1
|
Gawrys O, Kala P, Sadowski J, Melenovský V, Sandner P, Červenka L. Soluble guanylyl cyclase stimulators and activators: Promising drugs for the treatment of hypertension? Eur J Pharmacol 2025; 987:177175. [PMID: 39645219 DOI: 10.1016/j.ejphar.2024.177175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Nitric oxide (NO)-stimulated cyclic guanosine monophosphate (cGMP) is a key regulator of cardiovascular health, as NO-cGMP signalling is impaired in diseases like pulmonary hypertension, heart failure and chronic kidney disease. The development of NO-independent sGC stimulators and activators provide a novel therapeutic option to restore altered NO signalling. sGC stimulators have been already approved for the treatment of pulmonary arterial hypertension (PAH), chronic thromboembolic pulmonary hypertension (CTEPH), and chronic heart failure (HFrEF), while sGC activators are currently in phase-2 clinical trials for CKD. The best characterized effect of increased cGMP via the NO-sGC-cGMP pathway is vasodilation. However, to date, none of the sGC agonists are in development for hypertension (HTN). According to WHO, the global prevalence of uncontrolled HTN continues to rise, contributing significantly to cardiovascular mortality. While there are effective antihypertensive treatments, many patients require multiple drugs, and some remain resistant to all therapies. Thus, in addition to improved diagnosis and lifestyle changes, new pharmacological strategies remain in high demand. In this review we explore the potential of sGC stimulators and activators as novel antihypertensive agents, starting with the overview of NO-sGC-cGMP signalling, followed by potential mechanisms by which the increase in cGMP may regulate vascular tone and BP. These effects may encompass not only acute vasodilation, but also mid-term and chronic effects, such as the regulation of salt and water balance, as well as mitigation of vascular ageing and remodelling. The main section summarizes the preclinical and clinical evidence supporting the BP-lowering efficacy of sGC agonists.
Collapse
Affiliation(s)
- Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Petr Kala
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Cardiology, Motol University Hospital and Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Janusz Sadowski
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Sandner
- Bayer AG, Pharmaceuticals, Drug Discovery, Pharma Research Centre, 42113, Wuppertal, Germany; Hannover Medical School, Institute of Pharmacology, 30625, Hannover, Germany
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; First Department of Internal Medicine, Cardiology, Olomouc University Hospital and Palacký University, Olomouc, Czech Republic
| |
Collapse
|
2
|
Zhang F, Su Q, Gao Z, Wu Z, Ji Q, He T, Zhu K, Chen X, Zhang Y, Hou S, Gui L. Impact of Lysine to Methionine Ratios on Antioxidant Capacity and Immune Function in the Rumen of Tibetan Sheep: An RNA-Seq Analysis. Vet Med Sci 2025; 11:e70173. [PMID: 39708312 DOI: 10.1002/vms3.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/29/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
With global protein prices on the rise, lowering protein levels in animal feed, together with balancing diet composition and reducing nitrogen emissions, can both reduce the environmental impact of agriculture and save on feed costs. However, the formulation of an ideal amino acid (AA) composition is crucial for better protein utilization by livestock. This study aimed to investigate the effects of different lysine to methionine ratios on the antioxidant capacity and immune function of the rumen in Tibetan sheep. Ninety male Tibetan sheep, weaned at 2 months of age, were randomly divided into three groups (1:1, 2:1 and 3:1 lysine ratios) and subjected to a 100-day feeding trial. RNA sequencing (RNA-seq) was utilized to analyse the impact of different AA ratios on gene expression in rumen tissue, whereas the levels of antioxidant enzymes (total antioxidant capacity [T-AOC], superoxide dismutase [SOD], glutathione peroxidase [GSH-Px] and catalase [CAT]) and immunoglobulins (immunoglobulin A [IgA], immunoglobulin G [IgG] and immunoglobulin M [IgM]) were evaluated. The results indicated that the 1:1 group significantly upregulated the expression of PTGS2, PLA2G12A and PLA2G4 genes, enhancing antioxidant enzyme activity, reducing free radical production and modulating systemic immune responses. COL16A1 and KCNK5 were highly expressed in the protein digestion and absorption pathway, maintaining the structural integrity and function of the rumen epithelium. BMP4 and TGFBR2 were significantly enriched in the cytokine-cytokine receptor interaction pathway and positively correlated with CAT and T-AOC. ITGA8 was upregulated in the 1:1 group, participating in the regulation of various cellular signalling pathways. ATP2B1 was enriched in the cyclic guanosine monophosphate (cGMP)- protein kinase G (PKG) signalling and mineral absorption pathways, primarily influencing oxidative stress and immune responses by regulating intracellular calcium ion concentration. This study demonstrates that a 1:1 lysine to methionine ratio is most beneficial for enhancing the antioxidant capacity and immune function of the rumen in Tibetan sheep.
Collapse
Affiliation(s)
- Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Qiurong Ji
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Tingli He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Kaina Zhu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Xuan Chen
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| |
Collapse
|
3
|
Celik M, Aydin P, Civelek MS, Akgun N, Karakoy Z, Ozcelik C, Tanriverdiyeva G, Toktay E. Avanafil Mitigates Testicular Ischemia/Reperfusion Injury via NLRP3 Pathway Modulation in Rats. Reprod Sci 2024; 31:3391-3399. [PMID: 39302541 DOI: 10.1007/s43032-024-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE In our study, the effectiveness of avanafil, a second-generation phosphodiesterase-5 (PDE5) inhibitor, on testicular torsion (TT) related ischemia/reperfusion injury via NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), which triggers inflammatory response, are studied molecularly, biochemically and histopathologically. MATERIAL AND METHOD This study was performed on 24 male Wistar albino rats randomized into four groups. Testicular ischemia/reperfusion (I/R) model was created for groups 2, 3 and 4. Groups 3 and 4, respectively, were administered a dose of 5 and 10 mg/kg avanafil before reperfusion by gavage. The testicles which were left in ischemia for two hours, were detorsioned for four hours. All animals were sacrificed after reperfusion. Testicular tissues were examined molecularly, biochemically and histopathologically. RESULTS The NLRP3, Interleukin-1β (IL-1β) and Tumor Necrosis alpha (TNF-α) mRNA expression levels were observed to be significantly increased in the I/R group compared to the healthy group (p < 0.001). After both doses of avanafil, NLRP3, IL-1β and TNF-α mRNA expression levels, which increased as a result of I/R, decreased in both avanafil groups. (p < 0.001). The greatest decrease was seen at the dose of 10 mg/kg (p < 0.001). Increased Malondialdehyde (MDA) levels due to I/R were statistically significantly decreased in both doses of avanafil (p < 0.001). Decreased Superoxide Dismutase (SOD) levels due to I/R damage increased statistically significantly in both doses of avanafil (p < 0.001). CONCLUSION It was found that avanafil can reduce the damage caused by testicular I/R and that it will find new applications in the future with the support of advanced experimental and clinical studies.
Collapse
Affiliation(s)
- Muhammet Celik
- Department of Biochemistry, Faculty of Medicine, Ataturk District, Ataturk University Campus, 25240, Yakutiye / Erzurum, Turkey.
| | - Pelin Aydin
- Department of Anesthesiology and Reanimation, Educational and Research Hospital, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Maide Sena Civelek
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Nurullah Akgun
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Zeynep Karakoy
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cihad Ozcelik
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Gulcin Tanriverdiyeva
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Kafkas University, Kars, Turkey
| |
Collapse
|
4
|
Sölzer N, Brügemann K, Yin T, König S. Genetic evaluations and genome-wide association studies for specific digital dermatitis diagnoses in dairy cows considering genotype × housing system interactions. J Dairy Sci 2024; 107:3724-3737. [PMID: 38216046 DOI: 10.3168/jds.2023-24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
The present study aimed to use detailed phenotyping for the claw disorder digital dermatitis (DD) considering specific DD stages in 2 housing systems (conventional cubicle barns [CON] and compost-bedded pack barns [CBPB]) to infer possible genotype × housing system interactions. The DD stages included 2,980 observations for the 3 traits DD-sick, DD-acute, and DD-chronic from 1,311 Holstein-Friesian and 399 Fleckvieh-Simmental cows. Selection of the 5 CBPB and 5 CON herds was based on a specific protocol to achieve a high level of herd similarity with regard to climate, feeding, milking system, and location, but with pronounced housing-system differences. Five other farms had a "mixed system" with 2 subherds, one representing CBPB and the other one CON. The CBPB system was represented by 899 cows (1,530 observations), and 811 cows (1,450 observations) represented the CON system. The average disease prevalence was 20.47% for DD-sick, 13.88% for DD-acute, and 5.34% for DD-chronic, with a higher prevalence in CON than in CBPB. After quality control of 50K genotypes, 38,495 SNPs from 926 cows remained for the ongoing genomic analyses. Genetic parameters for DD-sick, DD-acute, and DD-chronic were estimated by applying single-step approaches for single-trait repeatability animal models considering the whole dataset, and separately for the CON and CBPB subsets. Genetic correlations between same DD traits from different housing systems, and between DD-sick, DD-chronic, and DD-acute, were estimated via bivariate animal models. Heritabilities based on the whole dataset were 0.16 for DD-sick, 0.14 for DD-acute, and 0.11 for DD-chronic. A slight increase of heritabilities and genetic variances was observed in CON compared with the "well-being" CBPB system, indicating a stronger genetic differentiation of diseases in a more challenging environment. Genetic correlations between same DD traits recorded in CON or CBPB were close to 0.80, disproving obvious genotype × housing system interactions. Genetic correlations among DD-sick, DD-acute and DD-chronic ranged from 0.58 to 0.81. SNP main effects and SNP × housing system interaction effects were estimated simultaneously via GWAS, considering only the phenotypes from genotyped cows. Ongoing annotations of potential candidate genes focused on chromosomal segments 100 kb upstream and downstream from the significantly associated candidate SNP. GWAS for main effects indicated heterogeneous Manhattan plots especially for DD-acute and DD-chronic, indicating particularities in disease pathogenesis. Nevertheless, a few shared annotated potential candidate genes, that is, METTL25, AFF3, PRKG1, and TENM4 for DD-sick and DD-acute, were identified. These genes have direct or indirect effects on disease resistance or immunology. For the SNP × housing system interaction, the annotated genes ASXL1 and NOL4L on BTA 13 were relevant for DD-sick and DD-acute. Overall, the very similar genetic parameters for the same traits in different environments and negligible genotype × housing system interactions indicate only minor effects on genetic evaluations for DD due to housing-system particularities.
