1
|
Tong H, Omar MAA, Wang Y, Li M, Li Z, Li Z, Ao Y, Wang Y, Jiang M, Li F. Essential roles of histone lysine methyltransferases EZH2 and EHMT1 in male embryo development of Phenacoccus solenopsis. Commun Biol 2024; 7:1021. [PMID: 39164404 PMCID: PMC11336100 DOI: 10.1038/s42003-024-06705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
Paternal genome elimination (PGE) is an intriguing but poorly understood reproductive strategy in which females are typically diploid, but males lose paternal genomes. Paternal genome heterochromatin (PGH) occurs in arthropods with germline PGE, such as the mealybug, coffee borer beetles, and booklice. Here, we present evidence that PGH initially occurs during early embryo development at around 15 h post-mating (hpm) in the cotton mealybug, Phenacoccus solenopsis Tinsley. Transcriptome analysis followed by qPCR validation indicated that six histone lysine methyltransferase (KMT) genes are predominantly expressed in adult females. We knocked down these five genes through dsRNA microinjection. We found that downregulation of two KMT genes, PsEZH2-X1 and PsEHMT1, resulted in a decrease of heterochromatin-related methylations, including H3K27me1, H3K27me3, and H3K9me3 in the ovaries, fewer PGH male embryos, and reduced male offspring. For further confirmation, we obtained two strains of transgenic tobacco highly expressing dsRNA targeting PsEZH2-X1 and PsEHMT1, respectively. Similarly, fewer PGH embryos and fewer male offspring were observed when feeding on these transgenic tobacco plants. Overall, we present evidence that PsEZH2-X1 and PsEHMT1 have essential roles in male embryo survival by regulating PGH formation in cotton mealybugs.
Collapse
Affiliation(s)
- Haojie Tong
- College of Life Sciences, China Jiliang University, Hangzhou, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Yuan Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meizhen Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zicheng Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zihao Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Ao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingxing Jiang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Marshall H, de la Filia AG, Cavalieri R, Mallon EB, Clark JM, Ross L. Lack of paternal silencing and ecotype-specific expression in head and body lice hybrids. Evol Lett 2024; 8:455-465. [PMID: 38818422 PMCID: PMC11134467 DOI: 10.1093/evlett/qrae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 06/01/2024] Open
Abstract
Paternal genome elimination (PGE) is a non-Mendelian inheritance system, described in numerous arthropod species, in which males develop from fertilized eggs, but their paternally inherited chromosomes are eliminated before or during spermatogenesis. Therefore, PGE males only transmit their maternally inherited set of chromosomes to their offspring. In addition to the elimination of paternal chromosomes, diverse PGE species have also repeatedly evolved the transcriptional silencing of the paternal genome, making males effectively haploid. However, it is unclear if this paternal chromosome silencing is mechanistically linked to the chromosome elimination or has evolved at a later stage, and if so, what drives the haploidization of males under PGE. In order to understand these questions, here we study the human louse, Pediculus humanus, which represents an ideal model system, as it appears to be the only instance of PGE where males eliminate, but not silence their paternal chromosomes, although the latter remains to be shown conclusively. In this study, we analyzed parent-of-origin allele-specific expression patterns in male offspring of crosses between head and body lice ecotypes. We show that hybrid adult males of P. humanus display biparental gene expression, which constitutes the first case of a species with PGE in which genetic activity of paternal chromosomes in the soma is not affected by embryonic silencing or (partial or complete) elimination. We did however also identify a small number of maternally biased genes (potentially imprinted genes), which may be involved in the elimination of paternal chromosomes during spermatogenesis. Finally, we have identified genes that show ecotype-specific expression bias. Given the low genetic diversity between ecotypes, this is suggestive for a role of epigenetic processes in ecotype differences.
Collapse
Affiliation(s)
- Hollie Marshall
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Cavalieri
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Eamonn B Mallon
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - John M Clark
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Hitchcock TJ, Gardner A. Paternal genome elimination promotes altruism in viscous populations. Evolution 2022; 76:2191-2198. [PMID: 35902334 PMCID: PMC9543263 DOI: 10.1111/evo.14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 01/22/2023]
Abstract
Population viscosity has long been thought to promote the evolution of altruism. However, in the simplest scenarios, the potential for altruism is invariant with respect to dispersal-a surprising result that holds for haploidy, diploidy, and haplodiploidy (arrhenotoky). Here, we develop a kin-selection model to investigate how population viscosity affects the potential for altruism in species with male paternal genome elimination (PGE), exploring altruism enacted by both females and males, and both juveniles and adults. We find that (1) PGE promotes altruistic behaviors relative to the other inheritance systems, and to a degree that depends on the extent of paternal genome expression. (2) Under PGE, dispersal increases the potential for altruism in juveniles and decreases it in adults. (3) The genetics of PGE can lead to striking differences in sex-specific potentials for altruism, even in the absence of any sex differences in ecology.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
4
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
5
|
de la Filia AG, Mongue AJ, Dorrens J, Lemon H, Laetsch DR, Ross L. Males That Silence Their Father's Genes: Genomic Imprinting of a Complete Haploid Genome. Mol Biol Evol 2021; 38:2566-2581. [PMID: 33706381 PMCID: PMC8136510 DOI: 10.1093/molbev/msab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic conflict is considered a key driver in the evolution of reproductive systems with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally inherited chromosomes, while the paternally inherited homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between the paternal and maternal genomes over transmission to future generations. In several PGE clades, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not only eliminated from sperm, but also heterochromatinized early in development and thought to remain inactive, which could result from genetic conflict between parental genomes. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs showing that expression is globally biased toward the maternal genome. However, up to 70% of somatically expressed genes are to some degree paternally expressed, while paternal genome expression is much more restricted in the male reproductive tract, with only 20% of genes showing paternal contribution. We also show that parent-of-origin-specific gene expression patterns are remarkably similar across genotypes, and that genes with completely biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting in insects and enhance our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.
