1
|
Lazcano I, Rodríguez Rodríguez A, Uribe RM, Orozco A, Joseph-Bravo P, Charli JL. Evolution of thyrotropin-releasing factor extracellular communication units. Gen Comp Endocrinol 2021; 305:113642. [PMID: 33039406 DOI: 10.1016/j.ygcen.2020.113642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.
Collapse
Affiliation(s)
- Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Adair Rodríguez Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Aurea Orozco
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
2
|
Oono S, Kurimoto T, Nakazawa T, Miyoshi T, Okamoto N, Kashimoto R, Tagami Y, Ito Y, Mimura O. Pyroglutamic Acid Promotes Survival of Retinal Ganglion Cells after Optic Nerve Injury. Curr Eye Res 2009; 34:598-605. [DOI: 10.1080/02713680902981292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Matziari M, Bauer K, Dive V, Yiotakis A. Synthesis of the Phosphinic Analogue of Thyrotropin Releasing Hormone. J Org Chem 2008; 73:8591-3. [DOI: 10.1021/jo8014215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Magdalini Matziari
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece, Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena 07745, Germany, and CEA, Service D’Ingénierie Moléculaire des Protéines (SIMOPRO), Bat 152, CE-Saclay, Gif/Yvette Cedex 91191, France
| | - Karl Bauer
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece, Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena 07745, Germany, and CEA, Service D’Ingénierie Moléculaire des Protéines (SIMOPRO), Bat 152, CE-Saclay, Gif/Yvette Cedex 91191, France
| | - Vincent Dive
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece, Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena 07745, Germany, and CEA, Service D’Ingénierie Moléculaire des Protéines (SIMOPRO), Bat 152, CE-Saclay, Gif/Yvette Cedex 91191, France
| | - Athanasios Yiotakis
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece, Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena 07745, Germany, and CEA, Service D’Ingénierie Moléculaire des Protéines (SIMOPRO), Bat 152, CE-Saclay, Gif/Yvette Cedex 91191, France
| |
Collapse
|
4
|
Scalabrino GA, Hogan N, O'Boyle KM, Slator GR, Gregg DJ, Fitchett CM, Draper SM, Bennett GW, Hinkle PM, Bauer K, Williams CH, Tipton KF, Kelly JA. Discovery of a dual action first-in-class peptide that mimics and enhances CNS-mediated actions of thyrotropin-releasing hormone. Neuropharmacology 2007; 52:1472-81. [PMID: 17418282 DOI: 10.1016/j.neuropharm.2007.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Thyrotropin-releasing hormone (TRH) displays multiple CNS-mediated actions that have long been recognized to have therapeutic potential in treating a wide range of neurological disorders. Investigations of CNS functions and clinical use of TRH are hindered, however, due to its rapid degradation by TRH-degrading ectoenzyme (TRH-DE). We now report the discovery of a set of first-in-class compounds that display unique ability to both potently inhibit TRH-DE and bind to central TRH receptors with unparalleled affinity. This dual pharmacological activity within one molecular entity was found through selective manipulation of peptide stereochemistry. Notably, the lead compound of this set, L-pyroglutamyl-L-asparaginyl-L-prolyl-D-tyrosyl-D-tryptophan amide (Glp-Asn-Pro-D-Tyr-D-TrpNH(2)), is effective in vivo at producing and potentiating central actions of TRH without evoking release of thyroid-stimulating hormone (TSH). Specifically, this peptide displayed high plasma stability and combined potent inhibition of TRH-DE (K(i) 151 nM) with high affinity binding to central TRH receptors (K(i) 6.8 nM). Moreover, intraperitoneal injection of this peptide mimicked and augmented the effects of TRH on behavioural activity in rat. Analogous to TRH, it also antagonized pentobarbital-induced narcosis when administered intravenously. This discovery provides new opportunities for probing the role of TRH actions in the CNS and a basis for development of novel TRH-based neurotherapeutics.
