1
|
Martin OA, Thomas M, Marquet M, Bruzeau C, Garot A, Brousse M, Bender S, Carrion C, Choi JE, Vuong BQ, Gearhart PJ, Maul RW, Le Noir S, Pinaud E. The IgH Eµ-MAR regions promote UNG-dependent error-prone repair to optimize somatic hypermutation. Front Immunol 2023; 14:1030813. [PMID: 36865553 PMCID: PMC9971809 DOI: 10.3389/fimmu.2023.1030813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Intoduction Two scaffold/matrix attachment regions (5'- and 3'-MARsEµ ) flank the intronic core enhancer (cEµ) within the immunoglobulin heavy chain locus (IgH). Besides their conservation in mice and humans, the physiological role of MARsEµ is still unclear and their involvement in somatic hypermutation (SHM) has never been deeply evaluated. Methods Our study analyzed SHM and its transcriptional control in a mouse model devoid of MARsEµ , further combined to relevant models deficient for base excision repair and mismatch repair. Results We observed an inverted substitution pattern in of MARsEµ -deficient animals: SHM being decreased upstream from cEµ and increased downstream of it. Strikingly, the SHM defect induced by MARsEµ -deletion was accompanied by an increase of sense transcription of the IgH V region, excluding a direct transcription-coupled effect. Interestingly, by breeding to DNA repair-deficient backgrounds, we showed that the SHM defect, observed upstream from cEµ in this model, was not due to a decrease in AID deamination but rather the consequence of a defect in base excision repair-associated unfaithful repair process. Discussion Our study pointed out an unexpected "fence" function of MARsEµ regions in limiting the error-prone repair machinery to the variable region of Ig gene loci.
Collapse
Affiliation(s)
- Ophélie A Martin
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Morgane Thomas
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Marie Marquet
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Charlotte Bruzeau
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Armand Garot
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Mylène Brousse
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Sébastien Bender
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France.,Centre Hospitalier Universitaire Dupuytren, Service d'Immunopathologie, Limoges, France
| | - Claire Carrion
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Jee Eun Choi
- The Graduate Center, The City University of New York, New York, NY, United States
| | - Bao Q Vuong
- The Graduate Center, The City University of New York, New York, NY, United States
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Sandrine Le Noir
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Eric Pinaud
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| |
Collapse
|
2
|
Hussein S, Fathi A, Abouhashem NS, Amer S, Hemeda M, Mosaad H. SATB-1 and Her2 as predictive molecular and immunohistochemical markers for urothelial cell carcinoma of the bladder. Cancer Biomark 2021; 30:249-259. [PMID: 33285627 DOI: 10.3233/cbm-200072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Studying bladder cancer molecular biology revealed the presence of genetic alterations. So, detection of molecular biomarkers that help in monitoring the disease, evaluating the prognosis of the patients, and their response to therapy is needed. In this study, we investigated the expression and the prognostic significance of SATB-1 and ERBB2 mRNA and protein by quantitative RT-PCR and immunohistochemical analysis in urothelial bladder cancer cases and the surrounding normal bladder tissue. The correlations between the expression of both markers and the clinicopathological parameters were performed with further analysis of the correlation between the expression of SATB-1 and ERBB2. Compared to control, the expression of SATB-1 and ERBB2 mRNA and protein in cancer tissues were significantly up-regulated (p< 0.05). Also, a positive correlation between both markers was found (r= 0.53, p< 0.001). Moreover, elevated levels of both markers were significantly associated with the stage, lymph node involvement at both mRNA and protein levels (p< 0.001). In conclusion, there is a clinical significance of SATB-1 and ERBB2 as potential biomarkers for predicting bladder cancer patients of aggressive behavior and poor prognosis.