Collapse
Affiliation(s)
- Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Mongue
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Dorrens
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah Lemon
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik R Laetsch
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci Rep 2020; 10:8720. [PMID: 32457346 PMCID: PMC7251083 DOI: 10.1038/s41598-020-64977-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
In most organisms, cells typically maintain genome integrity, as radical genome reorganization leads to dramatic consequences. However, certain organisms, ranging from unicellular ciliates to vertebrates, are able to selectively eliminate specific parts of their genome during certain stages of development. Moreover, partial or complete elimination of one of the parental genomes occurs in interspecies hybrids reproducing asexually. Although several examples of this phenomenon are known, the molecular and cellular processes involved in selective elimination of genetic material remain largely undescribed for the majority of such organisms. Here, we elucidate the process of selective genome elimination in water frog hybrids from the Pelophylax esculentus complex reproducing through hybridogenesis. Specifically, in the gonads of diploid and triploid hybrids, but not those of the parental species, we revealed micronuclei in the cytoplasm of germ cells. In each micronucleus, only one centromere was detected with antibodies against kinetochore proteins, suggesting that each micronucleus comprises a single chromosome. Using 3D-FISH with species-specific centromeric probe, we determined the role of micronuclei in selective genome elimination. We found that in triploid LLR hybrids, micronuclei preferentially contain P. ridibundus chromosomes, while in diploid hybrids, micronuclei preferentially contain P. lessonae chromosomes. The number of centromere signals in the nuclei suggested that germ cells were aneuploid until they eliminate the whole chromosomal set of one of the parental species. Furthermore, in diploid hybrids, misaligned P. lessonae chromosomes were observed during the metaphase stage of germ cells division, suggesting their possible elimination due to the inability to attach to the spindle and segregate properly. Additionally, we described gonocytes with an increased number of P. ridibundus centromeres, indicating duplication of the genetic material. We conclude that selective genome elimination from germ cells of diploid and triploid hybrids occurs via the gradual elimination of individual chromosomes of one of the parental genomes, which are enclosed within micronuclei.
Collapse
|
7
|
Abstract
The absence of a paternal contribution in an unfertilized ovum presents two developmental constraints against the evolution of parthenogenesis. We discuss the constraint caused by the absence of a centrosome and the one caused by the missing set of chromosomes and how they have been broken in specific taxa. They are examples of only a few well-underpinned examples of developmental constraints acting at macro-evolutionary scales in animals. Breaking of the constraint of the missing chromosomes is the best understood and generally involves rare occasions of drastic changes of meiosis. These drastic changes can be best explained by having been induced, or at least facilitated, by sudden cytological events (e.g., repeated rounds of hybridization, endosymbiont infections, and contagious infections). Once the genetic and developmental machinery is in place for regular or obligate parthenogenesis, shifts to other types of parthenogenesis can apparently rather easily evolve, for example, from facultative to obligate parthenogenesis, or from pseudoarrhenotoky to haplodiploidy. We argue that the combination of the two developmental constraints forms a near-absolute barrier against the gradual evolution from sporadic to obligate or regular facultative parthenogenesis, which can probably explain why the occurrence of the highly advantageous mode of regular facultative parthenogenesis is so rare and entirely absent in vertebrates.
Collapse
|
8
|
Monitoring of switches in heterochromatin-induced silencing shows incomplete establishment and developmental instabilities. Proc Natl Acad Sci U S A 2019; 116:20043-20053. [PMID: 31527269 DOI: 10.1073/pnas.1909724116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Position effect variegation (PEV) in Drosophila results from new juxtapositions of euchromatic and heterochromatic chromosomal regions, and manifests as striking bimodal patterns of gene expression. The semirandom patterns of PEV, reflecting clonal relationships between cells, have been interpreted as gene-expression states that are set in development and thereafter maintained without change through subsequent cell divisions. The rate of instability of PEV is almost entirely unexplored beyond the final expression of the modified gene; thus the origin of the expressivity and patterns of PEV remain unexplained. Many properties of PEV are not predicted from currently accepted biochemical and theoretical models. In this work we investigate the time at which expressivity of silencing is set, and find that it is determined before heterochromatin exists. We employ a mathematical simulation and a corroborating experimental approach to monitor switching (i.e., gains and losses of silencing) through development. In contrast to current views, we find that gene silencing is incompletely set early in embryogenesis, but nevertheless is repeatedly lost and gained in individual cells throughout development. Our data support an alternative to locus-specific "epigenetic" silencing at variegating gene promoters that more fully accounts for the final patterns of PEV.
Collapse
|
9
|
de la Filia AG, Fenn-Moltu G, Ross L. No evidence for an intragenomic arms race under paternal genome elimination in Planococcus mealybugs. J Evol Biol 2019; 32:491-504. [PMID: 30776169 DOI: 10.1111/jeb.13431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
Genomic conflicts arising during reproduction might play an important role in shaping the striking diversity of reproductive strategies across life. Among these is paternal genome elimination (PGE), a form of haplodiploidy which has independently evolved several times in arthropods. PGE males are diploid but transmit maternally inherited chromosomes only, whereas paternal homologues are excluded from sperm. Mothers thereby effectively monopolize the parentage of sons, at the cost of the father's reproductive success. This creates striking conflict between the sexes that could result in a co-evolutionary arms race between paternal and maternal genomes over gene transmission, yet empirical evidence that such an arms race indeed takes place under PGE is scarce. This study addresses this by testing whether PGE is complete when paternal genotypes are exposed to divergent maternal backgrounds in intraspecific and hybrid crosses of the citrus mealybug, Planococcus citri, and the closely related Planococcus ficus. We determined whether males can transmit genetic information through their sons by tracking inheritance of two traits in a three-generation pedigree: microsatellite markers and sex-specific pheromone preferences. Our results suggest leakages of single paternal chromosomes through males occurring at a low frequency, but we find no evidence for transmission of paternal pheromone preferences from fathers to sons. The absence of differences between hybrid and intraspecific crosses in leakage rate of paternal alleles suggests that a co-evolutionary arms race cannot be demonstrated on this evolutionary timescale, but we conclude that there is scope for intragenomic conflict between parental genomes in mealybugs. Finally, we discuss how these paternal escapes can occur and what these findings may reveal about the evolutionary dynamics of this bizarre genetic system.
