1
|
Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. Int J Mol Sci 2021; 22:ijms22147536. [PMID: 34299154 PMCID: PMC8304207 DOI: 10.3390/ijms22147536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.
Collapse
|
2
|
Immunomodulatory drugs suppress Th1-inducing ability of dendritic cells but enhance Th2-mediated allergic responses. Blood Adv 2021; 4:3572-3585. [PMID: 32761232 DOI: 10.1182/bloodadvances.2019001410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/01/2020] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory drugs (IMiDs), lenalidomide and pomalidomide, are widely used treatments for multiple myeloma; however, they occasionally lead to episodes of itchy skin and rashes. Here, we analyzed the effects of IMiDs on human myeloid dendritic cells (mDCs) as major regulators of Th1 or Th2 responses and the role they play in allergy. We found that lenalidomide and pomalidomide used at clinical concentrations did not affect the survival or CD86 and OX40-ligand expression of blood mDCs in response to lipopolysaccharide (LPS) and thymic stromal lymphopoietin (TSLP) stimulation. Both lenalidomide and pomalidomide dose-dependently inhibited interleukin-12 (IL-12) and TNF production and STAT4 expression, and enhanced IL-10 production in response to LPS. When stimulated with TSLP, both IMiDs significantly enhanced CCL17 production and STAT6 and IRF4 expression and promoted memory Th2-cell responses. In 46 myeloma patients, serum CCL17 levels at the onset of lenalidomide-associated rash were significantly higher than those without rashes during lenalidomide treatment and those before treatment. Furthermore, serum CCL17 levels in patients who achieved a very good partial response (VGPR) were significantly higher compared with a less than VGPR during lenalidomide treatment. The median time to next treatment was significantly longer in lenalidomide-treated patients with rashes than those without. Collectively, IMiDs suppressed the Th1-inducing capacity of DCs, instead promoting a Th2 response. Thus, the lenalidomide-associated rashes might be a result of an allergic response driven by Th2-axis activation. Our findings suggest clinical efficacy and rashes as a side effect of IMiDs are inextricably linked through immunostimulation.
Collapse
|
3
|
Saksida T, Jevtić B, Djedović N, Miljković Đ, Stojanović I. Redox Regulation of Tolerogenic Dendritic Cells and Regulatory T Cells in the Pathogenesis and Therapy of Autoimmunity. Antioxid Redox Signal 2021; 34:364-382. [PMID: 32458699 DOI: 10.1089/ars.2019.7999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Autoimmune diseases are progressively affecting westernized societies, as the proportion of individuals suffering from autoimmunity is steadily increasing over the past decades. Understanding the role of reactive oxygen species (ROS) in modulation of the immune response in the pathogenesis of autoimmune disorders is of utmost importance. The focus of this review is the regulation of ROS production within tolerogenic dendritic cells (tolDCs) and regulatory T (Treg) cells that have the essential role in the prevention of autoimmune diseases and significant potency in their therapy. Recent Advances: It is now clear that ROS are extremely important for the proper function of both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells depend upon the ROS availability. Treg differentiation, suppressive function, and stability are profoundly influenced by ROS presence. Critical Issues: Although a plethora of results on the relation between ROS and immune cells exist, it remains unclear whether ROS modulation is a productive way for skewing T cells and DCs toward a tolerogenic phenotype. Also, the possibility of ROS modulation for enhancement of regulatory properties of DC and Treg during their preparation for use in cellular therapy has to be clarified. Future Directions: Studies of DC and T cell redox regulation should allow for the improvement of the therapy of autoimmune diseases. This could be achieved through the direct therapeutic application of ROS modulators in autoimmunity, or indirectly through ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. Antioxid. Redox Signal. 34, 364-382.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Neda Djedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Lung CD103 + Dendritic cells of mice infected with Paracoccidioides brasiliensis contribute to Treg differentiation. Microb Pathog 2020; 150:104696. [PMID: 33359357 DOI: 10.1016/j.micpath.2020.104696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023]
Abstract
The DC subsets that express αE integrin (CD103) have been described to exert antagonistic functions, driving T cells towards either an inflammatory (Th1/Th17) or immunosuppressive phenotype (regulatory T cells - Treg). These functions depend on the tissue they reside and microenvironment factors or stimuli that this Antigen-presenting cell (APC) subpopulation receive. In this regard, immunoregulatory phenotype has been described in small subsets of CD103+ DCs from lung and intestinal mucosa. The function of this APC subpopulation in pulmonary Paracoccidioides brasiliensis infection is poorly described. Here, we showed that lung CD103+ DCs contribute to Treg differentiation in a pulmonary P. brasiliensis infection model, which was attributed to downregulation of costimulatory molecules analyzed in these APC subtypes 21 days post-infection. Overall, this data suggests that P. brasiliensis infection caused an immunosuppression that has also been observed in patients with the most severe form of Paracoccidioidomycosis (PCM) - a sickness caused by this fungus genus. Furthermore, these results open new perspectives for knowledge of the mechanisms that underlie the higher percentage of Treg cells found in peripheral blood of PCM patients.
Collapse
|
5
|
Adipose Tissue-Derived Stromal Cells Induce a Highly Trophic Environment While Reducing Maturation of Monocyte-Derived Dendritic Cells. Stem Cells Int 2020; 2020:8868909. [PMID: 33163080 PMCID: PMC7607274 DOI: 10.1155/2020/8868909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
Allogeneic cell-based therapies using adipose tissue-derived stromal cells (ASCs) offer an off-the-shelf alternative to autologous therapy. An underlying assumption is that ASC can modulate the immune response of the recipient. However, in vitro models are required to explore and identify cell interactions and mechanisms of action, to ensure sufficient and sustained effects, and to document these. In this study, we shed light on the effect of ASC manufactured for clinical use on monocyte-derived dendritic cells and an inflammatory microenvironment. ASCs were isolated from healthy voluntary donors, expanded using a human platelet lysate in bioreactors, and cryopreserved as per clinical use. Monocyte-derived dendritic cells were generated by isolation of monocytes and differentiation with GM-CSF and IL-4. Dendritic cells were cocultured with different ratios of ASC and matured with LPS and IFN-γ. Dexamethasone was included as an immunosuppressive control. Dendritic cells were analyzed by flow cytometry for CD11c, CD40, CD80, CD83, CD86, PD-L1, and HLA-DR, and supernatants were analyzed for FGF2, HGF, IL-10, IL-12p70, LIF, MIF, PDGF, PlGF, and IDO. Reduced expression of maturation markers was observed on ASC-treated dendritic cells, while high levels of PD-L1 were maintained. Interestingly, the expression of CD83 was elevated. Escalating ratios of ASC did not affect the concentration of IL-10 considerably, whereas the presence of IL-12 was reduced in a dose-dependent manner. Besides offsetting the IL-12/IL-10 balance, the concentrations of IDO and MIF were elevated in cocultures. Concentrations of FGF2, HGF, LIF, and PIGF were high in ASC cocultures, whereas PDGF was depleted. In a robust coculture model, the addition of ASC to dendritic cells inhibited the dendritic maturation substantially, while inducing a less inflammatory and more tolerogenic milieu. Despite the exposure to dendritic cells and inflammatory stimuli, ASC resulted in supernatants with trophic factors relevant for regeneration. Thus, ASC can perform immunomodulation while providing a regenerative environment.