Collapse
Affiliation(s)
- Gaia A Scalabrino
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Urayama A, Yamada S, Ohmori Y, Deguchi Y, Uchida S, Kimura R. Blood-brain permeability of [3H]-(3-methyl-His2)thyrotropin-releasing hormone (MeTRH) in mice: effects of TRH and its analogues. Drug Metab Pharmacokinet 2005; 18:310-8. [PMID: 15618750 DOI: 10.2133/dmpk.18.310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to characterize the transport of (3-methyl-His(2)) thyrotropin-releasing hormone ([(3)H]MeTRH) across the blood-brain barrier in mice and the effects of thyrotropin-releasing hormone (TRH) and its analogues (taltirelin and montirelin) on the transport and brain distribution. Integration plot analysis was used to calculate the influx clearance (CL(in)) of [(3)H]MeTRH after intravenous (i.v.) injection in mice. Furthermore, the capillary depletion method was performed to determine whether [(3)H]MeTRH crossed the blood-brain barrier. The effects of TRH and its analogues on the brain distribution of [(3)H]MeTRH were also examined by co-injection with the radioligand. The brain distribution of [(3)H]MeTRH and [(14)C]sucrose increased with the time after i.v. injection in mice, and the level of [(3)H]MeTRH was significantly higher than that of [(14)C]sucrose 5 min after the injection. The CL(in) value of [(3)H]MeTRH was significantly higher than that of [(14)C]sucrose, and the value of [(3)H]MeTRH was reduced by co-injection with unlabeled MeTRH. Also, capillary depletion showed that [(3)H]MeTRH was distributed largely in the brain parenchyma and this distribution was significantly inhibited by co-injection of TRH and montirelin but not taltirelin. The present study indicates that the transport of [(3)H]MeTRH into the brain may be via a saturable process.
Collapse
Affiliation(s)
- Akihiko Urayama
- School of Pharmaceutical Sciences and COE21, University of Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Abe K, Fukuda K, Tokui T. Marginal Involvement of Pyroglutamyl Aminopeptidase I in Metabolism of Thyrotropin-Releasing Hormone in Rat Brain. Biol Pharm Bull 2004; 27:1197-201. [PMID: 15305021 DOI: 10.1248/bpb.27.1197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
On thyrotropin-releasing hormone (TRH) metabolism, pyroglutamyl aminopeptidase II (PAP-II), a zinc-dependent ectoenzyme primarily located in the central nervous system, is believed to play a predominant role. Recently we cloned pyroglutamyl aminopeptidase I (PAP-I) which is known for specifically removing a L-pyroglutamate (L-pGlu) residue from the amino terminus of proteins and peptides including TRH. To investigate possible contribution of PAP-I toward TRH metabolism, we conducted biochemical and immunohistochemical characterization using recombinant rat, mouse and human PAP-Is and an antibody raised against rat PAP-I. The Km values toward TRH by the recombinant PAP-Is were about 0.05 mM, being similar value to the reported value of recombinant PAP-II. The L-pGlu-cleaving activities toward TRH in rat brain homogenate were inhibited by a PAP-II specific inhibitor 1,10-phenanthroline, but not inhibited by the antibody against rat PAP-I. Immunohistochemical study in rats revealed heterogeneous distribution of PAP-I in the pituitary, the target tissue of TRH, but the distribution was cytosolic. Taken together, these results suggested that PAP-I might not be dominantly involved in the degradation of TRH in rats. Additionally, we found that PAP-I was localized in the renal proximal tubules. Further investigations are needed for elucidating the function of PAP-I in these restricted sites.
Collapse
Affiliation(s)
- Koji Abe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Sankyo Co., Ltd, Tokyo, Japan.
| | | | | |
Collapse
|
7
|
Graham ES, Webster CA, Hazlerigg DG, Morgan PJ. Evidence for the biosynthesis of a prolactin-releasing factor from the ovine pars tuberalis, which is distinct from thyrotropin-releasing hormone. J Neuroendocrinol 2002; 14:945-54. [PMID: 12472875 DOI: 10.1046/j.1365-2826.2002.00848.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study demonstrates the presence of two prolactin-releasing (PR) factors in media conditioned by primary pars tuberalis cells prepared from dispersed pars tuberalis tissue. One factor was identified as thyrotropin-releasing hormone (TRH) on the basis of immunoreactivity and following purification by high-performance liquid chromatography and mass spectrometry. The origin of TRH in the pars tuberalis conditioned media was investigated by measuring the expression of glutaminyl-cyclase (QC) by in situ hybridization. QC expression was not detected in pars tuberalis-specific cells, but was relatively abundant in cells in the pars distalis and hypothalamic paraventricular nucleus. These data suggest that TRH is not synthesized by the ovine pars tuberalis and more likely originated from the hypothalamic neuronal processes from the paraventricular nucleus that terminate in the median eminence. The second component of the conditioned media PR bioactivity was insensitive to the TRH-antiserum, less than 1 kDa and was not retained by the C18 reverse-phase column. The biosynthesis of the PR bioactivity by pars tuberalis cells was investigated using cycloheximide, forskolin and melatonin. Cycloheximide reduced the level of PR bioactivity produced by the pars tuberalis cells. Melatonin inhibited the increased level of PR bioactivity stimulated by forskolin. Collectively, these data demonstrate the synthesis of at least one regulator of prolactin secretion by ovine pars tuberalis-specific cells.