Collapse
Affiliation(s)
- Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Gyda Fenn-Moltu
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci Rep 2018; 8:7870. [PMID: 29777142 PMCID: PMC5959867 DOI: 10.1038/s41598-018-26168-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/30/2018] [Indexed: 01/15/2023] Open
Abstract
DNA elimination is a radical form of gene silencing and occurs both in somatic and germ cells. The programmed DNA elimination occurs during gametogenesis in interspecies hybrids that reproduce by hybridogenesis (stick insects, fishes, and amphibians) and concerns removal of whole genomes of one of the parental species and production of clonal gametes propagating the genome of the other species. The cellular mechanisms differ considerably in hybridogenetic insects and fishes but remains unknown in edible frogs Pelophylax esculentus, natural hybrids between Pelophylax lessonae and Pelophylax ridibundus. Here we report DNA elimination mechanism in early developing gonads of diploid and triploid hybrid frogs, studied by TEM, immunofluorescence, and cytochemistry. In gonocytes of both sexes (primary oogonia and prespermatogonia), micronuclei emerge as detached nuclear buds formed during interphase. We found depletion of nuclear pore complexes in micronuclear membrane and chromatin inactivation via heterochromatinization followed by degradation of micronuclei by autophagy. Micronuclei formation does not lead to apoptotic cell death showing that genome elimination is a physiological process. Chromatin elimination via micronuclei in P. esculentus is unique among hybridogenetic animals and contributes to broadening the knowledge about reproductive modes in animals.
Collapse
|
11
|
An Extraordinary Sex Determination Mechanism in a Book Louse. Genetics 2017; 206:751-753. [PMID: 28592506 DOI: 10.1534/genetics.117.201236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/23/2017] [Indexed: 11/18/2022] Open
|
12
|
Gokhman VE, Kuznetsova VG. Parthenogenesis in Hexapoda: holometabolous insects. J ZOOL SYST EVOL RES 2017. [DOI: 10.1111/jzs.12183] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Valentina G. Kuznetsova
- Department of Karyosystematics; Zoological Institute of Russian Academy of Sciences; St. Petersburg Russia
| |
Collapse
|
13
|
Hodson CN, Hamilton PT, Dilworth D, Nelson CJ, Curtis CI, Perlman SJ. Paternal Genome Elimination in Liposcelis Booklice (Insecta: Psocodea). Genetics 2017; 206:1091-1100. [PMID: 28292917 PMCID: PMC5499165 DOI: 10.1534/genetics.117.199786] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/07/2017] [Indexed: 11/18/2022] Open
Abstract
How sex is determined in insects is diverse and dynamic, and includes male heterogamety, female heterogamety, and haplodiploidy. In many insect lineages, sex determination is either completely unknown or poorly studied. We studied sex determination in Psocodea-a species-rich order of insects that includes parasitic lice, barklice, and booklice. We focus on a recently discovered species of Liposcelis booklice (Psocodea: Troctomorpha), which are among the closest free-living relatives of parasitic lice. Using genetic, genomic, and immunohistochemical approaches, we show that this group exhibits paternal genome elimination (PGE), an unusual mode of sex determination that involves genomic imprinting. Controlled crosses, following a genetic marker over multiple generations, demonstrated that males only transmit to offspring genes they inherited from their mother. Immunofluorescence microscopy revealed densely packed chromocenters associated with H3K9me3-a conserved marker for heterochromatin-in males, but not in females, suggesting silencing of chromosomes in males. Genome assembly and comparison of read coverage in male and female libraries showed no evidence for differentiated sex chromosomes. We also found that females produce more sons early in life, consistent with facultative sex allocation. It is likely that PGE is widespread in Psocodea, including human lice. This order represents a promising model for studying this enigmatic mode of sex determination.
Collapse
Affiliation(s)
- Christina N Hodson
- Department of Biology, University of Victoria, V8P 5C2, Canada
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3JG, United Kingdom
| | | | - Dave Dilworth
- Department of Biochemistry and Microbiology, University of Victoria, V8P 5C2, Canada
| | - Chris J Nelson
- Department of Biochemistry and Microbiology, University of Victoria, V8P 5C2, Canada
| | | | - Steve J Perlman
- Department of Biology, University of Victoria, V8P 5C2, Canada
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto M5G 1Z8, Canada
| |
Collapse
|
14
|
Post-meiotic B chromosome expulsion, during spermiogenesis, in two grasshopper species. Chromosoma 2017; 126:633-644. [PMID: 28190081 DOI: 10.1007/s00412-017-0627-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
Most supernumerary (B) chromosomes are parasitic elements carrying out an evolutionary arms race with the standard (A) chromosomes. A variety of weapons for attack and defense have evolved in both contending elements, the most conspicuous being B chromosome drive and A chromosome drive suppression. Here, we show for the first time that most microspermatids formed during spermiogenesis in two grasshopper species contain expulsed B chromosomes. By using DNA probes for B-specific satellite DNAs in Eumigus monticola and Eyprepocnemis plorans, and also 18S rDNA in the latter species, we were able to count the number of B chromosomes in standard spermatids submitted to fluorescence in situ hybridization, as well as visualizing B chromosomes inside most microspermatids. In E. plorans, the presence of B-carrying microspermatids in 1B males was associated with a significant decrease in the proportion of B-carrying standard spermatids. The fact that this decrease was apparent in elongating spermatids but not in round ones demonstrates that meiosis yields 1:1 proportions of 0B and 1B spermatids and hence that B elimination takes place post-meiotically, i.e., during spermiogenesis, implying a 5-25% decrease in B transmission rate. In E. monticola, the B chromosome is mitotically unstable and B number varies between cells within a same individual. A comparison of B frequency between round and elongating spermatids of a same individual revealed a significant 12.3% decrease. We conclude that B chromosome elimination during spermiogenesis is a defense weapon of the host genome to get rid of parasitic chromosomes.