Collapse
Affiliation(s)
- Niklas Sölzer
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| |
Collapse
|
5
|
Nelissen E, Schepers M, Ponsaerts L, Foulquier S, Bronckaers A, Vanmierlo T, Sandner P, Prickaerts J. Soluble guanylyl cyclase: A novel target for the treatment of vascular cognitive impairment? Pharmacol Res 2023; 197:106970. [PMID: 37884069 DOI: 10.1016/j.phrs.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms. Nitric oxide (NO) physiologically stimulates soluble guanylate cyclase (sGC) to induce cGMP production. However, under pathological conditions, NO seems to be at the basis of oxidative stress and inflammation, leading to a decrease in sGC activity and expression. The native form of sGC needs a ferrous heme group bound in order to be sensitive to NO (Fe(II)sGC). Oxidation of sGC leads to the conversion of ferrous to ferric heme (Fe(III)sGC) and even heme-loss (apo-sGC). Both Fe(III)sGC and apo-sGC are insensitive to NO, and the enzyme is therefore inactive. sGC activity can be enhanced either by targeting the NO-sensitive native sGC (Fe(II)sGC), or the inactive, oxidized sGC (Fe(III)sGC) and the heme-free apo-sGC. For this purpose, sGC stimulators acting on Fe(II)sGC and sGC activators acting on Fe(III)sGC/apo-sGC have been developed. These sGC agonists have shown their efficacy in cardiovascular diseases by restoring the physiological and protective functions of the NO-sGC-cGMP pathway, including the reduction of oxidative stress and inflammation, and improvement of vascular functioning. Yet, only very little research has been performed within the cerebrovascular system and VCI pathology when focusing on sGC modulation and its potential protective mechanisms on vascular and neural function. Therefore, within this review, the potential of sGC as a target for treating VCI is highlighted.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Laura Ponsaerts
- Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience (MHeNS), School for Cardiovascular Diseases (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
6
|
Zheng X, Ren B, Gao Y. Tight junction proteins related to blood-brain barrier and their regulatory signaling pathways in ischemic stroke. Biomed Pharmacother 2023; 165:115272. [PMID: 37544283 DOI: 10.1016/j.biopha.2023.115272] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Tight junctions (TJs) are crucial for intercellular connections. The abnormal expression of proteins related to TJs can result in TJ destruction, structural damage, and endothelial and epithelial cell dysfunction. These factors are associated with the occurrence and progression of several diseases. Studies have shown that blood-brain barrier (BBB) damage and dysfunction are the prominent pathological features of stroke. TJs are directly associated with the BBB integrity. In this article, we first discuss the structure and function of BBB TJ-related proteins before focusing on the crucial events that cause TJ dysfunction and BBB damage, as well as the regulatory mechanisms that affect the qualitative and quantitative expression of TJ proteins during ischemic stroke. Multiple regulatory mechanisms, including phosphorylation, matrix metalloproteinases (MMPs), and microRNAs, regulate TJ-related proteins and affect BBB permeability. Some signaling pathways and mechanisms have been demonstrated to have dual functions. Hopefully, our understanding of the regulation of BBB TJs in ischemic stroke will be applied to the development of targeted medications and therapeutic therapies.
Collapse
Affiliation(s)
- Xiangyi Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Beida Ren
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Metwally E, Mak V, Soriano A, Zebisch M, Silvestre HL, McEwan PA, Ermakov G, Beaumont M, Tawa P, Barker JJ, Yen R, Patel A, Lim YH, Healy D, Hanisak J, Cheng AC, Greshock T, Fischmann TO. Structural insights into selective small molecule activation of PKG1α. Commun Biol 2023; 6:798. [PMID: 37524852 PMCID: PMC10390508 DOI: 10.1038/s42003-023-05095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
cGMP-dependent protein kinase I-α (PKG1α) is a target for pulmonary arterial hypertension due to its role in the regulation of smooth muscle function. While most work has focused on regulation of cGMP turnover, we recently described several small molecule tool compounds which were capable of activating PKG1α via a cGMP independent pathway. Selected molecules were crystallized in the presence of PKG1α and were found to bind to an allosteric site proximal to the low-affinity nucleotide binding domain. These molecules act to displace the switch helix and cause activation of PKG1α representing a new mechanism for the activation and control of this critical therapeutic path. The described structures are vital to understanding the function and control of this key regulatory pathway.
Collapse
Affiliation(s)
- Essam Metwally
- Modeling and Informatics, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA, USA.
| | - Victor Mak
- Discovery Chemistry, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA, USA
| | - Aileen Soriano
- Quantitative Biosciences, MRL, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Matthias Zebisch
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - H Leonardo Silvestre
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Paul A McEwan
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Grigori Ermakov
- Discovery Bioanalytics, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA, USA
| | - Maribel Beaumont
- Discovery Bioanalytics, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA, USA
| | - Paul Tawa
- Quantitative Biosciences, MRL, Merck & Co., Inc., Kenilworth, NJ, USA
| | - John J Barker
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Rose Yen
- Discovery Chemistry, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA, USA
| | - Akash Patel
- Discovery Chemistry, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA, USA
| | - Yeon-Hee Lim
- Discovery Chemistry, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA, USA
| | - David Healy
- Discovery Biology, MRL, Merck & Co., Inc., Boston, MA, USA
| | - Jennifer Hanisak
- Discovery Chemistry, MRL, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Alan C Cheng
- Modeling and Informatics, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA, USA
| | - Tom Greshock
- Discovery Chemistry, MRL, Merck & Co., Inc., 213 E. Grand Avenue, South San Francisco, CA, USA
| | - Thierry O Fischmann
- Protein and Structural Chemistry, MRL, Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
8
|
Vasquez OE, Allen AM, So AKC, Nguyen QH, Krause HM, Levine JD, Sokolowski MB. Characterizing the Protein Isoforms of foraging ( for), the PKGI Ortholog in Drosophila melanogaster. Int J Mol Sci 2023; 24:10219. [PMID: 37373366 DOI: 10.3390/ijms241210219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The foraging (for) gene of Drosophila melanogaster encodes a cGMP-dependent protein kinase (PKG), which is a major effector of the cGMP signaling pathway involved in the regulation of behaviour and metabolic traits. Despite being well studied at the transcript level, little is known about the for gene at the protein level. Here, we provide a detailed characterization of the for gene protein (FOR) products and present new tools for their study, including five isoform-specific antibodies and a transgenic strain that carries an HA-labelled for allele (forBAC::HA). Our results showed that multiple FOR isoforms were expressed in the larval and adult stages of D. melanogaster and that the majority of whole-body FOR expression arises from three (P1, P1α, and P3) of eight putative protein isoforms. We found that FOR expression differed between the larval and adult stages and between the dissected larval organs we analyzed, which included the central nervous system (CNS), fat body, carcass, and intestine. Moreover, we showed that the FOR expression differed between two allelic variants of the for gene, namely, fors (sitter) and forR (rover), that are known to differ in many food-related traits. Together, our in vivo identification of FOR isoforms and the existence of temporal, spatial, and genetic differences in their expression lay the groundwork for determining their functional significance.
Collapse
Affiliation(s)
- Oscar E Vasquez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Aaron M Allen
- Centre for Neural Circuits and Behaviour, Oxford University, Oxford OX1 3SR, UK
| | - Anthony K-C So
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Quynh H Nguyen
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Henry M Krause
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| |
Collapse
|
9
|
Soluble guanylate cyclase stimulator riociguat improves spatial memory in mice via peripheral mechanisms. Neurosci Lett 2022; 788:136840. [PMID: 35985509 DOI: 10.1016/j.neulet.2022.136840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 01/02/2023]
Abstract
Soluble guanylate cyclase (sGC) - cyclic guanosine monophosphate (cGMP) signalling is important for healthy memory function and a healthy vascular system. Targeting sGC-cGMP signalling can therefore be a potential strategy to enhance memory processes. sGC can be targeted by using agonists, such as sGC stimulator riociguat. Therefore, this study aimed to target sGC using riociguat to investigate its acute effects on memory function and neuronal plasticity in mice. The effects of riociguat on long-term memory and a biperiden-induced memory deficit model for assessing short-term memory were tested in the object location task, and working memory was tested in the Y-maze continuous alternation task. Pharmacokinetic measurements were performed within brain tissue of mice, and hippocampal plasticity measures were assessed using western blotting. Acute oral administration with a low dose of 0.03 mg/kg riociguat was able to enhance working-, short-, and long-term spatial memory. Under cerebral vasoconstriction higher doses of riociguat were still effective on memory. Pharmacokinetic measurements revealed poor brain penetration of riociguat and its metabolite M-1. Increased activation of VASP was found, while no effects were found on other memory-related hippocampal plasticity measures. Memory enhancing effects of riociguat are most likely regulated by vascular peripheral effects on cGMP signalling. Yet, further research is needed to investigate the possible contribution of hemodynamic or metabolic effects of sGC stimulators on memory performance.
Collapse
|
10
|
Guo J, Yu X, Liu Y, Lu L, Zhu D, Zhang Y, Li L, Zhang P, Gao Q, Lu X, Sun M. Prenatal hypothyroidism diminished exogenous NO-mediated diastolic effects in fetal rat thoracic aorta smooth muscle via increased oxidative stress. Reprod Toxicol 2022; 113:52-61. [PMID: 35970333 DOI: 10.1016/j.reprotox.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Maternal hypothyroidism is an important problem of modern healthcare and is reported to increase the risk of cardiovascular diseases in the offspring later in life. However, it is unclear whether hypothyroidism during pregnancy causes vascular damage in the fetal period. We established the prenatal hypothyroidism rat model and collected the fetuses at the 21th day of gestation (GD21). Thyroid hormone concentrations in maternal and offspring blood serum were assessed by enzyme-linked immunosorbent assay (ELISA). The thoracic aortas of the fetuses were isolated for microvessel functional testing and histochemical stainings. qPCR and Western blot were performed to access mRNA and protein expression. We found that the concentrations of thyroid hormones in the serum of pregnant rats and fetuses were significantly suppressed at GD21. The responses of the fetal thoracic aortas to SNP were significantly attenuated in the PTU group. However, no statistical difference was found between the two groups when treated with either inhibitor (ODQ) or activator (BAY58-2667) of sGC. The production of O2-• in the arterial wall was significantly increased in hypothyroid fetuses. Moreover, the level of NADPH oxidase (NOX) was increased, while superoxide dismutase 2 (SOD2) was down-regulated in the PTU group, ultimately contributing to the increased production of superoxide. Additionally, decreased SNP-mediated vasodilation found in fetal vessels was improved by either NOX inhibitor (Apocynin) or SOD mimic (Tempol). These results indicate that increased oxidative stress is probably the cause of the diminished diastolic effect of exogenous NO in the thoracic artery of prenatal hypothyroidism exposed fetuses.
Collapse
Affiliation(s)
- Jun Guo
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yanping Liu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Likui Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Dan Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yingying Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Lingjun Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Pengjie Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xiyuan Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| |
Collapse
|
11
|
Sharma R, Kim JJ, Qin L, Henning P, Akimoto M, VanSchouwen B, Kaur G, Sankaran B, MacKenzie KR, Melacini G, Casteel DE, Herberg FW, Kim CW. An auto-inhibited state of protein kinase G and implications for selective activation. eLife 2022; 11:79530. [PMID: 35929723 PMCID: PMC9417419 DOI: 10.7554/elife.79530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Cyclic GMP-dependent protein kinases (PKGs) are key mediators of the nitric oxide/cyclic guanosine monophosphate (cGMP) signaling pathway that regulates biological functions as diverse as smooth muscle contraction, cardiac function, and axon guidance. Understanding how cGMP differentially triggers mammalian PKG isoforms could lead to new therapeutics that inhibit or activate PKGs, complementing drugs that target nitric oxide synthases and cyclic nucleotide phosphodiesterases in this signaling axis. Alternate splicing of PRKG1 transcripts confers distinct leucine zippers, linkers, and auto-inhibitory (AI) pseudo-substrate sequences to PKG Iα and Iβ that result in isoform-specific activation properties, but the mechanism of enzyme auto-inhibition and its alleviation by cGMP is not well understood. Here, we present a crystal structure of PKG Iβ in which the AI sequence and the cyclic nucleotide-binding (CNB) domains are bound to the catalytic domain, providing a snapshot of the auto-inhibited state. Specific contacts between the PKG Iβ AI sequence and the enzyme active site help explain isoform-specific activation constants and the effects of phosphorylation in the linker. We also present a crystal structure of a PKG I CNB domain with an activating mutation linked to Thoracic Aortic Aneurysms and Dissections. Similarity of this structure to wildtype cGMP-bound domains and differences with the auto-inhibited enzyme provide a mechanistic basis for constitutive activation. We show that PKG Iβ auto-inhibition is mediated by contacts within each monomer of the native full-length dimeric protein, and using the available structural and biochemical data we develop a model for the regulation and cooperative activation of PKGs.