Collapse
|
6
|
Purba FY, Nii T, Yoshimura Y, Isobe N. Translocation of intrauterine-infused bacterial lipopolysaccharides to the mammary gland in dexamethasone-treated goats. Reprod Domest Anim 2020; 55:1688-1697. [PMID: 32930423 DOI: 10.1111/rda.13820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 12/01/2022]
Abstract
Our previous study showed that intrauterine-infused lipopolysaccharide (LPS) can be translocated to the mammary gland to induce weak inflammation. This study aimed to determine whether dexamethasone treatment facilitated the translocation of LPS from the uterus to the mammary gland to induce a heavy inflammatory response. Sixteen goats were divided into control and LPS groups, subjected to daily dexamethasone administration before saline or LPS infusion. Milk and blood samples were collected before and after LPS infusion to determine the milk yield and somatic cell count (SCC) and blood leucocyte count (BLC), cytokines, antimicrobial peptides and serum amyloid A (SAA) concentrations. Mammary gland tissues were collected from two goats before and 24 hr after LPS infusion for immunohistochemical analysis of LPS. The mean SCC in the LPS group was significantly higher, whereas the milk yield was significantly lower than that in the control group after LPS infusion. The mean BLC in the LPS group was significantly lower than in the control group after LPS infusion. Furthermore, milk concentrations of IL-1β, S100A8 and lactoferrin were higher in the LPS group than in the control group after infusion. LPS was detected in the connective tissues and inner alveolar spaces of the mammary glands 24 hr after LPS infusion. We concluded that dexamethasone administration facilitated the translocation of intrauterine-infused LPS to the mammary gland, where it induced an inflammatory response. Therefore, LPS translocated from other organs, such as the uterus, can induce heavy inflammation in the mammary gland under immunosuppressive conditions.
Collapse
Affiliation(s)
- Fika Yuliza Purba
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,Veterinary Medicine Study Program, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
7
|
Dendritic cells generated in the presence of interferon-α and modulated with dexamethasone as a novel tolerogenic vaccine platform. Inflammopharmacology 2019; 28:311-319. [PMID: 31552546 DOI: 10.1007/s10787-019-00641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Tolerogenic dendritic cells (tDCs) are considered a novel therapeutic tool in treating autoimmune diseases, allergies, and transplantation reactions. Among numerous pharmacological immune modulators, dexamethasone (Dex) is known to induce potent tolerogenicity in DCs generated from human monocytes with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), and these cells (IL-4-DCs/Dex) are being appraised as a tDC-based platform in clinical settings. Interferon-α (IFNα) represents another powerful inducer of monocyte-derived DCs, which possess higher migratory activity and stability. However, the functions of IFN-DCs/Dex have not been sufficiently analyzed and there are no comparative studies of the tolerogenicity of IFN-DCs/Dex and IL-4-DCs/Dex. This study aimed to investigate the properties of IFN-DCs/Dex in comparison with IL-4-DCs/Dex. RESULTS DCs were obtained by cultivation of an adherent fraction of peripheral blood mononuclear cells (MNCs) in the presence of GM-CSF and IFNα or IL-4 with subsequent lipopolysaccharide-driven maturation. Dex (10-6 M) was added to the cultures at day 3. We showed that generation of IFN-DCs with Dex resulted in decrease in percentage of CD83+ and CD86+ DCs and increase in numbers of CD14+, B7-H1+, and Toll-like receptor 2 (TLR2+) DCs. Treatment with Dex downregulated pro-inflammatory cytokine production, reduced DC allostimulatory activity, and inhibited DC capacity to stimulate Th1/pro-inflammatory cytokine production, altogether evidencing the induction of a tolerogenic phenotype. As compared to IL-4-DCs/Dex, IFN-DCs/Dex were characterized by larger proportion of TLR2+ and CD14+ cells, higher production of IL-10 and lower TNFα/IL-10 ratio, more potent capacity to induce T cell anergy, and more efficiently skewed T cell cytokine balance towards Th2/anti-inflammatory profile. CONCLUSIONS The data obtained indicate that potent tDCs could be generated by treating IFN-DCs with dexamethasone. The tolerogenic properties of IFN-DCs/Dex are better than or at least equal to those of the IL-4-DCs/Dex, as assessed by in vitro phenotypic and functional assays, suggesting these cells as a new tolerogenic vaccine platform.
Collapse
|
8
|
Kiernozek E, Bieńkowska A, Markowska M, Kozlowska E, Drela N. Dexamethasone affects day/night development and function of thymus-derived T regulatory cells. Immunobiology 2019; 224:614-624. [PMID: 31427114 DOI: 10.1016/j.imbio.2019.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
Abstract
Thymus-derived T regulatory (tTregs) cells play a crucial role in the maintenance of tolerance and immune homeostasis. Mechanisms and factors regulating tTreg development and function are widely investigated, but to a large degree still remain unclear. Our previous findings demonstrated that, in physiological conditions, the development and suppressive function of tTregs demonstrated day/night rhythmicity, which correlated with the concentration of plasma corticosterone and the expression of glucocorticoid receptors. In this study we ask whether synthetic glucocorticoids commonly used to inhibit excessive activity of the immune system, can modulate the development and suppressive function of tTregs in vivo depending on the time of administration. Young C57BL/6 male and female mice were injected intraperitoneally with a single dose of dexamethasone at two time points of the day: 7.00-8.00 a.m. and 7.00-8.00 p.m. The experimental can be used to indicate on the potentially expected positive or adverse side effects and can constitute also a good model for the assessment of the effects of long-term therapy. The results of our studies demonstrated the increase of the percentage of tTregs at both time points in male mice, but only in the evening in females. The suppressive activity of tTregs increased independently on the day time of in female mice, but in the morning only in males. We concluded that in the condition of dexamethasone supplementation, the elevated suppressive potential of tTregs is balanced by the induction apoptosis in order to prevent excessive suppression.
Collapse
Affiliation(s)
- Ewelina Kiernozek
- Faculty of Biology, University of Warsaw, Department of Immunology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bieńkowska
- Faculty of Biology, University of Warsaw, Department of Immunology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Magdalena Markowska
- Faculty of Biology, University of Warsaw, Department of Animal Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ewa Kozlowska
- Faculty of Biology, University of Warsaw, Department of Immunology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Nadzieja Drela
- Faculty of Biology, University of Warsaw, Department of Immunology, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
9
|
Grohová A, Dáňová K, Špíšek R, Palová-Jelínková L. Cell Based Therapy for Type 1 Diabetes: Should We Take Hyperglycemia Into Account? Front Immunol 2019; 10:79. [PMID: 30804929 PMCID: PMC6370671 DOI: 10.3389/fimmu.2019.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is characterized by long standing hyperglycemia leading to numerous life-threatening complications. For type 1 diabetes mellitus, resulting from selective destruction of insulin producing cells by exaggerated immune reaction, the only effective therapy remains exogenous insulin administration. Despite accurate compliance to treatment of certain patients, transient episodes of hyperglycemia cannot be completely eliminated by this symptomatic treatment. Novel immunotherapeutic approaches based on tolerogenic dendritic cells, T regulatory cells and mesenchymal stem cells (MSCs) have been tested in clinical trials, endeavoring to directly modulate the autoimmune destruction process in pancreas. However, hyperglycemia itself affects the immune system and the final efficacy of cell-based immunotherapies could be affected by the different glycemic control of enrolled patients. The present review explores the impact of hyperglycemia on immune cells while providing greater insight into the molecular mechanisms of high glucose action and subsequent metabolic reprogramming of different immune cells. Furthermore, over-production of mitochondrial reactive oxygen species, formation of advanced glycation end products as a consequence of hyperglycemia and their downstream signalization in immune cells are also discussed. Since hyperglycemia in patients with type 1 diabetes mellitus might have an impact on immune-interventional treatment, the maintenance of a tight glucose control seems to be beneficial in patients considered for cell-based therapy.