Collapse
|
15
|
Blackmon H, Ross L, Bachtrog D. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects. J Hered 2017; 108:78-93. [PMID: 27543823 PMCID: PMC6281344 DOI: 10.1093/jhered/esw047] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/25/2016] [Indexed: 01/02/2023] Open
Abstract
Insects harbor a tremendous diversity of sex determining mechanisms both within and between groups. For example, in some orders such as Hymenoptera, all members are haplodiploid, whereas Diptera contain species with homomorphic as well as male and female heterogametic sex chromosome systems or paternal genome elimination. We have established a large database on karyotypes and sex chromosomes in insects, containing information on over 13000 species covering 29 orders of insects. This database constitutes a unique starting point to report phylogenetic patterns on the distribution of sex determination mechanisms, sex chromosomes, and karyotypes among insects and allows us to test general theories on the evolutionary dynamics of karyotypes, sex chromosomes, and sex determination systems in a comparative framework. Phylogenetic analysis reveals that male heterogamety is the ancestral mode of sex determination in insects, and transitions to female heterogamety are extremely rare. Many insect orders harbor species with complex sex chromosomes, and gains and losses of the sex-limited chromosome are frequent in some groups. Haplodiploidy originated several times within insects, and parthenogenesis is rare but evolves frequently. Providing a single source to electronically access data previously distributed among more than 500 articles and books will not only accelerate analyses of the assembled data, but also provide a unique resource to guide research on which taxa are likely to be informative to address specific questions, for example, for genome sequencing projects or large-scale comparative studies.
Collapse
Affiliation(s)
- Heath Blackmon
- From the Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN (Blackmon); Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK (Ross); Department of Integrative Biology, University of California Berkeley, Berkeley, CA (Bachtrog)
| | - Laura Ross
- From the Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN (Blackmon); Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK (Ross); Department of Integrative Biology, University of California Berkeley, Berkeley, CA (Bachtrog)
| | - Doris Bachtrog
- From the Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN (Blackmon); Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK (Ross); Department of Integrative Biology, University of California Berkeley, Berkeley, CA (Bachtrog).
| |
Collapse
|
16
|
Wang X, Werren JH, Clark AG. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia. PLoS Biol 2016; 14:e1002500. [PMID: 27380029 PMCID: PMC4933354 DOI: 10.1371/journal.pbio.1002500] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. RNA-sequencing and whole-genome bisulfite sequencing in the hybrid offspring of two Nasonia parasitoid wasp species revealed strong cis-regulation of methylation and allele-specific expression. No gene was found to display genomic imprinting. The relationship between methylation of genomic DNA and expression of the genes that it encodes—and how this relationship changes during evolution—has been widely studied in mammals, but remains less well understood for insects. Here we analyze the expressed mRNA transcripts and genomic DNA methylation of the hybrid offspring of a pair of Nasonia parasitoid wasp species, producing a wealth of information about the regulation of gene expression. We find that variation in DNA sequence impacts expression on the same strand (called “cis-regulation”), and that cytosine methylation state is also associated in cis with the regulatory consequences of this base alteration. We show that these wasp species lack differential expression dependent on parent-of-origin (called “genomic imprinting”), and that in the hybrids the alleles retain the methylation status of the parental species in a strong cis-regulated fashion. Transcript abundances were also largely driven in a cis-regulated manner, consistent with a correlation between methylation status and expression levels. Despite the many differences between Nasonia and mammals in the impact of genomic DNA methylation, in both groups the use of methylated cytosine has been co-opted in ways that help tune gene expression.
Collapse
Affiliation(s)
- Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| |
Collapse
|
17
|
Ross L, Normark BB. Evolutionary problems in centrosome and centriole biology. J Evol Biol 2015; 28:995-1004. [PMID: 25781035 PMCID: PMC4979663 DOI: 10.1111/jeb.12620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/01/2023]
Abstract
Centrosomes have been an enigma to evolutionary biologists. Either they have been the subject of ill-founded speculation or they have been ignored. Here, we highlight evolutionary paradoxes and problems of centrosome and centriole evolution and seek to understand them in the light of recent advances in centrosome biology. Most evolutionary accounts of centrosome evolution have been based on the hypothesis that centrosomes are replicators, independent of the nucleus and cytoplasm. It is now clear, however, that this hypothesis is not tenable. Instead, centrosomes are formed de novo each cell division, with the presence of an old centrosome regulating, but not essential for, the assembly of a new one. Centrosomes are the microtubule-organizing centres of cells. They can potentially affect sensory and motor characters (as the basal body of cilia), as well as the movements of chromosomes during cell division. This latter role does not seem essential, however, except in male meiosis, and the reasons for this remain unclear. Although the centrosome is absent in some taxa, when it is present, its structure is extraordinarily conserved: in most taxa across eukaryotes, it does not appear to evolve at all. And yet a few insect groups display spectacular hypertrophy of the centrioles. We discuss how this might relate to the unusual reproductive system found in these insects. Finally, we discuss why the fate of centrosomes in sperm and early embryos might differ between different groups of animals.