Collapse
Affiliation(s)
- Rajesh Sharma
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Jeong Joo Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Liying Qin
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Philipp Henning
- Department of Biochemistry, University of Kassel, kassel, Germany
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
| | - Gundeep Kaur
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Kevin R MacKenzie
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Fritz W Herberg
- Department of Biochemistry, University of Kassel, kassel, Germany
| | - Choel W Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
12
|
Mak VW, Patel AM, Yen R, Hanisak J, Lim YH, Bao J, Zheng R, Seganish WM, Yu Y, Healy DR, Ogawa A, Ren Z, Soriano A, Ermakov GP, Beaumont M, Metwally E, Cheng AC, Verras A, Fischmann T, Zebisch M, Silvestre HL, McEwan PA, Barker J, Rearden P, Greshock TJ. Optimization and Mechanistic Investigations of Novel Allosteric Activators of PKG1α. J Med Chem 2022; 65:10318-10340. [PMID: 35878399 DOI: 10.1021/acs.jmedchem.1c02109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of PKG1α is a compelling strategy for the treatment of cardiovascular diseases. As the main effector of cyclic guanosine monophosphate (cGMP), activation of PKG1α induces smooth muscle relaxation in blood vessels, lowers pulmonary blood pressure, prevents platelet aggregation, and protects against cardiac stress. The development of activators has been mostly limited to cGMP mimetics and synthetic peptides. Described herein is the optimization of a piperidine series of small molecules to yield activators that demonstrate in vitro phosphorylation of vasodilator-stimulated phosphoprotein as well as antiproliferative effects in human pulmonary arterial smooth muscle cells. Hydrogen/deuterium exchange mass spectrometry experiments with the small molecule activators revealed a mechanism of action consistent with cGMP-induced activation, and an X-ray co-crystal structure with a construct encompassing the regulatory domains illustrated a binding mode in an allosteric pocket proximal to the low-affinity cyclic nucleotide-binding domain.
Collapse
Affiliation(s)
- Victor W Mak
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Akash M Patel
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Rose Yen
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jennifer Hanisak
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yeon-Hee Lim
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jianming Bao
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States.,Ionova Life Science, Shenzhen 518122, Guangdong, China
| | - Rong Zheng
- IDSU, Wuxi AppTec Co., Ltd, Shanghai 200131, China
| | - W Michael Seganish
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Yang Yu
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David R Healy
- Discovery Biology, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Aimie Ogawa
- Quantitative Biosciences, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Zhao Ren
- Quantitative Biosciences, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Aileen Soriano
- Mass Spectrometry and Biophysics, Computation and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Grigori P Ermakov
- PPDM Discovery Bioanalytics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Maribel Beaumont
- PPDM Discovery Bioanalytics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Essam Metwally
- Computational and Structural Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Alan C Cheng
- Computational and Structural Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Andreas Verras
- Schrodinger Inc., 120 West 45th Street, 17th Floor, New York, New York 10036-4041, United States.,Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Thierry Fischmann
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Matthias Zebisch
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - H Leonardo Silvestre
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Paul A McEwan
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - John Barker
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Paul Rearden
- DMPK, Recursion Pharmaceuticals, Salt Lake City, Utah 84101, United States.,PPDM, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Thomas J Greshock
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Tawa P, Zhang L, Metwally E, Hou Y, McCoy MA, Seganish WM, Zhang R, Frank E, Sheth P, Hanisak J, Sondey C, Bauman D, Soriano A. Mechanistic insights on novel small molecule allosteric activators of cGMP-dependent protein kinase PKG1α. J Biol Chem 2022; 298:102284. [PMID: 35868561 PMCID: PMC9425037 DOI: 10.1016/j.jbc.2022.102284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Paul Tawa
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Lei Zhang
- Biologics AR&D Immunoassay Group, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Essam Metwally
- Computational & Structural Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Yan Hou
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mark A McCoy
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Rumin Zhang
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Emily Frank
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Payal Sheth
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - David Bauman
- Discovery Biology, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Aileen Soriano
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
14
|
McGill JR, Lagassé HAD, Hernandez N, Hopkins L, Jankowski W, McCormick Q, Simhadri V, Golding B, Sauna ZE. A structural homology approach to identify potential cross-reactive antibody responses following SARS-CoV-2 infection. Sci Rep 2022; 12:11388. [PMID: 35794133 PMCID: PMC9259575 DOI: 10.1038/s41598-022-15225-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 virus is the most important public-health issue of our time. Understanding the diverse clinical presentations of the ensuing disease, COVID-19, remains a critical unmet need. Here we present a comprehensive listing of the diverse clinical indications associated with COVID-19. We explore the theory that anti-SARS-CoV-2 antibodies could cross-react with endogenous human proteins driving some of the pathologies associated with COVID-19. We describe a novel computational approach to estimate structural homology between SARS-CoV-2 proteins and human proteins. Antibodies are more likely to interrogate 3D-structural epitopes than continuous linear epitopes. This computational workflow identified 346 human proteins containing a domain with high structural homology to a SARS-CoV-2 Wuhan strain protein. Of these, 102 proteins exhibit functions that could contribute to COVID-19 clinical pathologies. We present a testable hypothesis to delineate unexplained clinical observations vis-à-vis COVID-19 and a tool to evaluate the safety-risk profile of potential COVID-19 therapies.
Collapse
Affiliation(s)
- Joseph R McGill
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - H A Daniel Lagassé
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nancy Hernandez
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Louis Hopkins
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Wojciech Jankowski
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Quinn McCormick
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vijaya Simhadri
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Basil Golding
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
15
|
Wang C, Qu R, Zong Y, Qin C, Liu L, Gao X, Sun H, Sun Y, Chang KC, Zhang R, Liu J, Pu J. Enhanced stability of M1 protein mediated by a phospho-resistant mutation promotes the replication of prevailing avian influenza virus in mammals. PLoS Pathog 2022; 18:e1010645. [PMID: 35793327 PMCID: PMC9258882 DOI: 10.1371/journal.ppat.1010645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Avian influenza virus (AIV) can evolve multiple strategies to combat host antiviral defenses and establish efficient infectivity in mammals, including humans. H9N2 AIV and its reassortants (such as H5N6 and H7N9 viruses) pose an increasing threat to human health; however, the mechanisms involved in their increased virulence remain poorly understood. We previously reported that the M1 mutation T37A has become predominant among chicken H9N2 isolates in China. Here, we report that, since 2010, this mutation has also been found in the majority of human isolates of H9N2 AIV and its emerging reassortants. The T37A mutation of M1 protein enhances the replication of H9N2 AIVs in mice and in human cells. Interestingly, having A37 instead of T37 increases the M1 protein stability and resistance to proteasomal degradation. Moreover, T37 of the H9N2 M1 protein is phosphorylated by protein kinase G (PKG), and this phosphorylation induces the rapid degradation of M1 and reduces viral replication. Similar effects are also observed in the novel H5N6 virus. Additionally, ubiquitination at K187 contributes to M1-37T degradation and decreased replication of the virus harboring T37 in the M1 protein. The prevailing AIVs thereby evolve a phospho-resistant mutation in the M1 protein to avoid viral protein degradation by host factors, which is advantageous in terms of replication in mammalian hosts. H9N2 avian influenza virus (AIV) and its reassortants (such as H5N6 and H7N9 viruses) pose an increasing threat to human health, but the mechanisms involved in their increased virulence remain poorly understood. Notably, the role of viral M1 protein in increasing the mammalian infection of AIV has been rarely reported. Here, we demonstrate that a phospho-resistant T37A mutation, encoded by the M1 protein of recently prevalent chicken H9N2 virus, increases M1 protein stability and viral replication in mammalian cells. The T37, but not the A37, in H9N2 M1 protein can be phosphorylated by protein kinase G (PKG). Through the T37A mutation, viral M1 protein evades phosphorylation-mediated proteasomal degradation, resulting in increased avian H9N2 virus replication in mice and in human cells. Similar effects were also observed for the novel H5N6 virus. This study provides insight into a novel strategy by which AIV evades mammalian host defenses. It is necessary to pay close attention to the epidemiological and public health implications of AIVs carrying this mutant M1 protein.
Collapse
Affiliation(s)
- Chenxi Wang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runkang Qu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Zong
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chao Qin
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Litao Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyi Gao
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Rui Zhang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
16
|
Aminzai S, Hu T, Pilz RB, Casteel DE. PKGIα is activated by metal-dependent oxidation in vitro but not in intact cells. J Biol Chem 2022; 298:102175. [PMID: 35752367 PMCID: PMC9293632 DOI: 10.1016/j.jbc.2022.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022] Open
Abstract
Type I cGMP-dependent protein kinases (PKGIs) are important components of various signaling pathways, and are canonically activated by nitric oxide- and natriuretic peptide-induced cGMP generation. However, some reports have shown that PKGIα can also be activated in vitro by oxidizing agents. Using in vitro kinase assays, here we found that purified PKGIα stored in phosphate-buffered saline with Flag peptide became oxidized and activated even in the absence of oxidizing agent; furthermore, once established, this activation could not be reversed by reduction with dithiothreitol. We demonstrate that activation was enhanced by addition of Cu2+ before storage, indicating it was driven by oxidation and mediated by trace metals present during storage. Previous reports suggested that PKGIα Cys43, Cys118, and Cys196 play key roles in oxidation-induced kinase activation; we show that activation was reduced by C118A or C196V mutations, although C43S PKGIα activation was not reduced. In contrast, under the same conditions, purified PKGIβ activity only slightly increased with storage. Using PKGIα/PKGIβ chimeras, we found that residues throughout the PKGIα-specific autoinhibitory loop were responsible for this activation. To explore whether oxidants activate PKGIα in H9c2 and C2C12 cells, we monitored vasodilator-stimulated phosphoprotein (VASP) phosphorylation downstream of PKGIα. While we observed PKGIα Cys43 crosslinking in response to H2O2 (indicating an oxidizing environment in the cells), we were unable to detect increased VASP phosphorylation under these conditions. Taken together, we conclude that while PKGIα can be readily activated by oxidation in vitro, there is currently no direct evidence of oxidation-induced PKGIα activation in vivo.
