
- Department of Hematology and Cellular Therapy Laboratory, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Martin Guimond
- Department of Hematology and Cellular Therapy Laboratory, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Peter Hokland
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Garrett Fitzgerald
- Center for Advanced Fetal Care University, University of Maryland School of Medicine, Baltimore, Maryland
| | - Christopher Harman
- Center for Advanced Fetal Care University, University of Maryland School of Medicine, Baltimore, Maryland
| | - Francesco Dazzi
- Division of Cancer Studies, Rayne Institute, King's College London, London, United Kingdom
| | - Dragana Milojkovic
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Jane F Apperley
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Guido Marcucci
- Division of Hematopoietic Stem Cell and Leukemia Research, City of Hope National Medical Center, Duarte, California
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Ying Zou
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaoxuan Fan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bruno Calabretta
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Danilo Perrotti
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Chronic Myeloid Leukemia Prognosis and Therapy: Criticisms and Perspectives. J Clin Med 2020; 9:jcm9061709. [PMID: 32498406 PMCID: PMC7357035 DOI: 10.3390/jcm9061709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Ph+ chronic myeloid leukemia (CML) is a clonal myeloproliferative disease whose clinical course is characterized by progression disease from the early chronic phase (CP) to the fatal blastic phase (BP). This programmed course is closely related to the translocation t(9;22)(q22;q11) and the resulting BCR-ABL1 fusion protein (p210) that drives the leukemic transformation of hematopoietic stem cells. Therefore, the cure of CML can only pass through the abrogation of the Ph+ clone. Allogeneic stem cell transplantation (allo-SCT) and interferon-alpha (IFNα) have been proven to reduce the Ph+ clone in a limited proportion of CML population and this translated in a lower rate of progression to BP and in a significant prolongation of survival. Tyrosine-kinase inhibitors (TKIs), lastly introduced in 2000, by preventing the disease blastic transformation and significantly prolonging the survival in up to 90% of the patient population, radically changed the fate of CML. The current therapy with TKIs induces a chronicization of the disease but several criticisms still persist, and the most relevant one is the sustainability of long-term therapy with TKIs in terms of compliance, toxicity and costs. The perspectives concern the optimization of therapy according to the age, the risk of disease, the potency and the safety profiles of the TKIs. The prolongation of survival is the most important end point which should be guaranteed to all patients. The treatment free remission (TFR) is the new goal that we would like to give to an increasing number of patients. The cure remains the main objective of CML therapy.
Collapse
|
15
|
SRSF1 mediates cytokine-induced impaired imatinib sensitivity in chronic myeloid leukemia. Leukemia 2020; 34:1787-1798. [PMID: 32051529 DOI: 10.1038/s41375-020-0732-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/10/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Patients with chronic myeloid leukemia (CML) who are treated with tyrosine kinase inhibitors (TKIs) experience significant heterogeneity regarding depth and speed of responses. Factors intrinsic and extrinsic to CML cells contribute to response heterogeneity and TKI resistance. Among extrinsic factors, cytokine-mediated TKI resistance has been demonstrated in CML progenitors, but the underlying mechanisms remain obscure. Using RNA-sequencing, we identified differentially expressed splicing factors in primary CD34+ chronic phase (CP) CML progenitors and controls. We found SRSF1 expression to be increased as a result of both BCR-ABL1- and cytokine-mediated signaling. SRSF1 overexpression conferred cytokine independence to untransformed hematopoietic cells and impaired imatinib sensitivity in CML cells, while SRSF1 depletion in CD34+ CP CML cells prevented the ability of extrinsic cytokines to decrease imatinib sensitivity. Mechanistically, PRKCH and PLCH1 were upregulated by elevated SRSF1 levels, and contributed to impaired imatinib sensitivity. Importantly, very high SRSF1 levels in the bone marrow of CML patients at presentation correlated with poorer clinical TKI responses. In summary, we find SRSF1 levels to be maintained in CD34+ CP CML progenitors by cytokines despite effective BCR-ABL1 inhibition, and that elevated levels promote impaired imatinib responses. Together, our data support an SRSF1/PRKCH/PLCH1 axis in contributing to cytokine-induced impaired imatinib sensitivity in CML.