Collapse
Affiliation(s)
- L Ross
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - B B Normark
- Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
18
|
Gardner A, Ross L. Mating ecology explains patterns of genome elimination. Ecol Lett 2014; 17:1602-12. [PMID: 25328085 PMCID: PMC4240462 DOI: 10.1111/ele.12383] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/10/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
Abstract
Genome elimination - whereby an individual discards chromosomes inherited from one parent, and transmits only those inherited from the other parent - is found across thousands of animal species. It is more common in association with inbreeding, under male heterogamety, in males, and in the form of paternal genome elimination. However, the reasons for this broad pattern remain unclear. We develop a mathematical model to determine how degree of inbreeding, sex determination, genomic location, pattern of gene expression and parental origin of the eliminated genome interact to determine the fate of genome-elimination alleles. We find that: inbreeding promotes paternal genome elimination in the heterogametic sex; this may incur population extinction under female heterogamety, owing to eradication of males; and extinction is averted under male heterogamety, owing to countervailing sex-ratio selection. Thus, we explain the observed pattern of genome elimination. Our results highlight the interaction between mating system, sex-ratio selection and intragenomic conflict.
Collapse
Affiliation(s)
- Andy Gardner
- School of Biology, University of St Andrews, Dyers BraeSt Andrews, KY16 9TH, UK
| | - Laura Ross
- Institute of Evolutionary Biology, University of EdinburghKing's Buildings, Edinburgh, EH9 3JT, UK
| |
Collapse
|
19
|
Paternal inheritance in mealybugs (Hemiptera: Coccoidea: Pseudococcidae). Naturwissenschaften 2014; 101:791-802. [PMID: 25091548 DOI: 10.1007/s00114-014-1218-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/02/2014] [Accepted: 07/25/2014] [Indexed: 01/14/2023]
Abstract
Mealybugs have a haplodiploid reproduction system, with paternal genome elimination (PGE); the males are diploid soon after fertilization, but during embryogenesis, the male paternal set of chromosomes becomes heterochromatic (HC) and therefore inactive. Previous studies have suggested that paternal genes can be passed on from mealybug males to their sons, but not necessarily by any son, to the next generation. We employed crosses between two mealybug species--Planococcus ficus (Signoret) and Planococcus citri (Risso)--and between two populations of P. ficus, which differ in their mode of pheromone attraction, in order to demonstrate paternal inheritance from males to F2 through F1 male hybrids. Two traits were monitored through three generations: mode of male pheromone attraction (pherotype) and sequences of the internal transcribed spacer 2 (ITS2) gene segment (genotype). Our results demonstrate that paternal inheritance in mealybugs can occur from males to their F2 offspring, through F1 males (paternal line). F2 backcrossed hybrid males expressed paternal pherotypes and ITS2 genotypes although their mother originated through a maternal population. Further results revealed other, hitherto unknown, aspects of inheritance in mealybugs, such as that hybridization between the two species caused absence of paternal traits in F2 hybrid females produced by F1 hybrid females. Furthermore, hybridization between the two species raised the question of whether unattracted males have any role in the interactions between P. ficus and P. citri.
Collapse
|
20
|
Normark BB, Ross L. Genetic conflict, kin and the origins of novel genetic systems. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130364. [PMID: 24686935 DOI: 10.1098/rstb.2013.0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic conflict may have played an important role in the evolution of novel genetic systems. The ancestral system of eumendelian genetics is highly symmetrical. Those derived from it (e.g. thelytokous parthenogenesis, haplodiploidy and parent-specific allele expression) are more asymmetrical in the genetic role played by maternal versus paternal alleles. These asymmetries may have arisen from maternal-paternal genetic conflict, or cytonuclear conflict, or from an interaction between them. Asymmetric genetic systems are much more common in terrestrial and freshwater taxa than in marine taxa. We suggest three reasons for this, based on the relative inhospitability of terrestrial environments to three types of organism: (i) pathogens-departure from the marine realm meant escape from many pathogens and parasites, reducing the need for sexual reproduction; (ii) symbionts-symbionts are no more important in the terrestrial realm than the marine realm but are more likely to be obligately intracellular and vertically transmitted, making them more likely to disrupt their host's genetic systems; (iii) Gametes and embryos-because neither gametes nor embryos can be shed into air as easily as into seawater, the mother's body is a more important environment for both types of organisms in the terrestrial realm than in the marine realm. This environment of asymmetric kinship (with neighbours more closely related by maternal alleles than by paternal alleles) may have helped to drive asymmetries in expression and transmission.
Collapse
Affiliation(s)
- Benjamin B Normark
- Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, , Amherst, MA 01003, USA
| | | |
Collapse
|
21
|
Sánchez L. Sex-determining mechanisms in insects based on imprinting and elimination of chromosomes. Sex Dev 2013; 8:83-103. [PMID: 24296911 DOI: 10.1159/000356709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As a rule, the sex of an individual is fixed at fertilization, and the chromosomal constitution of the zygote is a direct consequence of the chromosomal constitution of the gametes. However, there are cases in which the chromosomal differences determining sex are brought about by elimination or inactivation of chromosomes in the embryo. In Sciaridae insects, all zygotes start with the XXX constitution; the loss of either 1 or 2 X chromosomes determines whether the zygote becomes XX (female) or X0 (male). In Cecydomyiidae and Collembola insects, all zygotes start with the XXXX constitution. If the embryo does not eliminate any X chromosome, this remains XXXX and develops as female, whereas if 2 X chromosomes are eliminated, the embryo becomes XX0 and develops as a male. In the coccids (scale insects), the chromosomal differences between the sexes result from either the elimination or the heterochromatinization (inactivation) of half of the chromosomes giving rise to haploid males and diploid females. The chromosomes that are eliminated or inactivated are those inherited from the father. Therefore, in the formation of the sex-determining chromosomal signal in those insects, a marking ('imprinting') process must occur in one of the parents, which determines that the chromosomes to be eliminated or inactivated are of paternal origin. In this article, the sex determination mechanism of these insects and the associated imprinting process are reviewed.