Collapse
Affiliation(s)
- Sahar Aminzai
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Tingfei Hu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093.
| |
Collapse
|
17
|
Mutual Protein-Ligand Conformational Selection Drives cGMP vs. cAMP Selectivity in Protein Kinase G. J Mol Biol 2021; 433:167202. [PMID: 34400180 DOI: 10.1016/j.jmb.2021.167202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Protein kinase G (PKG) is a major receptor of cGMP, and controls signaling pathways distinct from those regulated by cAMP. However, the contributions of the two substituents that differentiate cGMP from cAMP (i.e. 6-oxo and 2-NH2) to the cGMP-versus-cAMP selectivity of PKG remain unclear. Here, using NMR to map how binding affinity and dynamics of the protein and ligand vary along a ligand double-substitution cycle, we show that the contributions of the two substituents to binding affinity are surprisingly non-additive. Such non-additivity stems primarily from mutual protein-ligand conformational selection, whereby not only does the ligand select for a preferred protein conformation upon binding, but also, the protein selects for a preferred ligand conformation. The 6-oxo substituent mainly controls the conformational equilibrium of the bound protein, while the 2-NH2 substituent primarily controls the conformational equilibrium of the unbound ligand (i.e. syn versus anti). Therefore, understanding the conformational dynamics of both the protein and ligand is essential to explain the cGMP-versus-cAMP selectivity of PKG.
Collapse
|
18
|
Ali S, Solano AS, Gonzales AL, Thakore P, Krishnan V, Yamasaki E, Earley S. Nitric Oxide Signals Through IRAG to Inhibit TRPM4 Channels and Dilate Cerebral Arteries. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab051. [PMID: 34734188 PMCID: PMC8557268 DOI: 10.1093/function/zqab051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023]
Abstract
Nitric oxide (NO) relaxes vascular smooth muscle cells (SMCs) and dilates blood vessels by increasing intracellular levels of cyclic guanosine monophosphate (cGMP), which stimulates the activity of cGMP-dependent protein kinase (PKG). However, the vasodilator mechanisms downstream of PKG remain incompletely understood. Here, we found that transient receptor potential melastatin 4 (TRPM4) cation channels, which are activated by Ca2+ released from the sarcoplasmic reticulum (SR) through inositol triphosphate receptors (IP3Rs) under native conditions, are essential for SMC membrane depolarization and vasoconstriction. We hypothesized that signaling via the NO/cGMP/PKG pathway causes vasodilation by inhibiting TRPM4. We found that TRPM4 currents activated by stretching the plasma membrane or directly activating IP3Rs were suppressed by exogenous NO or a membrane-permeable cGMP analog, the latter of which also impaired IP3R-mediated release of Ca2+ from the SR. The effects of NO on TRPM4 activity were blocked by inhibition of soluble guanylyl cyclase or PKG. Notably, upon phosphorylation by PKG, IRAG (IP3R-associated PKG substrate) inhibited IP3R-mediated Ca2+ release, and knockdown of IRAG expression diminished NO-mediated inhibition of TRPM4 activity and vasodilation. Using superresolution microscopy, we found that IRAG, PKG, and IP3Rs form a nanoscale signaling complex on the SR of SMCs. We conclude that NO/cGMP/PKG signaling through IRAG inhibits IP3R-dependent activation of TRPM4 channels in SMCs to dilate arteries. SIGNIFICANCE STATEMENT Nitric oxide is a gaseous vasodilator produced by endothelial cells that is essential for cardiovascular function. Although NO-mediated signaling pathways have been intensively studied, the mechanisms by which they relax SMCs to dilate blood vessels remain incompletely understood. In this study, we show that NO causes vasodilation by inhibiting the activity of Ca2+-dependent TRPM4 cation channels. Probing further, we found that NO does not act directly on TRPM4 but instead initiates a signaling cascade that inhibits its activation by blocking the release of Ca2+ from the SR. Thus, our findings reveal the essential molecular pathways of NO-induced vasodilation-a fundamental unresolved concept in cardiovascular physiology.
Collapse
Affiliation(s)
| | | | - Albert L Gonzales
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | - Vivek Krishnan
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318, USA
| | | |
Collapse
|
19
|
Yan J, Chen Y, Zhu Y, Paquet-Durand F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between cGMP-Dependent Pathways and PARthanatos? Int J Mol Sci 2021; 22:10567. [PMID: 34638907 PMCID: PMC8508647 DOI: 10.3390/ijms221910567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) is a highly regulated process that results in the orderly destruction of a cell. Many different forms of PCD may be distinguished, including apoptosis, PARthanatos, and cGMP-dependent cell death. Misregulation of PCD mechanisms may be the underlying cause of neurodegenerative diseases of the retina, including hereditary retinal degeneration (RD). RD relates to a group of diseases that affect photoreceptors and that are triggered by gene mutations that are often well known nowadays. Nevertheless, the cellular mechanisms of PCD triggered by disease-causing mutations are still poorly understood, and RD is mostly still untreatable. While investigations into the neurodegenerative mechanisms of RD have focused on apoptosis in the past two decades, recent evidence suggests a predominance of non-apoptotic processes as causative mechanisms. Research into these mechanisms carries the hope that the knowledge created can eventually be used to design targeted treatments to prevent photoreceptor loss. Hence, in this review, we summarize studies on PCD in RD, including on apoptosis, PARthanatos, and cGMP-dependent cell death. Then, we focus on a possible interplay between these mechanisms, covering cGMP-signaling targets, overactivation of poly(ADP-ribose)polymerase (PARP), energy depletion, Ca2+-permeable channels, and Ca2+-dependent proteases. Finally, an outlook is given into how specific features of cGMP-signaling and PARthanatos may be targeted by therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (J.Y.); (Y.C.); (Y.Z.)
| |
Collapse
|
20
|
Cordwin DJ, Berei TJ, Pogue KT. The Role of sGC Stimulators and Activators in Heart Failure With Reduced Ejection Fraction. J Cardiovasc Pharmacol Ther 2021; 26:593-600. [PMID: 34487435 DOI: 10.1177/10742484211042706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, soluble guanylate cyclase (sGC) activators and stimulators have been developed and studied to improve outcomes in patients with heart failure with reduced ejection fraction (HFrEF). The sGC enzyme plays an important role in the nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway, that has been largely untargeted by current guideline directed medical therapy (GDMT) for HFrEF. Disruption of the NO-sCG-cGMP pathway can be widely observed in patients with HFrEF leading to endothelial dysfunction. The disruption is caused by an oxidized state resulting in low bioavailability of NO and cGMP. The increase in reactive oxygen species can also result in an oxidized, and subsequently heme free, sGC enzyme that NO is unable to activate, furthering the endothelial dysfunction. The novel sGC stimulators enhance the sensitivity of sGC to NO, and independently stimulate sGC, while the sGC activators target the oxidized and heme free sGC to stimulate cGMP production. This review will discuss the pathophysiologic basis for sGC stimulator and activator use in HFrEF, review the pre-clinical and clinical data, and propose a place in the HFrEF armamentarium for this novel pharmacotherapeutic class.
Collapse
Affiliation(s)
- David J Cordwin
- Department of Clinical Pharmacy, 15514University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Theodore J Berei
- Department of Pharmacy, 5228University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Kristen T Pogue
- Department of Clinical Pharmacy, 15514University of Michigan College of Pharmacy, Ann Arbor, MI, USA.,Department of Pharmacy, 15514University of Michigan Health, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Kolb TM, Johnston L, Damarla M, Kass DA, Hassoun PM. PDE9A deficiency does not prevent chronic-hypoxic pulmonary hypertension in mice. Physiol Rep 2021; 9:e15057. [PMID: 34569183 PMCID: PMC8474007 DOI: 10.14814/phy2.15057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/31/2022] Open
Abstract
Inhibition of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterases (PDEs) is a cornerstone of pulmonary arterial hypertension (PAH)-specific therapy. PDE9A, expressed in the heart and lung tissue, has the highest affinity for cGMP of all known PDEs. PDE9A deficiency protects mice against chronic left ventricular (LV) pressure overload via increased natriuretic peptide (NP)-dependent cGMP signaling. Chronic-hypoxic pulmonary hypertension (CH-PH) is a model of chronic right ventricular (RV) pressure overload, and previous studies have demonstrated a protective role for NPs in the murine model. Therefore, we hypothesized that PDE9A deficiency would promote NP-dependent cGMP signaling and prevent RV remodeling in the CH-PH model, analogous to findings in the LV. We exposed wild-type and PDE9A-deficient (Pde9a-/- ) C57BL/6 mice to CH-PH for 3 weeks. We measured RV pressure, hypertrophy, and levels of lung and RV cGMP, PDE9A, PDE5A, and phosphorylation of the protein kinase G substrate VASP (vasodilatory-stimulated phosphoprotein) after CH-PH. In wild-type mice, CH-PH was associated with increased circulating ANP and lung PDE5A, but no increase in cGMP, PDE9A, or VASP phosphorylation. Downstream effectors of cGMP were not increased in Pde9a-/- mice exposed to CH-PH compared with Pde9a+/+ littermates, and CH-PH induced increases in RV pressure and hypertrophy were not attenuated in knockout mice. Taken together, these findings argue against a prominent role for PDE9A in the murine CH-PH model.
Collapse
Affiliation(s)
- Todd M. Kolb
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Laura Johnston
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - David A. Kass
- Division of CardiologyDepartment of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine PulmonaryJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
22
|
Li ZS, Hung LY, Margolis KG, Ambron RT, Sung YJ, Gershon MD. The α isoform of cGMP-dependent protein kinase 1 (PKG1α) is expressed and functionally important in intrinsic primary afferent neurons of the guinea pig enteric nervous system. Neurogastroenterol Motil 2021; 33:e14100. [PMID: 33655600 PMCID: PMC8681866 DOI: 10.1111/nmo.14100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intrinsic primary afferent neurons (IPANs) enable the gut to manifest reflexes in the absence of CNS input. PKG1α is selectively expressed in a subset of neurons in dorsal root ganglia (DRG) and has been linked to nociception and long-term hyperexcitability. METHODS We used immunoblotting, immunocytochemistry, and in vitro assays of IPAN-dependent enteric functions to test hypotheses that subsets of primary neurons of the ENS and DRG share a reliance on PKG1α expression. KEY RESULTS PKG1α immunoreactivity was demonstrated in immunoblots from isolated myenteric ganglia. PKG1α, but not PKG1β, immunoreactivity, was coincident with that of neuronal markers (HuC/D; β3-tubulin) in both enteric plexuses. PKG1α immunoreactivity also co-localized with the immunoreactivities of the IPAN markers, calbindin (100%; myenteric plexus) and cytoplasmic NeuN (98 ± 1% submucosal plexus). CGRP-immunoreactive DRG neurons, identified as visceral afferents by retrograde transport, were PKG1α-immunoreactive. We used intraluminal cholera toxin to determine whether PKG1α was necessary to enable stimulation of the mucosa to activate Fos in enteric neurons. Tetrodotoxin (1.0 µM), low Ca2+ /high Mg2+ media, and the PKG inhibitor, N46 (100 µM), all inhibited Fos activation in myenteric neurons. N46 also concentration dependently inhibited peristaltic reflexes in isolated preparations of distal colon (IC50 = 83.3 ± 1.3 µM). CONCLUSIONS & INFERENCES These data suggest that PKG1α is present and functionally important in IPANs and visceral afferent nociceptive neurons.