Collapse
Affiliation(s)
- Anna Grohová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia.,Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine, University Hospital Motol, Prague, Czechia
| | - Klára Dáňová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Radek Špíšek
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| |
Collapse
|
10
|
Comparative transcriptomic profile of tolerogenic dendritic cells differentiated with vitamin D3, dexamethasone and rapamycin. Sci Rep 2018; 8:14985. [PMID: 30297862 PMCID: PMC6175832 DOI: 10.1038/s41598-018-33248-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Tolerogenic dendritic cell (tolDC)-based therapies have become a promising approach for the treatment of autoimmune diseases by their potential ability to restore immune tolerance in an antigen-specific manner. However, the broad variety of protocols used to generate tolDC in vitro and their functional and phenotypical heterogeneity are evidencing the need to find robust biomarkers as a key point towards their translation into the clinic, as well as better understanding the mechanisms involved in the induction of immune tolerance. With that aim, in this study we have compared the transcriptomic profile of tolDC induced with either vitamin D3 (vitD3-tolDC), dexamethasone (dexa-tolDC) or rapamycin (rapa-tolDC) through a microarray analysis in 5 healthy donors. The results evidenced that common differentially expressed genes could not be found for the three different tolDC protocols. However, individually, CYP24A1, MUCL1 and MAP7 for vitD3-tolDC; CD163, CCL18, C1QB and C1QC for dexa-tolDC; and CNGA1 and CYP7B1 for rapa-tolDC, constituted good candidate biomarkers for each respective cellular product. In addition, a further gene set enrichment analysis of the data revealed that dexa-tolDC and vitD3-tolDC share several immune regulatory and anti-inflammatory pathways, while rapa-tolDC seem to be playing a totally different role towards tolerance induction through a strong immunosuppression of their cellular processes.
Collapse
|
11
|
Flórez-Grau G, Zubizarreta I, Cabezón R, Villoslada P, Benitez-Ribas D. Tolerogenic Dendritic Cells as a Promising Antigen-Specific Therapy in the Treatment of Multiple Sclerosis and Neuromyelitis Optica From Preclinical to Clinical Trials. Front Immunol 2018; 9:1169. [PMID: 29904379 PMCID: PMC5990597 DOI: 10.3389/fimmu.2018.01169] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
The identification of activated T-lymphocytes restricted to myelin-derived immunogenic peptides in multiple sclerosis (MS) and aquaporin-4 water channel in neuromyelitis optica (NMO) in the blood of patients opened the possibility for developing highly selective and disease-specific therapeutic approaches. Antigen presenting cells and in particular dendritic cells (DCs) represent a strategy to inhibit pro-inflammatory T helper cells. DCs are located in peripheral and lymphoid tissues and are essential for homeostasis of T cell-dependent immune responses. The expression of a particular set of receptors involved in pathogen recognition confers to DCs the property to initiate immune responses. However, in the absence of danger signals different DC subsets have been revealed to induce active tolerance by inducing regulatory T cells, inhibiting pro-inflammatory T helper cells responses or both. Interestingly, several protocols to generate clinical-grade tolerogenic DC (Tol-DC) in vitro have been described, offering the possibility to restore the homeostasis to central nervous system-related antigens. In this review, we discuss about different DC subsets and their role in tolerance induction, the different protocols to generate Tol-DCs and preclinical studies in animal models as well as describe recent characterization of Tol-DCs for clinical application in autoimmune diseases and in particular in MS and NMO patients. In addition, we discuss the clinical trials ongoing based on Tol-DCs to treat different autoimmune diseases.
Collapse
Affiliation(s)
- Georgina Flórez-Grau
- Department of Immunology, Hospital Clinic i Provincial, Barcelona, Spain.,Neuroimmunology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irati Zubizarreta
- Neuroimmunology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Cabezón
- Department of Immunology, Hospital Clinic i Provincial, Barcelona, Spain.,Neuroimmunology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Villoslada
- Neuroimmunology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | |
Collapse
|
12
|
Lynch K, Treacy O, Gerlach JQ, Annuk H, Lohan P, Cabral J, Joshi L, Ryan AE, Ritter T. Regulating Immunogenicity and Tolerogenicity of Bone Marrow-Derived Dendritic Cells through Modulation of Cell Surface Glycosylation by Dexamethasone Treatment. Front Immunol 2017; 8:1427. [PMID: 29163502 PMCID: PMC5670353 DOI: 10.3389/fimmu.2017.01427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022] Open
Abstract
Dendritic cellular therapies and dendritic cell vaccines show promise for the treatment of autoimmune diseases, the prolongation of graft survival in transplantation, and in educating the immune system to fight cancers. Cell surface glycosylation plays a crucial role in the cell–cell interaction, uptake of antigens, migration, and homing of DCs. Glycosylation is known to change with environment and the functional state of DCs. Tolerogenic DCs (tDCs) are commonly generated using corticosteroids including dexamethasone, however, to date, little is known on how corticosteroid treatment alters glycosylation and what functional consequences this may have. Here, we present a comprehensive profile of rat bone marrow-derived dendritic cells, examining their cell surface glycosylation profile before and after Dexa treatment as resolved by both lectin microarrays and lectin-coupled flow cytometry. We further examine the functional consequences of altering cell surface glycosylation on immunogenicity and tolerogenicity of DCs. Dexa treatment of rat DCs leads to profoundly reduced expression of markers of immunogenicity (MHC I/II, CD80, CD86) and pro-inflammatory molecules (IL-6, IL-12p40, inducible nitric oxide synthase) indicating a tolerogenic phenotype. Moreover, by comprehensive lectin microarray profiling and flow cytometry analysis, we show that sialic acid (Sia) is significantly upregulated on tDCs after Dexa treatment, and that this may play a vital role in the therapeutic attributes of these cells. Interestingly, removal of Sia by neuraminidase treatment increases the immunogenicity of immature DCs and also leads to increased expression of pro-inflammatory cytokines while tDCs are moderately protected from this increase in immunogenicity. These findings may have important implications in strategies aimed at increasing tolerogenicity where it is advantageous to reduce immune activation over prolonged periods. These findings are also relevant in therapeutic strategies aimed at increasing the immunogenicity of cells, for example, in the context of tumor specific immunotherapies.