Collapse
Affiliation(s)
- L Sánchez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
22
|
Ross L, Shuker DM, Normark BB, Pen I. The role of endosymbionts in the evolution of haploid-male genetic systems in scale insects (Coccoidea). Ecol Evol 2012; 2:1071-81. [PMID: 22837851 PMCID: PMC3399172 DOI: 10.1002/ece3.222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 01/30/2023] Open
Abstract
There is an extraordinary diversity in genetic systems across species, but this variation remains poorly understood. In part, this is because the mechanisms responsible for transitions between systems are often unknown. A recent hypothesis has suggested that conflict between hosts and endosymbiotic microorganisms over transmission could drive the transition from diplodiploidy to systems with male haploidy (haplodiploidy, including arrhenotoky and paternal genome elimination [PGE]). Here, we present the first formal test of this idea with a comparative analysis across scale insects (Hemiptera: Coccoidea). Scale insects are renowned for their large variation in genetic systems, and multiple transitions between diplodiploidy and haplodiploidy have taken place within this group. Additionally, most species rely on endosymbiotic microorganisms to provide them with essential nutrients lacking in their diet. We show that species harboring endosymbionts are indeed more likely to have a genetic system with male haploidy, which supports the hypothesis that endosymbionts might have played a role in the transition to haplodiploidy. We also extend our analysis to consider the relationship between endosymbiont presence and transitions to parthenogenesis. Although in scale insects there is no such overall association, species harboring eukaryote endosymbionts were more likely to be parthenogenetic than those with bacterial symbionts. These results support the idea that intergenomic conflict can drive the evolution of novel genetic systems and affect host reproduction.
Collapse
Affiliation(s)
- Laura Ross
- Department of Zoology, University of OxfordSouth Parks Road, Oxford, OX1 3PS, United Kingdom
- Department of Plant Soil and Insect Sciences and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts270 Stockbridge Road, Amherst, Massachusetts 01003
| | - David M Shuker
- School of Biology, University of St Andrews, Harold Mitchell BuildingSt Andrews, Fife, KY16 9TH, United Kingdom
| | - Benjamin B Normark
- Department of Plant Soil and Insect Sciences and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts270 Stockbridge Road, Amherst, Massachusetts 01003
| | - Ido Pen
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of GroningenKerklaan 30, 9750 AA Haren, The Netherlands
| |
Collapse
|
23
|
Ross L, Pen I, Shuker DM. Genomic conflict in scale insects: the causes and consequences of bizarre genetic systems. Biol Rev Camb Philos Soc 2011; 85:807-28. [PMID: 20233171 DOI: 10.1111/j.1469-185x.2010.00127.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is now clear that mechanisms of sex determination are extraordinarily labile, with considerable variation across all taxonomic levels. This variation is often expressed through differences in the genetic system (XX-XY, XX-XO, haplodiploidy, and so on). Why there is so much variation in such a seemingly fundamental process has attracted much attention, with recent ideas concentrating on the possible role of genomic conflicts of interest. Here we consider the role of inter- and intra-genomic conflicts in one large insect taxon: the scale insects. Scale insects exhibit a dizzying array of genetic systems, and their biology promotes conflicts of interest over transmission and sex ratio between male- and female-expressed genes, parental- and offspring-expressed genes (both examples of intra-genomic conflict) and between scale insects and their endosymbionts (inter-genomic conflict). We first review the wide range of genetic systems found in scale insects and the possible evolutionary transitions between them. We then outline the theoretical opportunities for genomic conflicts in this group and how these might influence sex determination and sex ratio. We then consider the evidence for these conflicts in the evolution of sex determination in scale insects. Importantly, the evolution of novel genetic systems in scale insects has itself helped create new conflicts of interest, for instance over sex ratio. As a result, a major obstacle to our understanding of the role of conflict in the evolution of sex-determination and genetic systems will be the difficulty in identifying the direction of causal relationships. We conclude by outlining possible experimental and comparative approaches to test more effectively how important genomic conflicts have been.
Collapse
Affiliation(s)
- Laura Ross
- Theoretical Biology, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
24
|
Ross L, Shuker DM, Pen I. The evolution and suppression of male suicide under paternal genome elimination. Evolution 2010; 65:554-63. [PMID: 21029080 DOI: 10.1111/j.1558-5646.2010.01148.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Different genetic systems can be both the cause and the consequence of genetic conflict over the transmission of genes, obscuring their evolutionary origin. For instance, with paternal genome elimination (PGE), found in some insects and mites, both sexes develop from fertilized eggs, but in males the paternally derived chromosomes are either lost (embryonic PGE) or deactivated (germline PGE) during embryogenesis and not transmitted to the next generation. Evolution of germline PGE requires two transitions: (1) elimination of the paternal genome during spermatogenesis; (2) deactivation of the paternal genome early in development. Hypotheses for the evolution of PGE have mainly focused on the first transition. However, maternal genes seem to be responsible for the deactivation and here we investigate if maternal suppression could have evolved in response to paternally expressed male suicide genes. We show that sibling competition can cause such genes to spread quickly and that inbreeding is necessary to prevent fixation of male suicide, and subsequent population extinction. Once male-suicide has evolved, maternally expressed suppressor genes can invade in the population. Our results highlight the rich opportunity for genetic conflict in asymmetric genetic systems and the counterintuitive phenotypes that can evolve as a result.
Collapse
Affiliation(s)
- Laura Ross
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Kerklaan 30, 9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
25
|
KUIJPER B, PEN I. The evolution of haplodiploidy by male-killing endosymbionts: importance of population structure and endosymbiont mutualisms. J Evol Biol 2010; 23:40-52. [DOI: 10.1111/j.1420-9101.2009.01854.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Shuker DM, Moynihan AM, Ross L. Sexual conflict, sex allocation and the genetic system. Biol Lett 2009; 5:682-5. [PMID: 19605386 DOI: 10.1098/rsbl.2009.0427] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Decisions over what sex ratio to produce can have far-reaching evolutionary consequences, for both offspring and parents. However, the extent to which males and females come into evolutionary conflict over aspects of sex allocation depends on the genetic system: when genes are passed to the next generation unequally by the two sexes (as in haplodiploidy, for example), this biased transmission can facilitate a range of conflicts not seen in diploids. However, much less attention has been paid to these forms of sexual conflict, not least because it has not always been clear how the conflicts could be realized. Here we consider how biased gene transmission, as expressed in different genetic systems, enhances the opportunity for sex ratio conflict and give empirical examples that confirm that males and females have the opportunity to influence sex ratios.