Collapse
Affiliation(s)
- Zhi S. Li
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Richard T. Ambron
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Ying J. Sung
- Departments of Basic Science, The Commonwealth Medical College, Scranton, PA, USA
| | - Michael D. Gershon
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Yi X, Wu P, Liu J, He S, Gong Y, Xiong J, Xu X, Li W. Candidate kinases for adipogenesis and osteoblastogenesis from human bone marrow mesenchymal stem cells. Mol Omics 2021; 17:790-795. [PMID: 34318850 DOI: 10.1039/d1mo00160d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adipogenesis and osteoblastogenesis (adipo-osteoblastogenesis) are closely related processes involving with the phosphorylation of numerous cytoplasmic proteins and key transcription factors. Despite the recognition of the importance of protein phosphorylation in adipo-osteoblastocyte biology, relatively little is known about the specific kinases for adipo-osteoblastogenesis. Here, we constructed the comprehensive gene transcriptional landscapes of kinases at 3, 5, and 7 days during adipo-osteoblastogenesis from human bone marrow mesenchymal stem cells (hMSCs). We identified forty-four and eight significant DEGs (differentially expressed genes) separately for adipo-osteoblastogenesis. Five significant DEGs, namely CAMK2A, NEK10, PAK3, PRKG2, and PTK2B, were simultaneously shared by adipo-osteoblastogenic anecdotes. Using a lentivirus system, we confirmed that PTK2B (non-receptor protein tyrosine kinase 2 beta) simultaneously inhibited adipo-osteoblastogenesis through RNAi assays, and PRKG2 (protein kinase cGMP-dependent 2) facilitated adipogenesis and weakened osteoblastogenesis. The only certainty was that the identified candidate significant DEGs encoding kinases responsible for protein phosphorylation, especially PTK2B and PRKG2, were the potential molecular switches of cell fate determination for hMSCs. This study would provide novel study targets for hMSC differentiation and potential clues for the therapy of the adipo-osteoblastogenic balance-derived disorders.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Shan He
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Jianjun Xiong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| |
Collapse
|
24
|
Hofmann F. The cGMP system: components and function. Biol Chem 2021; 401:447-469. [PMID: 31747372 DOI: 10.1515/hsz-2019-0386] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of a variety of physiological and pathophysiological processes in many mammalian and non-mammalian tissues. Targeting this pathway by increasing cGMP levels has been a very successful approach in pharmacology as shown for nitrates, phosphodiesterase (PDE) inhibitors and stimulators of nitric oxide-guanylyl cyclase (NO-GC) and particulate GC (pGC). This is an introductory review to the cGMP signaling system intended to introduce those readers to this system, who do not work in this area. This article does not intend an in-depth review of this system. Signal transduction by cGMP is controlled by the generating enzymes GCs, the degrading enzymes PDEs and the cGMP-regulated enzymes cyclic nucleotide-gated ion channels, cGMP-dependent protein kinases and cGMP-regulated PDEs. Part A gives a very concise introduction to the components. Part B gives a very concise introduction to the functions modulated by cGMP. The article cites many recent reviews for those who want a deeper insight.
Collapse
Affiliation(s)
- Franz Hofmann
- Pharmakologisches Institut, Technische Universität München, Biedersteiner Str. 29, D-80802 München, Germany
| |
Collapse
|
25
|
Pharmic Activation of PKG2 Alleviates Diabetes-Induced Osteoblast Dysfunction by Suppressing PLC β1-Ca 2+-Mediated Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5552530. [PMID: 34221234 PMCID: PMC8225424 DOI: 10.1155/2021/5552530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
As reported in our previous study, cinaciguat can improve implant osseointegration in type 2 diabetes mellitus (T2DM) rats by reactivating type 2 cGMP-dependent protein kinase (PKG2), but the downstream mechanisms remain unclear. In the present study, we investigated the favorable effect of cinaciguat on primary rat osteoblast, which was cultivated on titanium disc under vitro T2DM conditions (25 mM glucose and 200 μM palmitate), and clarified the therapeutic mechanism by proteomic analysis. The results demonstrated that T2DM medium caused significant downregulation of PKG2 and induced obvious osteoblast dysfunction. And overexpression of PKG2 by lentivirus and cinaciguat could promote cell proliferation, adhesion, and differentiation, leading to decreased osteoblasts injury. Besides, proteomic analysis revealed the interaction between PKG2 and phospholipase Cβ1 (PLCβ1) in the cinaciguat addition group, and we further verified that upregulated PKG2 by cinaciguat could inhibit the activation of PLCβ1, then relieve intracellular calcium overload, and suppress endoplasmic reticulum (ER) stress to ameliorate osteoblast functions under T2DM condition. Collectively, these findings provided the first detailed mechanisms responsible for cinaciguat provided a favorable effect on promoting osseointegration in T2DM and demonstrated a new insight that diabetes mellitus-induced the aberrations in PKG2-PLCβ1-Ca2+-ER stress pathway was one underlying mechanism for poor osseointegration.
Collapse
|
26
|
Das S, Chen Y, Yan J, Christensen G, Belhadj S, Tolone A, Paquet-Durand F. The role of cGMP-signalling and calcium-signalling in photoreceptor cell death: perspectives for therapy development. Pflugers Arch 2021; 473:1411-1421. [PMID: 33864120 PMCID: PMC8370896 DOI: 10.1007/s00424-021-02556-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The second messengers, cGMP and Ca2+, have both been implicated in retinal degeneration; however, it is still unclear which of the two is most relevant for photoreceptor cell death. This problem is exacerbated by the close connections and crosstalk between cGMP-signalling and calcium (Ca2+)-signalling in photoreceptors. In this review, we summarize key aspects of cGMP-signalling and Ca2+-signalling relevant for hereditary photoreceptor degeneration. The topics covered include cGMP-signalling targets, the role of Ca2+ permeable channels, relation to energy metabolism, calpain-type proteases, and how the related metabolic processes may trigger and execute photoreceptor cell death. A focus is then put on cGMP-dependent mechanisms and how exceedingly high photoreceptor cGMP levels set in motion cascades of Ca2+-dependent and independent processes that eventually bring about photoreceptor cell death. Finally, an outlook is given into mutation-independent therapeutic approaches that exploit specific features of cGMP-signalling. Such approaches might be combined with suitable drug delivery systems for translation into clinical applications.
Collapse
Affiliation(s)
- Soumyaparna Das
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Yiyi Chen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Jie Yan
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Gustav Christensen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Soumaya Belhadj
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Arianna Tolone
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany.
| |
Collapse
|
27
|
Klein F, Sardi F, Machado MR, Ortega C, Comini MA, Pantano S. CUTie2: The Attack of the Cyclic Nucleotide Sensor Clones. Front Mol Biosci 2021; 8:629773. [PMID: 33778003 PMCID: PMC7991088 DOI: 10.3389/fmolb.2021.629773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
The detection of small molecules in living cells using genetically encoded FRET sensors has revolutionized our understanding of signaling pathways at the sub-cellular level. However, engineering fluorescent proteins and specific binding domains to create new sensors remains challenging because of the difficulties associated with the large size of the polypeptides involved, and their intrinsically huge conformational variability. Indeed, FRET sensors’ design still relies on vague structural notions, and trial and error combinations of linkers and protein modules. We recently designed a FRET sensor for the second messenger cAMP named CUTie (Cyclic nucleotide Universal Tag for imaging experiments), which granted sub-micrometer resolution in living cells. Here we apply a combination of sequence/structure analysis to produce a new-generation FRET sensor for the second messenger cGMP based on Protein kinase G I (PKGI), which we named CUTie2. Coarse-grained molecular dynamics simulations achieved an exhaustive sampling of the relevant spatio-temporal coordinates providing a quasi-quantitative prediction of the FRET efficiency, as confirmed by in vitro experiments. Moreover, biochemical characterization showed that the cGMP binding module maintains virtually the same affinity and selectivity for its ligand thant the full-length protein. The computational approach proposed here is easily generalizable to other allosteric protein modules, providing a cost effective-strategy for the custom design of FRET sensors.
Collapse
Affiliation(s)
- Florencia Klein
- BioMolecular Simulation Group, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Graduate Program in Chemistry, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Florencia Sardi
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Matías R Machado
- BioMolecular Simulation Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- BioMolecular Simulation Group, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
28
|
C-type natriuretic peptide-induced relaxation through cGMP-dependent protein kinase and SERCA activation is impaired in two kidney-one clip rat aorta. Life Sci 2021; 272:119223. [PMID: 33610574 DOI: 10.1016/j.lfs.2021.119223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
AIMS Hypertension underlies endothelial dysfunction, and activation of vasorelaxation signaling with low dependence on nitric oxide (NO) represents a good alternative for vascular modulation. C-type natriuretic peptide (CNP) causes relaxation by increasing cyclic guanosine 3',5'-monophosphate (cGMP) or Gi-protein activation through its natriuretic peptide receptor-B or -C, respectively. We have hypothesized that CNP could exerts its effects and could overcome endothelial dysfunction in two kidney-one clip (2K-1C) hypertensive rat aorta. Here, we investigate the intracellular signaling involved in CNP effects in hypertension. MATERIALS AND METHODS The 2K-1C hypertension was induced in male Wistar rats (200 g). CNP-induced vascular relaxation and cGMP production were investigated in rat thoracic aortas. The natriuretic peptide receptor-B and -C localization was evaluated by immunofluorescence. Calcium mobilization was assessed in endothelial cells from rat aortas. KEY FINDINGS CNP induced similar relaxation in normotensive and 2K-1C hypertensive rat aortas, which increased after endothelium removal. CNP-induced relaxation involved natriuretic peptide receptor-B and -C activation in 2K-1C rats. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) counter-regulated CNP-particulate GC (pGC) activation in aortas. CNP reduced endothelial calcium and increased cGMP production, which was lower in 2K-1C. CNP-induced cGMP-dependent protein kinase (PKG) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) activation was impaired in 2K-1C rat aorta. SIGNIFICANCE Our results indicated CNP triggered relaxation through its natriuretic peptide receptor-B and -C in 2K-1C rat aortas, and that CNP-induced relaxation overcomes endothelial dysfunction in hypertension. In addition, NOS and sGC activities counter-regulate CNP-pGC activation to induce vascular relaxation.
Collapse
|
29
|
Huffmeyer AA, Pukazhenthi BS, Wayne RK. Differential gene expression patterns in spermatozoa from teratospermic and normospermic domestic cats. Anim Reprod Sci 2021; 226:106698. [PMID: 33476905 DOI: 10.1016/j.anireprosci.2021.106698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/24/2022]
Abstract
Large percentages of abnormal sperm, termed teratospermia, are associated with poor fertility in cats, many of which are threatened with extinction from their natural habitats. Even normal appearing spermatozoa from felids with teratospermia may have a compromised capacity for motility and fertilization indicating there are factors affecting the fertilization capacity of all sperm regardless of morphology. There was a comparative study conducted using the RNA-Seq approach to identify differentially expressed genes between morphologically normal and abnormal sperm from domestic cates with normospermia and teratospermia to elucidate genes and pathways associated with abnormal sperm function. Normal sperm from cats with teratospermia have a gene expression profile similar to abnormal sperm from males with teratospermia. There was also downregulation of cGMP pathways which may be associated with a lesser sperm motility in ejaculates from males with teratospermia. Kinase phosphorylation pathways also were downregulated in normal spermatozoa from ejaculates of males with teratospermia. Results indicate that analysis of sperm gene expression provides for a more precise assessment of sperm function in semen of cats with teratospermia and facilitates identification of molecular abnormalities that may lead to compromised fertilization capacity.
Collapse
Affiliation(s)
- Audra A Huffmeyer
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA.