Collapse
Affiliation(s)
- Kevin Lynch
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Oliver Treacy
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Jared Q Gerlach
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Glycoscience Group, NCBES National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Heidi Annuk
- Glycoscience Group, NCBES National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Paul Lohan
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joana Cabral
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Lokesh Joshi
- Glycoscience Group, NCBES National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
13
|
García-González PA, Schinnerling K, Sepúlveda-Gutiérrez A, Maggi J, Mehdi AM, Nel HJ, Pesce B, Larrondo ML, Aravena O, Molina MC, Catalán D, Thomas R, Verdugo RA, Aguillón JC. Dexamethasone and Monophosphoryl Lipid A Induce a Distinctive Profile on Monocyte-Derived Dendritic Cells through Transcriptional Modulation of Genes Associated With Essential Processes of the Immune Response. Front Immunol 2017; 8:1350. [PMID: 29109727 PMCID: PMC5660598 DOI: 10.3389/fimmu.2017.01350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/03/2017] [Indexed: 02/02/2023] Open
Abstract
There is growing interest in the use of tolerogenic dendritic cells (tolDCs) as a potential target for immunotherapy. However, the molecular bases that drive the differentiation of monocyte-derived DCs (moDCs) toward a tolerogenic state are still poorly understood. Here, we studied the transcriptional profile of moDCs from healthy subjects, modulated with dexamethasone (Dex) and activated with monophosphoryl lipid A (MPLA), referred to as Dex-modulated and MPLA-activated DCs (DM-DCs), as an approach to identify molecular regulators and pathways associated with the induction of tolerogenic properties in tolDCs. We found that DM-DCs exhibit a distinctive transcriptional profile compared to untreated (DCs) and MPLA-matured DCs. Differentially expressed genes downregulated by DM included MMP12, CD1c, IL-1B, and FCER1A involved in DC maturation/inflammation and genes upregulated by DM included JAG1, MERTK, IL-10, and IDO1 involved in tolerance. Genes related to chemotactic responses, cell-to-cell signaling and interaction, fatty acid oxidation, metal homeostasis, and free radical scavenging were strongly enriched, predicting the activation of alternative metabolic processes than those driven by counterpart DCs. Furthermore, we identified a set of genes that were regulated exclusively by the combined action of Dex and MPLA, which are mainly involved in the control of zinc homeostasis and reactive oxygen species production. These data further support the important role of metabolic processes on the control of the DC-driven regulatory immune response. Thus, Dex and MPLA treatments modify gene expression in moDCs by inducing a particular transcriptional profile characterized by the activation of tolerance-associated genes and suppression of the expression of inflammatory genes, conferring the potential to exert regulatory functions and immune response modulation.
Collapse
Affiliation(s)
- Paulina A García-González
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Katina Schinnerling
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alejandro Sepúlveda-Gutiérrez
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Jaxaira Maggi
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ahmed M Mehdi
- Translational Research Institute, University of Queensland Diamantina Institute, Woolloongabba, QLD, Australia
| | - Hendrik J Nel
- Translational Research Institute, University of Queensland Diamantina Institute, Woolloongabba, QLD, Australia
| | - Bárbara Pesce
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Milton L Larrondo
- Banco de Sangre, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - María C Molina
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ranjeny Thomas
- Translational Research Institute, University of Queensland Diamantina Institute, Woolloongabba, QLD, Australia
| | - Ricardo A Verdugo
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
14
|
Flórez‐Grau G, Cabezón R, Borgman KJE, España C, Lozano JJ, Garcia‐Parajo MF, Benítez‐Ribas D. Up‐regulation of EP
2
and EP
3
receptors in human tolerogenic dendritic cells boosts the immunosuppressive activity of PGE
2. J Leukoc Biol 2017. [DOI: 10.1189/jlb.2a1216-526r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Georgina Flórez‐Grau
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Cabezón
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kyra J. E. Borgman
- ICFO‐Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carolina España
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Jose Lozano
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Maria F. Garcia‐Parajo
- ICFO‐Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Barcelona, Spain
- Insititució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Daniel Benítez‐Ribas
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Immunology, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Diehl R, Ferrara F, Müller C, Dreyer AY, McLeod DD, Fricke S, Boltze J. Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cell Mol Immunol 2016; 14:146-179. [PMID: 27721455 PMCID: PMC5301156 DOI: 10.1038/cmi.2016.39] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Almost every experimental treatment strategy using non-autologous cell, tissue or organ transplantation is tested in small and large animal models before clinical translation. Because these strategies require immunosuppression in most cases, immunosuppressive protocols are a key element in transplantation experiments. However, standard immunosuppressive protocols are often applied without detailed knowledge regarding their efficacy within the particular experimental setting and in the chosen model species. Optimization of such protocols is pertinent to the translation of experimental results to human patients and thus warrants further investigation. This review summarizes current knowledge regarding immunosuppressive drug classes as well as their dosages and application regimens with consideration of species-specific drug metabolization and side effects. It also summarizes contemporary knowledge of novel immunomodulatory strategies, such as the use of mesenchymal stem cells or antibodies. Thus, this review is intended to serve as a state-of-the-art compendium for researchers to refine applied experimental immunosuppression and immunomodulation strategies to enhance the predictive value of preclinical transplantation studies.
Collapse
Affiliation(s)
- Rita Diehl
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Fabienne Ferrara
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany.,Institute of Vegetative Physiology, Charite University Medicine and Center for Cardiovascular Research, Berlin 10115, Germany
| | - Claudia Müller
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Antje Y Dreyer
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | | | - Stephan Fricke
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Johannes Boltze
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany.,Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
16
|
Flórez-Grau G, Rocas P, Cabezón R, España C, Panés J, Rocas J, Albericio F, Benítez-Ribas D. Nanoencapsulated budesonide in self-stratified polyurethane-polyurea nanoparticles is highly effective in inducing human tolerogenic dendritic cells. Int J Pharm 2016; 511:785-93. [PMID: 27477102 DOI: 10.1016/j.ijpharm.2016.07.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/27/2023]
Abstract
The design of innovative strategies to selectively target cells, such antigen-presenting cells and dendritic cells, in vivo to induce immune tolerance is gaining interest and relevance for the treatment of immune-mediated diseases. A novel loaded-nanosystem strategy to generate tolerogenic dendritic cells (tol-DCs) was evaluated. Hence budesonide (BDS) was encapsulated in multiwalled polyurethane-polyurea nanoparticles (PUUa NPs-BDS) based on self-stratified polymers by hydrophobic interactions at the oil-water interface. DCs treated with encapsulated BDS presented a prominent downregulation of costimulatory molecules (CD80, CD83 and MHCII) and upregulation of inhibitory receptors. Moreover, DCs treated with these PUUa NPs-BDS also secreted large amounts of IL-10, a crucial anti-inflammatory cytokine to induce tolerance, and inhibited T lymphocyte activation in a specific manner compared to those cells generated with free BDS. These results demonstrate that PUUa NPs-BDS are a highly specific and efficient system through which to induce DCs with a tolerogenic profile. Given the capacity of PUUa NPs-BDS, this delivery system has a clear advantage for translation to in vivo studies.
Collapse
Affiliation(s)
- Georgina Flórez-Grau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pau Rocas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raquel Cabezón
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Julián Panés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
| | - Josep Rocas
- Nanobiotechnological Polymers Division, Ecopol Tech S.L., Tarragona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Organic Chemistry, University of Barcelona, Barcelona, Spain; School of Chemistry & Physics, University of Kwazulu-Natal, Durban, South Africa; Networking Centre on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | - Daniel Benítez-Ribas
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
17
|
García-González P, Ubilla-Olguín G, Catalán D, Schinnerling K, Aguillón JC. Tolerogenic dendritic cells for reprogramming of lymphocyte responses in autoimmune diseases. Autoimmun Rev 2016; 15:1071-1080. [PMID: 27485011 DOI: 10.1016/j.autrev.2016.07.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) control immune responses by driving potent inflammatory actions against external and internal threats while generating tolerance to self and harmless components. This duality and their potential to reprogram immune responses in an antigen-specific fashion have made them an interesting target for immunotherapeutic strategies to control autoimmune diseases. Several protocols have been described for in vitro generation of tolerogenic DCs (tolDCs) capable of modulating adaptive immune responses and restoring tolerance through different mechanisms that involve anergy, generation of regulatory lymphocyte populations, or deletion of potentially harmful inflammatory T cell subsets. Recently, the capacity of tolDCs to induce interleukin (IL-10)-secreting regulatory B cells has been demonstrated. In vitro assays and rodent models of autoimmune diseases provide insights to the molecular regulators and pathways enabling tolDCs to control immune responses. Here we review mechanisms through which tolDCs modulate adaptive immune responses, particularly focusing on their suitability for reprogramming autoreactive CD4+ effector T cells. Furthermore, we discuss recent findings establishing that tolDCs also modulate B cell populations and discuss clinical trials applying tolDCs to patients with autoimmune diseases.