Collapse
Affiliation(s)
- David M Shuker
- School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife KY16 9TH, UK.
| | | | | |
Collapse
|
27
|
Abstract
The dominant and ancestral mode of sex determination in the Hymenoptera is arrhenotokous parthenogenesis, in which diploid females develop from fertilized eggs and haploid males develop from unfertilized eggs. We discuss recent progress in the understanding of the genetic and cytoplasmic mechanisms that make arrhenotoky possible. The best-understood mode of sex determination in the Hymenoptera is complementary sex determination (CSD), in which diploid males are produced under conditions of inbreeding. The gene mediating CSD has recently been cloned in the honey bee and has been named the complementary sex determiner. However, CSD is only known from 4 of 21 hymenopteran superfamilies, with some taxa showing clear evidence of the absence of CSD. Sex determination in the model hymenopteran Nasonia vitripennis does not involve CSD, but it is consistent with a form of genomic imprinting in which activation of the female developmental pathway requires paternally derived genes. Some other hymenopterans are not arrhenotokous but instead exhibit thelytoky or paternal genome elimination.
Collapse
Affiliation(s)
- George E Heimpel
- Department of Entomology, University of Minnesota, St Paul, MN, USA.
| | | |
Collapse
|
28
|
Trent C, Crosby C, Eavey J. Additional evidence for the genomic imprinting model of sex determination in the haplodiploid wasp Nasonia vitripennis: isolation of biparental diploid males after X-ray mutagenesis. Heredity (Edinb) 2006; 96:368-76. [PMID: 16552430 DOI: 10.1038/sj.hdy.6800810] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The primary sex-determining signal in the haplodiploid wasp Nasonia vitripennis is not known. In haplodiploid reproduction, unfertilized eggs typically develop into uniparental haploid males and fertilized eggs into biparental diploid females. Although this reproductive strategy is common to all Hymenoptera, sex-determination is not strictly specified by the number of genome copies inherited. Furthermore, primary sex-determining signals differ among haplodiploid species. In the honeybee, for example, the primary signal is the genotype at a single, polymorphic locus: diploid animals that are homozygous develop into males while heterozygotes develop into females. Sex determination in Nasonia cannot be explained by this mechanism. Various lines of evidence show that the inheritance of a paternal genome is required for female sexual development and suggest a genomic imprinting mechanism involving an imprinted gene, expressed only from a paternal copy, that triggers female sexual development. In this model, haploid or diploid uniparental embryos develop into males due to a maternal imprint that silences this locus. The genomic imprinting model predicts that a loss-of-function mutation in the paternal copy of the imprinted gene would result in male sexual development in a biparental diploid embryo. In support of this model, we have identified rare biparental diploid males in the F1 progeny of X-ray mutagenized haploid males. Although uniparental diploid male progeny of virgin triploid females have been previously described, this is the first report of biparental diploid males in Nasonia. Our work provides a new, independent line of evidence for the genomic imprinting model of Nasonia sex determination.
Collapse
Affiliation(s)
- C Trent
- Department of Biology MS 9160, Western Washington University, Bellingham, WA 98226-9160, USA.
| | | | | |
Collapse
|
29
|
Normark BB. PERSPECTIVE: MATERNAL KIN GROUPS AND THE ORIGINS OF ASYMMETRIC GENETIC SYSTEMS?GENOMIC IMPRINTING, HAPLODIPLOIDY, AND PARTHENOGENESIS. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01145.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Normark BB. HAPLODIPLOIDY AS AN OUTCOME OF COEVOLUTION BETWEEN MALE-KILLING CYTOPLASMIC ELEMENTS AND THEIR HOSTS. Evolution 2004; 58:790-8. [PMID: 15154555 DOI: 10.1111/j.0014-3820.2004.tb00412.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haplodiploidy (encompassing both arrhenotoky and paternal genome elimination) could have originated from coevolution between male-killing endosymbiotic bacteria and their hosts. In insects, haplodiploidy tends to arise in lineages that rely on maternally transmitted bacteria for nutrition and that have gregarious broods in which competition between siblings may occur. When siblings compete, there is strong selection on maternally transmitted elements to kill males. I consider a hypothetical bacterial phenotype that renders male zygotes effectively haploid by preventing chromosome decondensation in male-determining sperm nuclei. By causing high male mortality, such a phenotype can be advantageous to the bacterial lineage. By eliminating paternal genes, it can also be advantageous to the host female. A simple model shows that the host female will benefit under a wide range of values for the efficiency of resource re-allocation, the efficiency of transmission, and the viability of haploid males. This hypothesis helps to explain the ecological correlates of the origins of haplodiploidy, as well as such otherwise puzzling phenomena as obligate cannibalism by male Micromalthus beetles, reversion to diploidy by aposymbiotic male stictococcid scale insects, and the bizarre genomic constitution of scale insect bacteriomes.
Collapse
Affiliation(s)
- Benjamin B Normark
- Department of Entomology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
31
|
Abstract
Armored scale insects are unusual in that a part of their bodies is genetically distinct from the rest. This extraordinary phenomenon challenges the notion of identity
Collapse
Affiliation(s)
- Benjamin B Normark
- Department of Entomology and Graduate Program in Organismic and Evolutionary Biology at the University of Massachusetts, Amherst, Massachusetts, USA.
| |
Collapse
|
32
|
Abstract
Sexual reproduction results from the fusion of gametes in which the chromatin configuration of maternal and paternal chromosomes is distinct at fertilization. Although many of the differences are erased during successive cellular divisions and chromatin modifications, some are retained in both somatic and germline cells. These epigenetic modifications can confer different characteristics on maternal and paternal chromosomes and such differences can be selected during any process that has the ability to distinguish between homologues. The end result of these selective forces are parental origin effects, writ large. The range of effects observed, including transcriptional imprinting and effects on chromosome segregation and heterochromatization, reflects the diversity of selective forces in operation. However, a closer look at these effects suggests that parental origin-dependent differences in chromatin structure might be subject to some common forces and that these forces may explain many of the "nontranscriptional" parental origin effects observed in mammals.