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Fusi F, Mugnai P, Trezza A, Spiga O, Sgaragli G. Fine tuning by protein kinases of Ca V1.2 channel current in rat tail artery myocytes. Biochem Pharmacol 2020; 182:114263. [PMID: 33035505 DOI: 10.1016/j.bcp.2020.114263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022]
Abstract
Seventeen compounds, rather selective, direct or indirect inhibitors and activators of PKA, PKG, and PKC, were analysed for effects on vascular CaV1.2 channel current (ICa1.2) by using the patch-clamp technique in single rat tail artery myocytes. The aim was to investigate how PKs regulate ICa1.2 and disclose any unexpected modulation of CaV1.2 channel function by these agents. The cAMP analogues 8-Br-cAMP and 6-Bnz-cAMP partially reduced ICa1.2 in dialysed cells, while weakly increasing it under the perforated configuration. The β-adrenoceptor agonist isoproterenol and the adenylate cyclase activator forskolin concentration-dependently increased ICa1.2; this effect was reversed by PKA inhibitors H-89 and KT5720, but not by PKI 6-22. The cGMP analogue 8-Br-cGMP, similarly to the NO-donor SNP, moderately reduced ICa1.2, this effect being reversed to a slight stimulation under the perforated configuration. Among PKG inhibitors, Rp-8-Br-PET-cGMPS decreased current amplitude in a concentration-dependent manner while Rp-8-Br-cGMPS was ineffective. The non-specific phosphodiesterase inhibitor IBMX increased ICa1.2, while H-89, KT5720, and PKI 6-22 antagonized this effect. The PKC activator PMA, but not the diacylglycerol analogue OAG, stimulated ICa1.2 in a concentration-dependent manner; conversely, the PKCα inhibitor Gö6976 markedly reduced basal ICa1.2 and, similarly to the PKCδ (rottlerin) and PKCε translocation inhibitors antagonised PMA-induced current stimulation. The ensemble of findings indicates that the stimulation of cAMP/PKA, in spite of the paradoxical effect of both 8-Br-cAMP and 6-Bnz-cAMP, or PKC pathways enhanced, while that of cGMP/PKG weakly inhibited ICa1.2 in rat tail artery myocytes. Since Rp-8-Br-PET-cGMPS and Gö6976 appeared to block directly CaV1.2 channel, their docking to the channel protein was investigated. Both compounds appeared to bind the α1C subunit in a region involved in CaV1.2 channel inactivation, forming an interaction network comparable to that of CaV1.2 channel blockers. Therefore, caution should accompany the use of these agents as pharmacological tools to elucidate the mechanism of action of drugs on vascular preparations.
Collapse
Affiliation(s)
- F Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - P Mugnai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - A Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - O Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - G Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
31
|
Ercu M, Markó L, Schächterle C, Tsvetkov D, Cui Y, Maghsodi S, Bartolomaeus TU, Maass PG, Zühlke K, Gregersen N, Hübner N, Hodge R, Mühl A, Pohl B, Illas RM, Geelhaar A, Walter S, Napieczynska H, Schelenz S, Taube M, Heuser A, Anistan YM, Qadri F, Todiras M, Plehm R, Popova E, Langanki R, Eichhorst J, Lehmann M, Wiesner B, Russwurm M, Forslund SK, Kamer I, Müller DN, Gollasch M, Aydin A, Bähring S, Bader M, Luft FC, Klussmann E. Phosphodiesterase 3A and Arterial Hypertension. Circulation 2020; 142:133-149. [DOI: 10.1161/circulationaha.119.043061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
High blood pressure is the primary risk factor for cardiovascular death worldwide. Autosomal dominant hypertension with brachydactyly clinically resembles salt-resistant essential hypertension and causes death by stroke before 50 years of age. We recently implicated the gene encoding phosphodiesterase 3A (
PDE3A
); however, in vivo modeling of the genetic defect and thus showing an involvement of mutant PDE3A is lacking.
Methods:
We used genetic mapping, sequencing, transgenic technology, CRISPR-Cas9 gene editing, immunoblotting, and fluorescence resonance energy transfer. We identified new patients, performed extensive animal phenotyping, and explored new signaling pathways.
Results:
We describe a novel mutation within a 15 base pair (bp) region of the
PDE3A
gene and define this segment as a mutational hotspot in hypertension with brachydactyly. The mutations cause an increase in enzyme activity. A CRISPR/Cas9-generated rat model, with a 9-bp deletion within the hotspot analogous to a human deletion, recapitulates hypertension with brachydactyly. In mice, mutant transgenic PDE3A overexpression in smooth muscle cells confirmed that mutant PDE3A causes hypertension. The mutant PDE3A enzymes display consistent changes in their phosphorylation and an increased interaction with the 14-3-3θ adaptor protein. This aberrant signaling is associated with an increase in vascular smooth muscle cell proliferation and changes in vessel morphology and function.
Conclusions:
The mutated
PDE3A
gene drives mechanisms that increase peripheral vascular resistance causing hypertension. We present 2 new animal models that will serve to elucidate the underlying mechanisms further. Our findings could facilitate the search for new antihypertensive treatments.
Collapse
Affiliation(s)
- Maria Ercu
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
| | - Lajos Markó
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Carolin Schächterle
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Yingqiu Cui
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Sara Maghsodi
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Theda U.P. Bartolomaeus
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Philipp G. Maass
- Genetics and Genome Biology Program, Sickkids Research Institute and Department of Molecular Genetics, University of Toronto, ON, Canada (P.G.M.)
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Nerine Gregersen
- Auckland District Health Board (ADHB), Genetic Health Service New Zealand – Northern Hub (N.G.)
| | - Norbert Hübner
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
| | - Russell Hodge
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Astrid Mühl
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Bärbel Pohl
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Rosana Molé Illas
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Andrea Geelhaar
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Stephan Walter
- Abteilung für Nephrologie/Hypertensiologie, St. Vincenz Krankenhaus, Limburg, Germany (S.W.)
| | - Hanna Napieczynska
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Stefanie Schelenz
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Martin Taube
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Yoland-Marie Anistan
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Division of Nephrology and Intensive Care Medicine, Medical Department, Charité-Universitätsmedizin, Berlin, Germany (Y.-M.A., M.G.)
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Ralph Plehm
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Elena Popova
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Reika Langanki
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Jenny Eichhorst
- Leibniz-Forschingsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L., B.W.)
| | - Martin Lehmann
- Leibniz-Forschingsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L., B.W.)
| | - Burkhard Wiesner
- Leibniz-Forschingsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L., B.W.)
| | - Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät MA N1, Ruhr-Universität Bochum, Germany (M.R.)
| | - Sofia K. Forslund
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
- Berlin Institute of Health (BIH), Germany (S.K.F.)
| | - Ilona Kamer
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Dominik N. Müller
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Maik Gollasch
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
- Division of Nephrology and Intensive Care Medicine, Medical Department, Charité-Universitätsmedizin, Berlin, Germany (Y.-M.A., M.G.)
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (M.G.)
| | - Atakan Aydin
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Sylvia Bähring
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Institute for Biology, University of Lübeck, Germany (M.B.)
| | - Friedrich C. Luft
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
| |
Collapse
|
32
|
Chan MH, Aminzai S, Hu T, Taran A, Li S, Kim C, Pilz RB, Casteel DE. A substitution in cGMP-dependent protein kinase 1 associated with aortic disease induces an active conformation in the absence of cGMP. J Biol Chem 2020; 295:10394-10405. [PMID: 32506052 DOI: 10.1074/jbc.ra119.010984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/04/2020] [Indexed: 01/27/2023] Open
Abstract
Type 1 cGMP-dependent protein kinases (PKGs) play important roles in human cardiovascular physiology, regulating vascular tone and smooth-muscle cell phenotype. A mutation in the human PRKG1 gene encoding cGMP-dependent protein kinase 1 (PKG1) leads to thoracic aortic aneurysms and dissections. The mutation causes an arginine-to-glutamine (RQ) substitution within the first cGMP-binding pocket in PKG1. This substitution disrupts cGMP binding to the pocket, but it also unexpectedly causes PKG1 to have high activity in the absence of cGMP via an unknown mechanism. Here, we identified the molecular mechanism whereby the RQ mutation increases basal kinase activity in the human PKG1α and PKG1β isoforms. Although we found that the RQ substitution (R177Q in PKG1α and R192Q in PKG1β) increases PKG1α and PKG1β autophosphorylation in vitro, we did not detect increased autophosphorylation of the PKG1α or PKG1β RQ variant isolated from transiently transfected 293T cells, indicating that increased basal activity of the RQ variants in cells was not driven by PKG1 autophosphorylation. Replacement of Arg-177 in PKG1α with alanine or methionine also increased basal activity. PKG1 exists as a parallel homodimer linked by an N-terminal leucine zipper, and we show that the WT chain in WT-RQ heterodimers partly reduces basal activity of the RQ chain. Using hydrogen/deuterium-exchange MS, we found that the RQ substitution causes PKG1β to adopt an active conformation in the absence of cGMP, similar to that of cGMP-bound WT enzyme. We conclude that the RQ substitution in PKG1 increases its basal activity by disrupting the formation of an inactive conformation.
Collapse
Affiliation(s)
- Matthew H Chan
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sahar Aminzai
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tingfei Hu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amatya Taran
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and the Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
33
|
cGMP signalling in cardiomyocyte microdomains. Biochem Soc Trans 2020; 47:1327-1339. [PMID: 31652306 DOI: 10.1042/bst20190225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is one of the major second messengers critically involved in the regulation of cardiac electrophysiology, hypertrophy, and contractility. Recent molecular and cellular studies have significantly advanced our understanding of the cGMP signalling cascade, its local microdomain-specific regulation and its role in protecting the heart from pathological stress. Here, we summarise recent findings on cardiac cGMP microdomain regulation and discuss their potential clinical significance.
Collapse
|
34
|
Structures of the cGMP-dependent protein kinase in malaria parasites reveal a unique structural relay mechanism for activation. Proc Natl Acad Sci U S A 2019; 116:14164-14173. [PMID: 31239348 PMCID: PMC6628679 DOI: 10.1073/pnas.1905558116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.
Collapse
|
35
|
Tolone A, Belhadj S, Rentsch A, Schwede F, Paquet-Durand F. The cGMP Pathway and Inherited Photoreceptor Degeneration: Targets, Compounds, and Biomarkers. Genes (Basel) 2019; 10:genes10060453. [PMID: 31207907 PMCID: PMC6627777 DOI: 10.3390/genes10060453] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Photoreceptor physiology and pathophysiology is intricately linked to guanosine-3’,5’-cyclic monophosphate (cGMP)-signaling. Here, we discuss the importance of cGMP-signaling for the pathogenesis of hereditary retinal degeneration. Excessive accumulation of cGMP in photoreceptors is a common denominator in cell death caused by a variety of different gene mutations. The cGMP-dependent cell death pathway may be targeted for the treatment of inherited photoreceptor degeneration, using specifically designed and formulated inhibitory cGMP analogues. Moreover, cGMP-signaling and its down-stream targets may be exploited for the development of novel biomarkers that could facilitate monitoring of disease progression and reveal the response to treatment in future clinical trials. We then briefly present the importance of appropriate formulations for delivery to the retina, both for drug and biomarker applications. Finally, the review touches on important aspects of future clinical translation, highlighting the need for interdisciplinary cooperation of researchers from a diverse range of fields.