Collapse
Affiliation(s)
- E Scott Graham
- Molecular Neuroendocrinology Group, Rowett Research Institute, Bucksburn, Aberdeen, UK
| | | | | | | |
Collapse
|
8
|
Schmitmeier S, Thole H, Bader A, Bauer K. Purification and characterization of the thyrotropin-releasing hormone (TRH)-degrading serum enzyme and its identification as a product of liver origin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1278-86. [PMID: 11856362 DOI: 10.1046/j.1432-1033.2002.02768.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous biochemical studies have indicated that the membrane-bound thyrotropin-releasing hormone (TRH)-degrading enzyme (TRH-DE) from brain and liver and the serum TRH-DE are derived from the same gene. These studies also suggested that the serum enzyme is of liver origin. The present study was undertaken to verify these hypotheses. In different species, a close relationship between the activities of the serum enzyme and the particulate liver enzyme was noticed. The activity of the serum enzyme decreased when rats were treated with thioacetamide, a known hepatotoxin. With hepatocytes cultured in a sandwich configuration, release of the TRH-DE into the culture medium could also be demonstrated. The trypsin-solubilized particulate liver TRH-DE and the serum TRH-DE were purified to electrophoretic homogeneity. Both enzymes and the brain TRH-DE were recognized by a monoclonal antibody generated with the purified brain enzyme as antigen. Lectin blot analysis indicated that the serum enzyme and the liver enzyme are glycoproteins containing a sugar structure of the complex type, whereas the brain enzyme exhibits an oligomannose/hybrid glycostructure. A molecular mass of 97 000 Da could be estimated for all three enzymes after deglycosylation and SDS/PAGE followed by Western blotting. Fragment analysis of the serum TRH-DE revealed that the peptide sequences correspond to the cDNA deduced amino-acid sequences of the membrane-bound brain TRH-DE, whereby two peptides were identified that are encoded by exon 1. These data strongly support the hypothesis that the TRH-DEs are all derived from the same gene, whereby the serum enzyme is generated by proteolytic cleavage of the particulate liver enzyme.
Collapse
|
9
|
Papadopoulos T, Heuer H, Bauer K. Analysis of the thyrotropin-releasing hormone-degrading ectoenzyme by site-directed mutagenesis of cysteine residues. Cys68 is involved in disulfide-linked dimerization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2617-23. [PMID: 10785382 PMCID: PMC7163949 DOI: 10.1046/j.1432-1327.2000.01277.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thyrotropin-releasing hormone-degrading ectoenzyme is a member of the M1 family of Zn-dependent aminopeptidases and catalyzes the degradation of thyrotropin-releasing hormone (TRH; Glp-His-Pro-NH2). Cloning of the cDNA of this enzyme and biochemical studies revealed that the large extracellular domain of the enzyme with the catalytically active site contains nine cysteine residues that are highly conserved among species. To investigate the functional role of these cysteines in TRH-DE we used a site-directed mutagenesis approach and replaced individually each cysteine by a serine residue. The results revealed that the proteolytically truncated and enzymatically fully active enzyme consists of two identical subunits that are associated noncovalently by protein-protein interactions but not via interchain S-S bridges. The eight cysteines contained within this region are all important for the structure of the individual subunit and the enzymatic activity, which is dramatically reduced in all mutant enzymes. This is even true for the four cysteines that are clustered within the C-terminal domain remote from the Zn-binding consensus sequence HEICH. In contrast, Cys68, which resides within the stalk region seven residues from the end of the hydrophobic membrane-spanning domain, can be replaced by serine without a significant change in the enzymatic activity. Interestingly, this residue is involved in the formation of an interchain disulfide bridge. Covalent dimerization of the subunits, however, does not seem to be essential for efficient biosynthesis, enzymatic activity and trafficking to the cell surface.
Collapse
Affiliation(s)
- T Papadopoulos
- Max-Planck-Institut für Experimentelle Endokrinologie, Hannover, Germany
| | | | | |
Collapse
|
10
|
Heuer H, Sch�fer MKH, O'Donnell D, Walker P, Bauer K. Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001211)428:2<319::aid-cne10>3.0.co;2-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|