Collapse
Affiliation(s)
- Elena de la Casa-Esperón
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | |
Collapse
|
33
|
Abstract
There are three major classes of insect genetic systems: those with diploid males (diplodiploidy), those with effectively haploid males (haplodiploidy), and those without males (thelytoky). Mixed systems, involving cyclic or facultative switching between thelytoky and either of the other systems, also occur. I present a classification of the genetic systems of insects and estimate the number of evolutionary transitions between them that have occurred. Obligate thelytoky has arisen from each of the other systems, and there is evidence that over 900 such origins have occurred. The number of origins of facultative thelytoky and the number of reversions from obligate thelytoky to facultative and cyclic thelytoky are difficult to estimate. The other transitions are few in number: five origins of cyclic thelytoky, eight origins of obligate haplodiploidy (including paternal genome elimination), the strange case of Micromalthus, and the two reversions from haplodiploidy to diplodiploidy in scale insects. Available evidence tends to support W.D. Hamilton's hypothesis that maternally transmitted endosymbionts have been involved in the origins of haplodiploidy. Bizarre systems of extrazygotic inheritance in Sternorrhyncha are not easily accommodated into any existing classification of genetic systems.
Collapse
Affiliation(s)
- Benjamin B Normark
- Department of Entomology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
34
|
Kloc M, Zagrodzinska B. Chromatin elimination--an oddity or a common mechanism in differentiation and development? Differentiation 2001; 68:84-91. [PMID: 11686238 DOI: 10.1046/j.1432-0436.2001.680202.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over many decades, a great number of exceptions from the rule of equal segregation of the chromosomes during cell division have been found in different animal species. The most diversified is the process of chromosome re-arrangement that takes place during the specification of soma versus germ-line cell fate in the embryos from the whole spectrum of animal phyla. In nematodes, copepodes, insects, hagfish, and marsupials, the chromatin/chromosome elimination is a common path of normal cell differentiation and development. This also raises the question of the mechanisms and factors that promote elimination in pre-somatic cell lines and/or inhibit the elimination in the prospective germ cells. We will discuss the possible role of the germ plasm in this process.
Collapse
Affiliation(s)
- M Kloc
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030, USA.
| | | |
Collapse
|
35
|
Pardo-Manuel de Villena F, de la Casa-Esperón E, Sapienza C. Natural selection and the function of genome imprinting: beyond the silenced minority. Trends Genet 2000; 16:573-9. [PMID: 11102708 DOI: 10.1016/s0168-9525(00)02134-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Most hypotheses of the evolutionary origin of genome imprinting assume that the biochemical character on which natural selection has operated is the expression of the allele from only one parent at an affected locus. We propose an alternative - that natural selection has operated on differences in the chromatin structure of maternal and paternal chromosomes to facilitate pairing during meiosis and to maintain the distinction between homologues during DNA repair and recombination in both meiotic and mitotic cells. Maintenance of differences in chromatin structure in somatic cells can sometimes result in the transcription of only one allele at a locus. This pattern of transcription might be selected, in some instances, for reasons that are unrelated to the original establishment of the imprint. Differences in the chromatin structure of homologous chromosomes might facilitate pairing and recombination during meiosis, but some such differences could also result in non-random segregation of chromosomes, leading to parental-origin-dependent transmission ratio distortion. This hypothesis unites two broad classes of parental origin effects under a single selective force and identifies a single substrate through which Mendel's first and second laws might be violated.
Collapse
Affiliation(s)
- F Pardo-Manuel de Villena
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
36
|
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138; e-mail:
| |
Collapse
|
37
|
Abstract
An epigenetic imprinting mechanism that is based on a gamete-specific methylation imprint restricts expression of a subset of mammalian genes to one parental chromosome. Recent results suggest that imprints may act only indirectly to induce monoallelic expression of coding genes. Instead, atypical non-coding RNAs appear to be a primary target of the imprints, and their parental-specific repression correlates with parental-specific expression of linked coding genes.
Collapse
Affiliation(s)
- F Sleutels
- Department of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, 1066CX, The Netherlands
| | | | | |
Collapse
|
38
|
Abstract
The beetle family Scolytidae includes several groups having regular sib-mating and extremely female-biased sex ratios. Two such groups are known to include haplodiploid species: (i) the tribe Xyleborini and (ii) Coccotrypes and related genera within the tribe Dryocoetini. Relationships of these groups have been controversial. We analysed elongation factor 1-α (852 bp) and cytochrome oxidase 1 (1179 bp) sequences for 40 species. The most-parsimonious trees imply a single origin of haplodiploidy uniting Xyleborini (approximately 1200 species) and sib-mating Dryocoetini (approximately 160 species). The sister-group of the haplodiploid clade is the outcrossing genus Dryocoetes . The controversial genus Premnobius is outside the haplodiploid clade. Most haplodiploid scolytids exploit novel resources, ambrosia fungi or seeds, but a few have the ancestral habit of feeding on phloem. Thus, scolytids provide the clearest example of W. D. Hamilton's scenario for the evolution of haplodiploidy (life under bark leading to inbreeding and hence to female-biased sex ratios through haplodiploidy) and now constitute a unique opportunity to study diplodiploid and haplodiploid sister-lineages in a shared ancestral habitat. There is some evidence of sex determination by maternally inherited endosymbiotic bacteria, which may explain the consistency with which female-biased sex ratios and close inbreeding have been maintained.
Collapse
|