Collapse
Affiliation(s)
- Paulina García-González
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Gabriela Ubilla-Olguín
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Diego Catalán
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Katina Schinnerling
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile.
| | - Juan Carlos Aguillón
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile.
| |
Collapse
|
18
|
Dáňová K, Klapetková A, Kayserová J, Šedivá A, Špíšek R, Jelínková LP. NF-κB, p38 MAPK, ERK1/2, mTOR, STAT3 and increased glycolysis regulate stability of paricalcitol/dexamethasone-generated tolerogenic dendritic cells in the inflammatory environment. Oncotarget 2016; 6:14123-38. [PMID: 26053099 PMCID: PMC4546455 DOI: 10.18632/oncotarget.4234] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic dendritic cells (tDCs) may offer an intervention therapy in autoimmune diseases or transplantation. Stable immaturity and tolerogenic function of tDCs after encountering inflammatory environment are prerequisite for positive outcome of immunotherapy. However, the signaling pathways regulating their stable tolerogenic properties are largely unknown. In this study, we demonstrated that human monocyte-derived tDCs established by using paricalcitol (analogue of vitamin D2), dexamethasone and monophosphoryl lipid A exposed for 24h to LPS, cytokine cocktail, polyI:C or CD40L preserved reduced expression of co-stimulatory molecules, increased levels of inhibitory molecules ILT-3, PDL-1 and TIM-3, increased TLR-2, increased secretion of IL-10 and TGF-β, reduced IL-12 and TNF-α secretion and reduced T cell stimulatory capacity. tDCs further induced IL-10-producing T regulatory cells that suppressed the proliferation of responder T cells. In the inflammatory environment, tDCs maintained up-regulated indoleamine 2, 3 dioxygenase but abrogated IκB-α phosphorylation and reduced transcriptional activity of p65/RelA, RelB and c-Rel NF-κB subunits except p50. Mechanistically, p38 MAPK, ERK1/2, mTOR, STAT3 and mTOR-dependent glycolysis regulated expression of ILT-3, PDL-1 and CD86, secretion of IL-10 and T cell stimulatory capacity of tDCs in the inflammatory environment. Stability of tDCs in the inflammatory environment is thus regulated by multiple signaling pathways.
Collapse
Affiliation(s)
- Klára Dáňová
- Sotio a.s., Prague, Czech Republic.,Department of Immunology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Anna Klapetková
- Sotio a.s., Prague, Czech Republic.,Department of Immunology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Jana Kayserová
- Department of Immunology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Anna Šedivá
- Department of Immunology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Radek Špíšek
- Sotio a.s., Prague, Czech Republic.,Department of Immunology, Charles University, 2nd Medical School, Prague, Czech Republic
| | - Lenka Palová Jelínková
- Sotio a.s., Prague, Czech Republic.,Department of Immunology, Charles University, 2nd Medical School, Prague, Czech Republic
| |
Collapse
|
19
|
Sedaghat B, Stephenson RJ, Giddam AK, Eskandari S, Apte SH, Pattinson DJ, Doolan DL, Toth I. Synthesis of Mannosylated Lipopeptides with Receptor Targeting Properties. Bioconjug Chem 2016; 27:533-48. [PMID: 26735314 DOI: 10.1021/acs.bioconjchem.5b00547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Present on the surface of antigen presenting cells (APCs), the mannose receptor (MR) has long been recognized as a front-line receptor in pathogen recognition. During the past decade many attempts have been made to target this receptor for applications including vaccine and drug development. In the present study, a library of vaccine constructs comprising fluorescently labeled mannosylated lipid-dendrimers that contained the ovalbumin CD4(+) epitope, OVA(323-339), as the model peptide antigen were synthesized using fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). The vaccine constructs were designed with an alanine spacer between the O-linked mannose moieties to investigate the impact of distance between the mannose units on receptor-mediated uptake and/or binding in APCs. Uptake studies performed on F4/80(+) and CD11c(+) cells showed significant uptake and/or binding for lipopeptides containing mannose, and also the lipopeptide without mannose when compared to the control peptides (peptide with no lipid and peptide with no mannose and no lipid). Furthermore, mannan inhibition assays demonstrated that uptake of the mannosylated and lipidated peptides was receptor mediated. To address the specificity of receptor uptake, surface plasmon resonance studies were performed using biacore technology and confirmed high affinity of the mannosylated and lipidated vaccine constructs toward the MR. These studies confirm that both mannose and lipid moieties play significant roles in receptor-mediated uptake on APCs, potentially facilitating vaccine development.
Collapse
Affiliation(s)
| | | | | | | | - Simon H Apte
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute , Brisbane, Queensland 4029, Australia
| | - David J Pattinson
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute , Brisbane, Queensland 4029, Australia
| | - Denise L Doolan
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute , Brisbane, Queensland 4029, Australia
| | - Istvan Toth
- School of Pharmacy, The University of Queensland , Woolloongabba, Queensland 4012, Australia
| |
Collapse
|
20
|
Fichter M, Baier G, Dedters M, Pretsch L, Pietrzak-Nguyen A, Landfester K, Gehring S. Nanocapsules generated out of a polymeric dexamethasone shell suppress the inflammatory response of liver macrophages. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1223-34. [DOI: 10.1016/j.nano.2013.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 01/16/2023]
|
21
|
Krishnan V, Xu X, Barwe SP, Yang X, Czymmek K, Waldman SA, Mason RW, Jia X, Rajasekaran AK. Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: a novel application in pediatric nanomedicine. Mol Pharm 2013; 10:2199-210. [PMID: 23194373 PMCID: PMC4162306 DOI: 10.1021/mp300350e] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nanotechnology approaches have tremendous potential for enhancing treatment efficacy with lower doses of chemotherapeutics. Nanoparticle (NP)-based drug delivery approaches are poorly developed for childhood leukemia. Dexamethasone (Dex) is one of the most common chemotherapeutic drugs used in the treatment of childhood leukemia. In this study, we encapsulated Dex in polymeric NPs and validated their antileukemic potential in vitro and in vivo. NPs with an average diameter of 110 nm were assembled from an amphiphilic block copolymer of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) bearing pendant cyclic ketals (ECT2). The blank NPs were nontoxic to cultured cells in vitro and to mice in vivo. Encapsulation of Dex into the NPs (Dex-NP) did not compromise the bioactivity of the drug. Dex-NPs induced glucocorticoid phosphorylation and showed cytotoxicity similar to the free Dex in leukemic cells. Studies using NPs labeled with fluorescent dyes revealed leukemic cell surface binding and internalization. In vivo biodistribution studies showed NP accumulation in the liver and spleen with subsequent clearance of the particles with time. In a preclinical model of leukemia, Dex-NPs significantly improved the quality of life and survival of mice as compared to the free drug. To our knowledge, this is the first report showing the efficacy of polymeric NPs to deliver Dex to potentially treat childhood leukemia and reveals that low doses of Dex should be sufficient for inducing cell death and improving survival.