Collapse
|
16
|
Muselli F, Peyron JF, Mary D. Druggable Biochemical Pathways and Potential Therapeutic Alternatives to Target Leukemic Stem Cells and Eliminate the Residual Disease in Chronic Myeloid Leukemia. Int J Mol Sci 2019; 20:E5616. [PMID: 31717629 PMCID: PMC6888542 DOI: 10.3390/ijms20225616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) is a disease arising in stem cells expressing the BCR-ABL oncogenic tyrosine kinase that transforms one Hematopoietic stem/progenitor Cell into a Leukemic Stem Cell (LSC) at the origin of differentiated and proliferating leukemic cells in the bone marrow (BM). CML-LSCs are recognized as being responsible for resistances and relapses that occur despite the advent of BCR-ABL-targeting therapies with Tyrosine Kinase Inhibitors (TKIs). LSCs share a lot of functional properties with Hematopoietic Stem Cells (HSCs) although some phenotypical and functional differences have been described during the last two decades. Subverted mechanisms affecting epigenetic processes, apoptosis, autophagy and more recently metabolism and immunology in the bone marrow microenvironment (BMM) have been reported. The aim of this review is to bring together the modifications and molecular mechanisms that are known to account for TKI resistance in primary CML-LSCs and to focus on the potential solutions that can circumvent these resistances, in particular those that have been, or will be tested in clinical trials.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplasm, Residual/drug therapy
- Neoplasm, Residual/metabolism
- Neoplasm, Residual/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Kinase Inhibitors/therapeutic use
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
| | | | - Didier Mary
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Centre Méditerranéen de Médecine Moléculaire, CEDEX 3, 06204 Nice, France; (F.M.); (J.-F.P.)
| |
Collapse
|
17
|
Loscocco F, Visani G, Galimberti S, Curti A, Isidori A. BCR-ABL Independent Mechanisms of Resistance in Chronic Myeloid Leukemia. Front Oncol 2019; 9:939. [PMID: 31612105 PMCID: PMC6769066 DOI: 10.3389/fonc.2019.00939] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
Not all chronic myeloid leukemia (CML) patients are cured with tyrosine kinase inhibitors (TKIs), and a proportion of them develop resistance. Recently, continuous BCR-ABL gene expression has been found in resistant cells with undetectable BCR-ABL protein expression, indicating that resistance may occur through kinase independent mechanisms, mainly due to the persistence of leukemia stem cells (LSCs). LSCs reside in the bone marrow niche in a quiescent state, and are characterized by a high heterogeneity in genetic, epigenetic, and transcriptional mechanisms. New approaches based on single cell genomics have offered the opportunity to identify distinct subpopulations of LSCs at diagnosis and during treatment. In the one hand, TKIs are not able to efficiently kill CML-LSCs, but they may be responsible for the modification of some LSCs characteristics, thus contributing to heterogeneity within the tumor. In the other hand, the bone marrow niche is responsible for the interactions between surrounding stromal cells and LSCs, resulting in the generation of specific signals which could favor LSCs cell cycle arrest and allow them to persist during treatment with TKIs. Additionally, LSCs may themselves alter the niche by expressing various costimulatory molecules and secreting suppressive cytokines, able to target metabolic pathways, create an anti-apoptotic environment, and alter immune system functions. Accordingly, the production of an immunosuppressant milieu may facilitate tumor escape from immune surveillance and induce chemo-resistance. In this review we will focus on BCR-ABL-independent mechanisms, analyzing especially those with a potential clinical impact in the management of CML patients.
Collapse
Affiliation(s)
- Federica Loscocco
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Giuseppe Visani
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology L. and A. Seràgnoli, University of Bologna, Bologna, Italy
| | - Alessandro Isidori
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| |
Collapse
|