Collapse
Affiliation(s)
- Arianna Tolone
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany.
| | - Soumaya Belhadj
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany.
| | | | - Frank Schwede
- Biolog Life Science Institute, 28199 Bremen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany.
| |
Collapse
|
36
|
Sheehe JL, Bonev AD, Schmoker AM, Ballif BA, Nelson MT, Moon TM, Dostmann WR. Oxidation of cysteine 117 stimulates constitutive activation of the type Iα cGMP-dependent protein kinase. J Biol Chem 2018; 293:16791-16802. [PMID: 30206122 PMCID: PMC6204908 DOI: 10.1074/jbc.ra118.004363] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
The type I cGMP-dependent protein kinase (PKG I) is an essential regulator of vascular tone. It has been demonstrated that the type Iα isoform can be constitutively activated by oxidizing conditions. However, the amino acid residues implicated in this phenomenon are not fully elucidated. To investigate the molecular basis for this mechanism, we studied the effects of oxidation using recombinant WT, truncated, and mutant constructs of PKG I. Using an in vitro assay, we observed that oxidation with hydrogen peroxide (H2O2) resulted in constitutive, cGMP-independent activation of PKG Iα. PKG Iα C42S and a truncation construct that does not contain Cys-42 (Δ53) were both constitutively activated by H2O2 In contrast, oxidation of PKG Iα C117S maintained its cGMP-dependent activation characteristics, although oxidized PKG Iα C195S did not. To corroborate these results, we also tested the effects of our constructs on the PKG Iα-specific substrate, the large conductance potassium channel (KCa 1.1). Application of WT PKG Iα activated by either cGMP or H2O2 increased the open probabilities of the channel. Neither cGMP nor H2O2 activation of PKG Iα C42S significantly increased channel open probabilities. Moreover, cGMP-stimulated PKG Iα C117S increased KCa 1.1 activity, but this effect was not observed under oxidizing conditions. Finally, we observed that PKG Iα C42S caused channel flickers, indicating dramatically altered KCa 1.1 channel characteristics compared with channels exposed to WT PKG Iα. Cumulatively, these results indicate that constitutive activation of PKG Iα proceeds through oxidation of Cys-117 and further suggest that the formation of a sulfur acid is necessary for this phenotype.
Collapse
Affiliation(s)
- Jessica L Sheehe
- From the Department of Pharmacology, Larner College of Medicine, and
| | - Adrian D Bonev
- From the Department of Pharmacology, Larner College of Medicine, and
| | - Anna M Schmoker
- the Department of Biology, University of Vermont, Burlington, Vermont 05405 and
| | - Bryan A Ballif
- the Department of Biology, University of Vermont, Burlington, Vermont 05405 and
| | - Mark T Nelson
- From the Department of Pharmacology, Larner College of Medicine, and
| | - Thomas M Moon
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | |
Collapse
|
37
|
Allen AM, Anreiter I, Vesterberg A, Douglas SJ, Sokolowski MB. Pleiotropy of the Drosophila melanogaster foraging gene on larval feeding-related traits. J Neurogenet 2018; 32:256-266. [PMID: 30303018 PMCID: PMC6309726 DOI: 10.1080/01677063.2018.1500572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Little is known about the molecular underpinning of behavioral pleiotropy. The Drosophila melanogaster foraging gene is highly pleiotropic, affecting many independent larval and adult phenotypes. Included in foraging's multiple phenotypes are larval foraging path length, triglyceride levels, and food intake. foraging has a complex structure with four promoters and 21 transcripts that encode nine protein isoforms of a cGMP dependent protein kinase (PKG). We examined if foraging's complex molecular structure underlies the behavioral pleiotropy associated with this gene. Using a promotor analysis strategy, we cloned DNA fragments upstream of each of foraging's transcription start sites and generated four separate forpr-Gal4s. Supporting our hypothesis of modular function, they had discrete, restricted expression patterns throughout the larva. In the CNS, forpr1-Gal4 and forpr4-Gal4 were expressed in neurons while forpr2-Gal4 and forpr3-Gal4 were expressed in glia cells. In the gastric system, forpr1-Gal4 and forpr3-Gal4 were expressed in enteroendocrine cells of the midgut while forpr2-Gal4 was expressed in the stem cells of the midgut. forpr3-Gal4 was expressed in the midgut enterocytes, and midgut and hindgut visceral muscle. forpr4-Gal4's gastric system expression was restricted to the hindgut. We also found promoter specific expression in the larval fat body, salivary glands, and body muscle. The modularity of foraging's molecular structure was also apparent in the phenotypic rescues. We rescued larval path length, triglyceride levels (bordered on significance), and food intake of for0 null larvae using different forpr-Gal4s to drive UAS-forcDNA. In a foraging null genetic background, forpr1-Gal4 was the only promoter driven Gal4 to rescue larval path length, forpr3-Gal4 altered triglyceride levels, and forpr4-Gal4 rescued food intake. Our results refine the spatial expression responsible for foraging's associated phenotypes, as well as the sub-regions of the locus responsible for their expression. foraging's pleiotropy arises at least in part from the individual contributions of its four promoters.
Collapse
Affiliation(s)
- A. M. Allen
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5
- Current address: Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK, OX1 3SR
| | - I. Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, Ontario, Canada, M5G 1M1
| | - A. Vesterberg
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - S. J. Douglas
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5
| | - M. B. Sokolowski
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, Ontario, Canada, M5G 1M1
| |
Collapse
|
38
|
Ramdani G, Schall N, Kalyanaraman H, Wahwah N, Moheize S, Lee JJ, Sah RL, Pfeifer A, Casteel DE, Pilz RB. cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss. J Endocrinol 2018; 238:203-219. [PMID: 29914933 PMCID: PMC6086127 DOI: 10.1530/joe-18-0286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/08/2022]
Abstract
NO/cGMP signaling is important for bone remodeling in response to mechanical and hormonal stimuli, but the downstream mediator(s) regulating skeletal homeostasis are incompletely defined. We generated transgenic mice expressing a partly-activated, mutant cGMP-dependent protein kinase type 2 (PKG2R242Q) under control of the osteoblast-specific Col1a1 promoter to characterize the role of PKG2 in post-natal bone formation. Primary osteoblasts from these mice showed a two- to three-fold increase in basal and total PKG2 activity; they proliferated faster and were resistant to apoptosis compared to cells from WT mice. Male Col1a1-Prkg2R242Q transgenic mice had increased osteoblast numbers, bone formation rates and Wnt/β-catenin-related gene expression in bone and a higher trabecular bone mass compared to their WT littermates. Streptozotocin-induced type 1 diabetes suppressed bone formation and caused rapid bone loss in WT mice, but male transgenic mice were protected from these effects. Surprisingly, we found no significant difference in bone micro-architecture or Wnt/β-catenin-related gene expression between female WT and transgenic mice; female mice of both genotypes showed higher systemic and osteoblastic NO/cGMP generation compared to their male counterparts, and a higher level of endogenous PKG2 activity may be responsible for masking effects of the PKG2R242Q transgene in females. Our data support sexual dimorphism in Wnt/β-catenin signaling and PKG2 regulation of this crucial pathway in bone homeostasis. This work establishes PKG2 as a key regulator of osteoblast proliferation and post-natal bone formation.
Collapse
Affiliation(s)
- Ghania Ramdani
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Nadine Schall
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
- The Institute for Pharmacology and ToxicologyUniversity of Bonn, Bonn, Germany
| | - Hema Kalyanaraman
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Nisreen Wahwah
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Sahar Moheize
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Jenna J Lee
- Department of BioengineeringUniversity of California, San Diego, La Jolla, California, USA
| | - Robert L Sah
- Department of BioengineeringUniversity of California, San Diego, La Jolla, California, USA
| | - Alexander Pfeifer
- The Institute for Pharmacology and ToxicologyUniversity of Bonn, Bonn, Germany
| | - Darren E Casteel
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Renate B Pilz
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| |
Collapse
|
39
|
Fitzakerley JL, Trachte GJ. Genetics of guanylyl cyclase pathways in the cochlea and their influence on hearing. Physiol Genomics 2018; 50:780-806. [PMID: 29958079 DOI: 10.1152/physiolgenomics.00056.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although hearing loss is the most common sensory deficit in Western societies, there are no successful pharmacological treatments for this disorder. Recent experiments have demonstrated that manipulation of intracellular cyclic guanosine monophosphate (cGMP) concentrations can have both beneficial and harmful effects on hearing. In this review, we will examine the role of cGMP as a key second messenger involved in many aspects of cochlear function and discuss the known functions of downstream effectors of cGMP in sound processing. The nitric oxide-stimulated soluble guanylyl cyclase system (sGC) and the two natriuretic peptide-stimulated particulate GCs (pGCs) will be more extensively covered because they have been studied most thoroughly. The cochlear GC systems are attractive targets for medical interventions that improve hearing while simultaneously representing an under investigated source of sensorineural hearing loss.
Collapse
Affiliation(s)
- Janet L Fitzakerley
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| | - George J Trachte
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| |
Collapse
|
40
|
Moon TM, Sheehe JL, Nukareddy P, Nausch LW, Wohlfahrt J, Matthews DE, Blumenthal DK, Dostmann WR. An N-terminally truncated form of cyclic GMP-dependent protein kinase Iα (PKG Iα) is monomeric and autoinhibited and provides a model for activation. J Biol Chem 2018; 293:7916-7929. [PMID: 29602907 DOI: 10.1074/jbc.ra117.000647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers.
Collapse
Affiliation(s)
- Thomas M Moon
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405.
| | - Jessica L Sheehe
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Praveena Nukareddy
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405
| | - Lydia W Nausch
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jessica Wohlfahrt
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Dwight E Matthews
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112
| | - Wolfgang R Dostmann
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|
41
|
Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals. Int J Mol Sci 2018; 19:ijms19030881. [PMID: 29547542 PMCID: PMC5877742 DOI: 10.3390/ijms19030881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/23/2022] Open
Abstract
Transepithelial fluid and salt re-absorption in epithelial tissues play an important role in fluid and salt homeostasis. In absorptive epithelium, fluid and salt flux is controlled by machinery mainly composed of epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), Na⁺/H⁺ exchanger (NHE), aquaporin, and sodium potassium adenosine triphosphatase (Na⁺/K⁺-ATPase). Dysregulation of fluid and salt transport across epithelium contributes to the pathogenesis of many diseases, such as pulmonary edema and cystic fibrosis. Intracellular and extracellular signals, i.e., hormones and protein kinases, regulate fluid and salt turnover and resolution. Increasing evidence demonstrates that transepithelial fluid transport is regulated by cyclic guanosine monophosphate-dependent protein kinase (cGK) signals. cGK2 was originally identified and cloned from intestinal specimens, the presence of which has also been confirmed in the kidney and the lung. cGK2 regulates fluid and salt through ENaC, CFTR and NHE. Deficient cGK2 regulation of transepithelial ion transport was seen in acute lung injury, and cGK2 could be a novel druggable target to restore edematous disorder in epithelial tissues.