Collapse
Affiliation(s)
- Vinu Krishnan
- Department of Materials Science and Engineering, University of Delaware,
Newark, DE
- Nemours Center for Childhood Cancer Research, A.I. duPont Hospital for
Children, Wilmington, DE
- Delaware Biotechnology Institute, University of Delaware, Newark, DE
| | - Xian Xu
- Department of Materials Science and Engineering, University of Delaware,
Newark, DE
- Delaware Biotechnology Institute, University of Delaware, Newark, DE
| | - Sonali P. Barwe
- Nemours Center for Childhood Cancer Research, A.I. duPont Hospital for
Children, Wilmington, DE
| | - Xiaowei Yang
- Department of Materials Science and Engineering, University of Delaware,
Newark, DE
- Delaware Biotechnology Institute, University of Delaware, Newark, DE
| | - Kirk Czymmek
- Delaware Biotechnology Institute, University of Delaware, Newark, DE
- Department of Biological Sciences, Center for Translational Cancer Research,
University of Delaware, Newark, DE
| | - Scott A. Waldman
- Pharamcology and Experimental Therapeutics, Jefferson Medical College,
Thomas Jefferson University, Philadelphia, PA
| | - Robert W. Mason
- Nemours Center for Childhood Cancer Research, A.I. duPont Hospital for
Children, Wilmington, DE
- Delaware Biotechnology Institute, University of Delaware, Newark, DE
- Department of Biological Sciences, Center for Translational Cancer Research,
University of Delaware, Newark, DE
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware,
Newark, DE
- Delaware Biotechnology Institute, University of Delaware, Newark, DE
- Department of Biological Sciences, Center for Translational Cancer Research,
University of Delaware, Newark, DE
| | - Ayyappan K. Rajasekaran
- Department of Materials Science and Engineering, University of Delaware,
Newark, DE
- Nemours Center for Childhood Cancer Research, A.I. duPont Hospital for
Children, Wilmington, DE
- Delaware Biotechnology Institute, University of Delaware, Newark, DE
- Department of Biological Sciences, Center for Translational Cancer Research,
University of Delaware, Newark, DE
| |
Collapse
|
22
|
García-González P, Morales R, Hoyos L, Maggi J, Campos J, Pesce B, Gárate D, Larrondo M, González R, Soto L, Ramos V, Tobar P, Molina MC, Pino-Lagos K, Catalán D, Aguillón JC. A short protocol using dexamethasone and monophosphoryl lipid A generates tolerogenic dendritic cells that display a potent migratory capacity to lymphoid chemokines. J Transl Med 2013; 11:128. [PMID: 23706017 PMCID: PMC3674980 DOI: 10.1186/1479-5876-11-128] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022] Open
Abstract
Background Generation of tolerogenic dendritic cells (TolDCs) for therapy is challenging due to its implications for the design of protocols suitable for clinical applications, which means not only using safe products, but also working at defining specific biomarkers for TolDCs identification, developing shorter DCs differentiation methods and obtaining TolDCs with a stable phenotype. We describe here, a short-term protocol for TolDCs generation, which are characterized in terms of phenotypic markers, cytokines secretion profile, CD4+ T cell-stimulatory ability and migratory capacity. Methods TolDCs from healthy donors were generated by modulation with dexamethasone plus monophosphoryl lipid A (MPLA-tDCs). We performed an analysis of MPLA-tDCs in terms of yield, viability, morphology, phenotypic markers, cytokines secretion profile, stability, allogeneic and antigen-specific CD4+ T-cell stimulatory ability and migration capacity. Results After a 5-day culture, MPLA-tDCs displayed reduced expression of costimulatory and maturation molecules together to an anti-inflammatory cytokines secretion profile, being able to maintain these tolerogenic features even after the engagement of CD40 by its cognate ligand. In addition, MPLA-tDCs exhibited reduced capabilities to stimulate allogeneic and antigen-specific CD4+ T cell proliferation, and induced an anti-inflammatory cytokine secretion pattern. Among potential tolerogenic markers studied, only TLR-2 was highly expressed in MPLA-tDCs when compared to mature and immature DCs. Remarkable, like mature DCs, MPLA-tDCs displayed a high CCR7 and CXCR4 expression, both chemokine receptors involved in migration to secondary lymphoid organs, and even more, in an in vitro assay they exhibited a high migration response towards CCL19 and CXCL12. Conclusion We describe a short-term protocol for TolDC generation, which confers them a stable phenotype and migratory capacity to lymphoid chemokines, essential features for TolDCs to be used as therapeutics for autoimmunity and prevention of graft rejection.
Collapse
Affiliation(s)
- Paulina García-González
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Functional polymeric nanoparticles for dexamethasone loading and release. Colloids Surf B Biointerfaces 2012; 93:59-66. [DOI: 10.1016/j.colsurfb.2011.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 11/20/2022]
|
24
|
Dane KY, Nembrini C, Tomei AA, Eby JK, O'Neil CP, Velluto D, Swartz MA, Inverardi L, Hubbell JA. Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. J Control Release 2011; 156:154-60. [DOI: 10.1016/j.jconrel.2011.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 12/13/2022]
|
25
|
Hodrea J, Majai G, Doró Z, Zahuczky G, Pap A, Rajnavölgyi É, Fésüs L. The glucocorticoid dexamethasone programs human dendritic cells for enhanced phagocytosis of apoptotic neutrophils and inflammatory response. J Leukoc Biol 2011; 91:127-36. [PMID: 22028334 DOI: 10.1189/jlb.0511243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
GCs are powerful anti-inflammatory compounds inhibiting inflammatory cell recruitment and production of proinflammatory cytokines. We have recently found that DCs, the key players of T cell priming and polarization, respond to allogeneic apoptotic neutrophils with proinflammatory cytokine release and Th1 cell activation. Here, we show that monocyte-derived human DCs develop their capacity to engulf apoptotic cells by up-regulating a set of apoptophagocytic genes. This gene expression pattern was reprogrammed when differentiation took place in the presence of the synthetic GC Dex, which increased the expression of phagocytosis receptors MERTK and CD14, the bridging molecule C1QA, DNASE2, and ADORA3. The increased phagocytosis was attenuated by the addition of ADORA3 antagonist and could not be observed when bone marrow-derived DCs of ADORA3 KO mice were treated with Dex. The GC-treated human DCs loaded with allogeneic apoptotic neutrophils secreted, in response to LPS and IFN-γ, the inflammatory cytokine TNF-α. Furthermore, the Dex-treated DCs could activate autologous T lymphocytes toward Th1 effector cells, and this was enhanced by their exposure to allogeneic apoptotic neutrophils.