Collapse
|
42
|
Gerlits O, Campbell JC, Blakeley MP, Kim C, Kovalevsky A. Neutron Crystallography Detects Differences in Protein Dynamics: Structure of the PKG II Cyclic Nucleotide Binding Domain in Complex with an Activator. Biochemistry 2018. [PMID: 29517905 DOI: 10.1021/acs.biochem.8b00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As one of the main receptors of a second messenger, cGMP, cGMP-dependent protein kinase (PKG) isoforms I and II regulate distinct physiological processes. The design of isoform-specific activators is thus of great biomedical importance and requires detailed structural information about PKG isoforms bound with activators, including accurate positions of hydrogen atoms and a description of the hydrogen bonding and water architecture. Here, we determined a 2.2 Å room-temperature joint X-ray/neutron (XN) structure of the human PKG II carboxyl cyclic nucleotide binding (CNB-B) domain bound with a potent PKG II activator, 8-pCPT-cGMP. The XN structure directly visualizes intermolecular interactions and reveals changes in hydrogen bonding patterns upon comparison to the X-ray structure determined at cryo-temperatures. Comparative analysis of the backbone hydrogen/deuterium exchange patterns in PKG II:8-pCPT-cGMP and previously reported PKG Iβ:cGMP XN structures suggests that the ability of these agonists to activate PKG is related to how effectively they quench dynamics of the cyclic nucleotide binding pocket and the surrounding regions.
Collapse
Affiliation(s)
- Oksana Gerlits
- Bredesen Center , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - James C Campbell
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Matthew P Blakeley
- Large-Scale Structures Group , Institut Laue Langevin , 38042 Grenoble Cedex 9, France
| | - Choel Kim
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , Houston , Texas 77030 , United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
43
|
Bork NI, Nikolaev VO. cGMP Signaling in the Cardiovascular System-The Role of Compartmentation and Its Live Cell Imaging. Int J Mol Sci 2018. [PMID: 29534460 PMCID: PMC5877662 DOI: 10.3390/ijms19030801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system.
Collapse
Affiliation(s)
- Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| |
Collapse
|
44
|
Evolutionary epidemiology of schistosomiasis: linking parasite genetics with disease phenotype in humans. Int J Parasitol 2017; 48:107-115. [PMID: 29154994 DOI: 10.1016/j.ijpara.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Here we assess the role of parasite genetic variation in host disease phenotype in human schistosomiasis by implementing concepts and techniques from environmental association analysis in evolutionary epidemiology. Schistosomiasis is a tropical disease that affects more than 200 million people worldwide and is caused by parasitic flatworms belonging to the genus Schistosoma. While the role of host genetics has been extensively studied and demonstrated, nothing is yet known on the contribution of parasite genetic variation to host disease phenotype in human schistosomiasis. In this study microsatellite genotypes of 1561 Schistosoma mansoni larvae collected from 44 human hosts in Senegal were linked to host characteristics such as age, gender, infection intensity, liver and bladder morbidity by means of multivariate regression methods (on each parasite locus separately). This revealed a highly significant association between allelic variation at the parasite locus L46951 and host infection intensity and bladder morbidity. Locus L46951 is located in the 3' untranslated region of the cGMP-dependent protein kinase gene that is expressed in reproductive organs of adult schistosome worms and appears to be linked to egg production. This putative link between parasite genetic variation and schistosomiasis disease phenotype sets the stage for further functional research.
Collapse
|
45
|
Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. Phosphodiesterase type 5 and cancers: progress and challenges. Oncotarget 2017; 8:99179-99202. [PMID: 29228762 PMCID: PMC5716802 DOI: 10.18632/oncotarget.21837] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/23/2017] [Indexed: 01/05/2023] Open
Abstract
Cancers are an extraordinarily heterogeneous collection of diseases with distinct genetic profiles and biological features that directly influence response patterns to various treatment strategies as well as clinical outcomes. Nevertheless, our growing understanding of cancer cell biology and tumor progression is gradually leading towards rational, tailored medical treatments designed to destroy cancer cells by exploiting the unique cellular pathways that distinguish them from normal healthy counterparts. Recently, inhibition of the activity of phosphodiesterase type 5 (PDE5) is emerging as a promising approach to restore normal intracellular cyclic guanosine monophosphate (cGMP) signalling, and thereby resulting into the activation of various downstream molecules to inhibit proliferation, motility and invasion of certain cancer cells. In this review, we present an overview of the experimental and clinical evidences highlighting the role of PDE5 in the pathogenesis and prevention of various malignancies. Current data are still not sufficient to draw conclusive statements for cancer patient management, but could provide further rational for testing PDE5-targeting drugs as anticancer agents in clinical settings.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Cinzia Giordano
- Centro Sanitario, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
46
|
Oxidant sensor in the cGMP-binding pocket of PKGIα regulates nitroxyl-mediated kinase activity. Sci Rep 2017; 7:9938. [PMID: 28855531 PMCID: PMC5577323 DOI: 10.1038/s41598-017-09275-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Despite the mechanisms for endogenous nitroxyl (HNO) production and action being incompletely understood, pharmacological donors show broad therapeutic promise and are in clinical trials. Mass spectrometry and site-directed mutagenesis showed that chemically distinct HNO donors 1-nitrosocyclohexyl acetate or Angeli’s salt induced disulfides within cGMP-dependent protein kinase I-alpha (PKGIα), an interdisulfide between Cys42 of the two identical subunits of the kinase and a previously unobserved intradisulfide between Cys117 and Cys195 in the high affinity cGMP-binding site. Kinase activity was monitored in cells transfected with wildtype (WT), Cys42Ser or Cys117/195Ser PKGIα that cannot form the inter- or intradisulfide, respectively. HNO enhanced WT kinase activity, an effect significantly attenuated in inter- or intradisulfide-deficient PKGIα. To investigate whether the intradisulfide modulates cGMP binding, real-time imaging was performed in vascular smooth muscle cells expressing a FRET-biosensor comprising the cGMP-binding sites of PKGIα. HNO induced FRET changes similar to those elicited by an increase of cGMP, suggesting that intradisulfide formation is associated with activation of PKGIα. Intradisulfide formation in PKGIα correlated with enhanced HNO-mediated vasorelaxation in mesenteric arteries in vitro and arteriolar dilation in vivo in mice. HNO induces intradisulfide formation in PKGIα, inducing the same effect as cGMP binding, namely kinase activation and thus vasorelaxation.
Collapse
|
47
|
Kraehling JR, Sessa WC. Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease. Circ Res 2017; 120:1174-1182. [PMID: 28360348 DOI: 10.1161/circresaha.117.303776] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial cells lining the vessel wall control important aspects of vascular homeostasis. In particular, the production of endothelium-derived nitric oxide and activation of soluble guanylate cyclase promotes endothelial quiescence and governs vasomotor function and proportional remodeling of blood vessels. Here, we discuss novel approaches to improve endothelial nitric oxide generation and preserve its bioavailability. We also discuss therapeutic opportunities aimed at activation of soluble guanylate cyclase for multiple cardiovascular indications.
Collapse
Affiliation(s)
- Jan R Kraehling
- From the Vascular Biology and Therapeutics Program (J.R.K.) and Department of Pharmacology (W.C.S.), Yale University, School of Medicine, New Haven, CT
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program (J.R.K.) and Department of Pharmacology (W.C.S.), Yale University, School of Medicine, New Haven, CT.
| |
Collapse
|
48
|
Kalyanaraman H, Zhuang S, Pilz RB, Casteel DE. The activity of cGMP-dependent protein kinase Iα is not directly regulated by oxidation-induced disulfide formation at cysteine 43. J Biol Chem 2017; 292:8262-8268. [PMID: 28360102 DOI: 10.1074/jbc.c117.787358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
The type I cGMP-dependent protein kinases (PKGs) are key regulators of smooth muscle tone, cardiac hypertrophy, and other physiological processes. The two isoforms PKGIα and PKGIβ are thought to have unique functions because of their tissue-specific expression, different cGMP affinities, and isoform-specific protein-protein interactions. Recently, a non-canonical pathway of PKGIα activation has been proposed, in which PKGIα is activated in a cGMP-independent fashion via oxidation of Cys43, resulting in disulfide formation within the PKGIα N-terminal dimerization domain. A "redox-dead" knock-in mouse containing a C43S mutation exhibits phenotypes consistent with decreased PKGIα signaling, but the detailed mechanism of oxidation-induced PKGIα activation is unknown. Therefore, we examined oxidation-induced activation of PKGIα, and in contrast to previous findings, we observed that disulfide formation at Cys43 does not directly activate PKGIα in vitro or in intact cells. In transfected cells, phosphorylation of Ras homolog gene family member A (RhoA) and vasodilator-stimulated phosphoprotein was increased in response to 8-CPT-cGMP treatment, but not when disulfide formation in PKGIα was induced by H2O2 Using purified enzymes, we found that the Cys43 oxidation had no effect on basal kinase activity or Km and Vmax values; however, PKGIα containing the C43S mutation was less responsive to cGMP-induced activation. This reduction in cGMP affinity may in part explain the PKGIα loss-of-function phenotype of the C43S knock-in mouse. In conclusion, disulfide formation at Cys43 does not directly activate PKGIα, and the C43S-mutant PKGIα has a higher Ka for cGMP. Our results highlight that mutant enzymes should be carefully biochemically characterized before making in vivo inferences.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
49
|
Sharma S, Visweswariah SS. Illuminating Cyclic Nucleotides: Sensors for cAMP and cGMP and Their Application in Live Cell Imaging. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Schinner E, Wetzl V, Schramm A, Kees F, Sandner P, Stasch JP, Hofmann F, Schlossmann J. Inhibition of the TGFβ signalling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio 2017; 7:550-561. [PMID: 28396839 PMCID: PMC5377407 DOI: 10.1002/2211-5463.12202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/29/2022] Open
Abstract
Agents that enhance production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) ameliorate the progression of renal fibrosis. However, the molecular mechanism of this process is not fully understood. We hypothesize that the antifibrotic effects of cGMP and cGMP‐dependent kinase I (cGKI) are mediated via regulation of the TGFβ signalling pathway, both via ERK and the Smad‐dependent route. Kidney fibrosis was induced by unilateral ureter obstruction (UUO) in wild‐type and cGKI‐deficient (cGKI‐KO) mice. The cGMP/cGKI signalling pathway was activated by application of the soluble guanylate cyclase (sGC) stimulator BAY 41‐8543 (BAY), beginning 1 day after UUO. After 7 days, the antifibrotic effects of BAY were analysed by measuring mRNA and protein expression of characteristic fibrotic biomarkers. The effects of cGMP/TGFβ on cultured fibroblasts were also analysed in vitro. BAY application influenced the activity of the extracellular matrix (ECM)‐degrading matrix metalloproteases (MMP2 and MMP9) and their inhibitor tissue inhibitors of metalloproteinase‐1, the secretion of cytokines (e.g. IL‐6) and the expression pattern of ECM proteins (e.g. collagen, fibronectin) and profibrotic mediators (e.g. connective tissue growth factors and plasminogen‐activator inhibitor‐1). Activation of the cGMP/cGKI signalling pathway showed protective effects against fibrosis which were mediated by inhibition of P‐Erk1/2 and translocation of P‐smad3. The elucidation of these signalling mechanisms might support the development of new therapeutic options regarding cGMP/cGKI‐mediated antifibrotic actions.
Collapse
Affiliation(s)
- Elisabeth Schinner
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | - Veronika Wetzl
- Department of Pharmacology and Toxicology University of Regensburg Germany; Novartis Pharma GmbH Nuremberg Germany
| | - Andrea Schramm
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | - Frieder Kees
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | | | | | - Franz Hofmann
- Institute of Pharmacology and Toxicology Technical University of Munich Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology University of Regensburg Germany
| |
Collapse
|