Collapse
Affiliation(s)
- Judit Hodrea
- Department of Biochemistry and Molecular Biology, Signaling and Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
26
|
Gong YB, Huang YF, Li Y, Han GC, Li YR, Wang DJ, Du GP, Yu JF, Song J. Experimental study of the mechanism of tolerance induction in dexamethasone-treated dendritic cells. Med Sci Monit 2011; 17:BR125-31. [PMID: 21525800 PMCID: PMC3539585 DOI: 10.12659/msm.881758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to investigate the mechanisms underlying tolerance induction of dexamethasone (Dex)-treated dendritic cells (DCs). Material/Methods Well-grown DC2.4 cells were randomly assigned to receive control, 50 μg/L, 100 μg/L, or 200 μg/L of dexamethasone and then were cultured for 6 days. The expressions of CD80, CD86, galectin-9, and PD-L1 on the surface of DC2.4 cells were analyzed with flow cytometry and the level of IL-12 secreted by DC2.4 cells was determined by ELISA. The stimulating activity of DC2.4 cells on allogeneic T cells was assessed with mixed lymphocyte reaction. Dexamethasone-treated DC2.4 cells were co-cultured with allogeneic splenic lymphocytes and the Foxp3 expression in naive T lymphocytes was determined with flow cytometry. Results Compared with the control group, the expressions of CD80, CD86, galectin-9, and PD-L1 on the surface of DC2.4 cells exposed to different doses of dexamethasone showed no significant changes; however, dexamethasone treatment significantly reduced IL-12 secretion and inhibited DC2.4’s stimulation on the proliferation of allogeneic T lymphocytes. Moreover, dexamethasone-treated DC2.4 cells effectively promoted FOXP3 expression in naive T lymphocytes. Conclusions DC2.4 is a stable cell line with high expressions of CD80, CD86, and PD-L1. Dexamethasone does not significantly change the cell phenotype of DC2.4 cells, but inhibits the secretion of IL-12 cytokine and attenuates DC2.4’s stimulation of the proliferation of allogeneic T cells. Dexamethasone-treated DC2.4 cells also effectively promote FOXP3 expression in naive T lymphocytes.
Collapse
Affiliation(s)
- Yu-bo Gong
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mascanfroni ID, Cerliani JP, Dergan-Dylon S, Croci DO, Ilarregui JM, Rabinovich GA. Endogenous lectins shape the function of dendritic cells and tailor adaptive immunity: Mechanisms and biomedical applications. Int Immunopharmacol 2011; 11:833-41. [DOI: 10.1016/j.intimp.2011.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 11/27/2022]
|
28
|
Naranjo-Gómez M, Raïch-Regué D, Oñate C, Grau-López L, Ramo-Tello C, Pujol-Borrell R, Martínez-Cáceres E, Borràs FE. Comparative study of clinical grade human tolerogenic dendritic cells. J Transl Med 2011; 9:89. [PMID: 21658226 PMCID: PMC3141500 DOI: 10.1186/1479-5876-9-89] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/09/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The use of tolerogenic DCs is a promising therapeutic strategy for transplantation and autoimmune disorders. Immunomodulatory DCs are primarily generated from monocytes (MDDCs) for in vitro experiments following protocols that fail to fulfil the strict regulatory rules of clinically applicable products. Here, we compared the efficacy of three different tolerance-inducing agents, dexamethasone, rapamycin and vitamin D3, on DC biology using GMP (Good Manufacturing Practice) or clinical grade reagents with the aim of defining their use for human cell therapy. METHODS Tolerogenic MDDCs were generated by adding tolerogenic agents prior to the induction of maturation using TNF-α, IL-β and PGE2. We evaluated the effects of each agent on viability, efficiency of differentiation, phenotype, cytokine secretion and stability, the stimulatory capacity of tol-DCs and the T-cell profiles induced. RESULTS Differences relevant to therapeutic applicability were observed with the cellular products that were obtained. VitD3-induced tol-DCs exhibited a slightly reduced viability and yield compared to Dexa-and Rapa-tol-DCs. Phenotypically, while Dexa-and VitD3-tol-DCs were similar to immature DCs, Rapa-tol-DCs were not distinguishable from mature DCs. In addition, only Dexa-and moderately VitD3-tol-DCs exhibited IL-10 production. Interestingly, in all cases, the cytokine secretion profiles of tol-DCs were not modified by a subsequent TLR stimulation with LPS, indicating that all products had stable phenotypes. Functionally, clearly reduced alloantigen T cell proliferation was induced by tol-DCs obtained using any of these agent. Also, total interferon-gamma (IFN-γ) secretion by T cells stimulated with allogeneic tol-DCs was reduced in all three cases, but only T cells co-cultured with Rapa-tol-DCs showed impaired intracellular IFN-γ production. In addition, Rapa-DCs promoted CD4+ CD127 low/negative CD25high and Foxp3+ T cells. CONCLUSIONS Our results demonstrate contrasting influences of different clinical-grade pharmacological agents on human tol-DC generation. This should be taken into account for decisions on the use of a specific agent for the appropriate cellular therapy in the context of a particular disease.
Collapse
Affiliation(s)
- M Naranjo-Gómez
- Laboratory of Immunobiology for Research and Diagnosis, Blood and Tissue Bank, Dept. of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Institut Investigació Germans Trias i Pujol, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Heise N, Shumilina E, Nurbaeva MK, Schmid E, Szteyn K, Yang W, Xuan NT, Wang K, Zemtsova IM, Duszenko M, Lang F. Effect of dexamethasone on Na+/Ca2+exchanger in dendritic cells. Am J Physiol Cell Physiol 2011; 300:C1306-13. [DOI: 10.1152/ajpcell.00396.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ca+-dependent signaling regulates the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. The activity of DCs is suppressed by glucocorticoids, potent immunosuppressive hormones. The present study explored whether the glucocorticoid dexamethasone influences the cytosolic Ca2+concentration ([Ca2+]i) in DCs. To this end, DCs were isolated from mouse bone marrow. According to fura-2 fluorescence, exposure of DCs to lipopolysaccharide (LPS, 100 ng/ml) increased [Ca2+]i, an effect significantly blunted by overnight incubation with 10 nM dexamethasone before LPS treatment. Dexamethasone did not affect the Ca2+content of intracellular stores, sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2 and SERCA3 expression, ryanodine receptor (RyR)1 expression, or Ca2+entry through store-operated Ca2+channels. In contrast, dexamethasone increased the transcript level and the membrane protein abundance of the Na+/Ca2+exchanger NCX3. The activity of Na+/Ca2+exchangers was assessed by removal of extracellular Na+in the presence of external Ca2+, a maneuver triggering the Ca2+influx mode. Indeed, Na+removal resulted in a rapid transient increase of [Ca2+]iand induced an outwardly directed current as measured in whole cell patch-clamp experiments. Dexamethasone significantly augmented the increase of [Ca2+]iand the outward current following removal of extracellular Na+. The NCX blocker KB-R7943 reversed the inhibitory effect of dexamethasone on LPS-induced increase in [Ca2+]i. Dexamethasone blunted LPS-induced stimulation of CD86 expression and TNF-α production, an effect significantly less pronounced in the presence of NCX blocker KB-R7943. In conclusion, our results show that glucocorticoid treatment blunts LPS-induced increase in [Ca2+]iin DCs by increasing expression and activity of Na+/Ca2+exchanger NCX3. The effect contributes to the inhibitory effect of the glucocorticoid on DC maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michael Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
30
|
Dendritic cells as a tool to induce transplantation tolerance: obstacles and opportunities. Transplantation 2011; 91:2-7. [PMID: 21452405 DOI: 10.1097/tp.0b013e31820263b3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells are the key component to regulate and coordinate adaptive immune responses, including tolerance. This overview will briefly summarize different strategies to generate tolerogenic dendritic cell and the in vivo use of these cells in experimental transplantation models. We discuss some obstacles and possible solutions including alternative strategies for the use of negative vaccination in the context of organ transplantation.
Collapse
|
31
|
Shumilina E, Huber SM, Lang F. Ca2+ signaling in the regulation of dendritic cell functions. Am J Physiol Cell Physiol 2011; 300:C1205-14. [PMID: 21451105 DOI: 10.1152/ajpcell.00039.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are highly versatile antigen-presenting cells critically involved in both innate and adaptive immunity as well as maintenance of self-tolerance. DC function is governed by Ca(2+) signaling, which directs the DC responses to diverse antigens, including Toll-like receptor ligands, intact bacteria, and microbial toxins. Ca(2+)-sensitive DC functions include DC activation, maturation, migration, and formation of immunological synapses with T cells. Moreover, alterations of cytosolic Ca(2+) trigger immune suppression or switch off DC activity. Ca(2+) signals are generated by the orchestration of Ca(2+) transport processes across plasma, endoplasmic reticulum, and inner mitochondrial membrane. These processes include active pumping of Ca(2+), Ca(2+)/Na(+) antiport, and electrodiffusion through Ca(2+)-permeable channels or uniporters. Ca(2+) channels in the plasma membrane such as Ca(2+) release-activated Ca(2+) or L-type Ca(2+) channels are tightly regulated by the membrane potential which in turn depends on the activity of voltage-gated K(+) or Ca(2+)-activated nonselective cation channels. The rapidly growing knowledge on the function and regulation of these membrane transport proteins provides novel insight into pathophysiological mechanisms underlying dysfunction of the immune system and opens novel therapeutic opportunity to favorably influence the function of the immune system.
Collapse
Affiliation(s)
- Ekaterina Shumilina
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, Tübingen, Germany.
| | | | | |
Collapse
|
32
|
van Kooten C, Gelderman KA. In vitro-generated DC with tolerogenic functions: perspectives for in vivo cellular therapy. Methods Mol Biol 2011; 677:149-159. [PMID: 20941608 DOI: 10.1007/978-1-60761-869-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Dendritic cells (DCs) have a central role in immune regulation and serve as an essential link between innate and adaptive immunity. Their broad range of powerful immune stimulatory as well as regulatory functions has made DCs a target for vaccine development strategies. One approach to promote the tolerogenicity of DCs is to suppress their maturation by pharmacological agents, including the glucocorticoid dexamethasone. In this chapter, we describe methods to generate tolerogenic Dex-DC derived from either human peripheral blood monocytes or rat bone marrow cells.
Collapse
Affiliation(s)
- Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
33
|
Rotte A, Pasham V, Eichenmüller M, Yang W, Bhandaru M, Lang F. Influence of Dexamethasone on Na +/H + Exchanger Activity in Dendritic Cells. Cell Physiol Biochem 2011; 28:305-14. [DOI: 10.1159/000331746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2011] [Indexed: 11/19/2022] Open
|
34
|
Vilekar P, Awasthi V, Lagisetty P, King C, Shankar N, Awasthi S. In vivo trafficking and immunostimulatory potential of an intranasally-administered primary dendritic cell-based vaccine. BMC Immunol 2010; 11:60. [PMID: 21143974 PMCID: PMC3018378 DOI: 10.1186/1471-2172-11-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/10/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Coccidioidomycosis or Valley fever is caused by a highly virulent fungal pathogen: Coccidioides posadasii or immitis. Vaccine development against Coccidioides is of contemporary interest because a large number of relapses and clinical failures are reported with antifungal agents. An efficient Th1 response engenders protection. Thus, we have focused on developing a dendritic cell (DC)-based vaccine for coccidioidomycosis. In this study, we investigated the immunostimulatory characteristics of an intranasal primary DC-vaccine in BALB/c mouse strain that is most susceptible to coccidioidomycosis. The DCs were transfected nonvirally with Coccidioides-Ag2/PRA-cDNA. Expression of DC-markers, Ag2/PRA and cytokines were studied by flow cytometry, dot-immunoblotting and cytometric bead array methods, respectively. The T cell activation was studied by assessing the upregulation of activation markers in a DC-T cell co-culture assay. For trafficking, the DCs were co-transfected with a plasmid DNA encoding HSV1 thymidine kinase (TK) and administered intranasally into syngeneic mice. The trafficking and homing of TK-expressing DCs were monitored with positron emission tomography (PET) using 18F-FIAU probe. Based on the PET-probe accumulation in vaccinated mice, selected tissues were studied for antigen-specific response and T cell phenotypes using ELISPOT and flow cytometry, respectively. RESULTS We found that the primary DCs transfected with Coccidioides-Ag2/PRA-cDNA were of immature immunophenotype, expressed Ag2/PRA and activated naïve T cells. In PET images and subsequent biodistribution, intranasally-administered DCs were found to migrate in blood, lung and thymus; lymphocytes showed generation of T effector memory cell population (T(EM)) and IFN-γ release. CONCLUSIONS In conclusion, our results demonstrate that the intranasally-administered primary DC vaccine is capable of inducing Ag2/PRA-specific T cell response. Unique approaches utilized in our study represent an attractive and novel means of producing and evaluating an autologous DC-based vaccine.
Collapse
Affiliation(s)
- Prachi Vilekar
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73117, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hilkens CMU, Isaacs JD, Thomson AW. Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 2010; 29:156-83. [PMID: 20199240 DOI: 10.3109/08830180903281193] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dendritic cells are professional antigen-presenting cells that maintain immune tolerance to self-antigens by deleting or controlling the pathogenicity of auto-reactive T-cells. Dendritic cell-based immunotherapies show great promise for the restoration of tolerance in autoimmune disease. Dendritic cells can be modified ex vivo to induce stable tolerogenic function and be used as cellular 'vaccines' or they can be targeted in vivo with sophisticated antigen delivery systems. Tolerogenic dendritic cells induce antigen-specific T-cell tolerance in vivo and have therapeutic effects in animal models of autoimmunity. The current challenge is to bring tolerogenic dendritic cell therapy to the clinic.
Collapse
Affiliation(s)
- Catharien M U Hilkens
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
36
|
Berger TG, Schulze-Koops H, Schäfer M, Müller E, Lutz MB. Immature and maturation-resistant human dendritic cells generated from bone marrow require two stimulations to induce T cell anergy in vitro. PLoS One 2009; 4:e6645. [PMID: 19680551 PMCID: PMC2721636 DOI: 10.1371/journal.pone.0006645] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/07/2009] [Indexed: 12/21/2022] Open
Abstract
Immature dendritic cells (DC) represent potential clinical tools for tolerogenic cellular immunotherapy in both transplantation and autoimmunity. A major drawback in vivo is their potential to mature during infections or inflammation, which would convert their tolerogenicity into immunogenicity. The generation of immature DC from human bone marrow (BM) by low doses of GM-CSF (lowGM) in the absence of IL-4 under GMP conditions create DC resistant to maturation, detected by surface marker expression and primary stimulation by allogeneic T cells. This resistence could not be observed for BM-derived DC generated with high doses of GM-CSF plus IL-4 (highGM/4), although both DC types induced primary allogeneic T cell anergy in vitro. The estabishment of the anergic state requires two subsequent stimulations by immature DC. Anergy induction was more profound with lowGM-DC due to their maturation resistance. Together, we show the generation of immature, maturation-resistant lowGM-DC for potential clinical use in transplant rejection and propose a two-step-model of T cell anergy induction by immature DC.
Collapse
Affiliation(s)
- Thomas G. Berger
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- Division of Dermatology, Tawam Hospital in affiliation with Johns Hopkins Medicine, Al Ain, United Arab Emirates
| | - Hendrik Schulze-Koops
- Department of Internal Medicine III, University Hospital Erlangen, Erlangen, Germany
- Division of Rheumatology, Medizinische Poliklinik, Ludwig-Maximilians-University, Munich, Germany
| | - Michaela Schäfer
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Ester Müller
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Manfred B. Lutz
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|