Collapse
Affiliation(s)
- Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Anan Fathi
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nehal S Abouhashem
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar Amer
- Public Health and Community Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Hemeda
- Urology Department, Al-Ahrar Teaching Hospital, Zagazig, Egypt
| | - Hala Mosaad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Narwade N, Patel S, Alam A, Chattopadhyay S, Mittal S, Kulkarni A. Mapping of scaffold/matrix attachment regions in human genome: a data mining exercise. Nucleic Acids Res 2019; 47:7247-7261. [PMID: 31265077 PMCID: PMC6698742 DOI: 10.1093/nar/gkz562] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/08/2019] [Accepted: 06/27/2019] [Indexed: 11/14/2022] Open
Abstract
Scaffold/matrix attachment regions (S/MARs) are DNA elements that serve to compartmentalize the chromatin into structural and functional domains. These elements are involved in control of gene expression which governs the phenotype and also plays role in disease biology. Therefore, genome-wide understanding of these elements holds great therapeutic promise. Several attempts have been made toward identification of S/MARs in genomes of various organisms including human. However, a comprehensive genome-wide map of human S/MARs is yet not available. Toward this objective, ChIP-Seq data of 14 S/MAR binding proteins were analyzed and the binding site coordinates of these proteins were used to prepare a non-redundant S/MAR dataset of human genome. Along with co-ordinate (location) details of S/MARs, the dataset also revealed details of S/MAR features, namely, length, inter-SMAR length (the chromatin loop size), nucleotide repeats, motif abundance, chromosomal distribution and genomic context. S/MARs identified in present study and their subsequent analysis also suggests that these elements act as hotspots for integration of retroviruses. Therefore, these data will help toward better understanding of genome functioning and designing effective anti-viral therapeutics. In order to facilitate user friendly browsing and retrieval of the data obtained in present study, a web interface, MARome (http://bioinfo.net.in/MARome), has been developed.
Collapse
Affiliation(s)
- Nitin Narwade
- Bioinformatics Centre, Savitribai Phule Pune University, Pune - 411 007, Maharashtra, India
| | - Sonal Patel
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Pune - 411 007, Maharashtra, India
| | - Aftab Alam
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Pune - 411 007, Maharashtra, India
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Lab, National Centre for Cell Science, Pune - 411 007, Maharashtra, India.,Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata - 700 032, West Bengal, India
| | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune - 411 007, Maharashtra, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune - 411 007, Maharashtra, India
| |
Collapse
|
4
|
Pecorari I, Puzzi L, Sbaizero O. Atomic force microscopy and lamins: A review study towards future, combined investigations. Microsc Res Tech 2016; 80:97-108. [PMID: 27859883 DOI: 10.1002/jemt.22801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
In the last decades, atomic force microscopy (AFM) underwent a rapid and stunning development, especially for studying mechanical properties of biological samples. The numerous discoveries relying to this approach, have increased the credit of AFM as a versatile tool, and potentially eligible as a diagnostic equipment. Meanwhile, it has become strikingly evident that lamins are involved on the onset and development of certain diseases, including cancer, Hutchinson-Gilford progeria syndrome, cardiovascular pathologies, and muscular dystrophy. A new category of pathologies has been defined, the laminopathies, which are caused by mutations in the gene encoding for A-type lamins. As the majority of medical issues, lamins, and all their related aspects can be considered as a quite complex problem. Indeed, there are many facets to explore, and this definitely requires a multidisciplinary approach. One of the most intriguing aspects concerning lamins is their remarkable contribute to cells mechanics. Over the years, this has led to the speculation of the so-called "structural hypothesis", which attempts to elucidate the etiology and some features of the laminopathies. Among the various techniques tried to figure out the role of lamins in the cells mechanics, the AFM has been already successfully applied, proving its versatility. Therefore, the present work aims both to highlight the qualities of AFM and to review the most relevant knowledge about lamins, in order to promote the study of the latter, taking advantage from the former. Microsc. Res. Tech. 80:97-108, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| |
Collapse
|
5
|
Cerase A, Pintacuda G, Tattermusch A, Avner P. Xist localization and function: new insights from multiple levels. Genome Biol 2015; 16:166. [PMID: 26282267 PMCID: PMC4539689 DOI: 10.1186/s13059-015-0733-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
In female mammals, one of the two X chromosomes in each cell is transcriptionally silenced in order to achieve dosage compensation between the genders in a process called X chromosome inactivation. The master regulator of this process is the long non-coding RNA Xist. During X-inactivation, Xist accumulates in cis on the future inactive X chromosome, triggering a cascade of events that provoke the stable silencing of the entire chromosome, with relatively few genes remaining active. How Xist spreads, what are its binding sites, how it recruits silencing factors and how it induces a specific topological and nuclear organization of the chromatin all remain largely unanswered questions. Recent studies have improved our understanding of Xist localization and the proteins with which it interacts, allowing a reappraisal of ideas about Xist function. We discuss recent advances in our knowledge of Xist-mediated silencing, focusing on Xist spreading, the nuclear organization of the inactive X chromosome, recruitment of the polycomb complex and the role of the nuclear matrix in the process of X chromosome inactivation.
Collapse
Affiliation(s)
- Andrea Cerase
- EMBL Mouse Biology Unit, Monterotondo, 00015 (RM), Italy.
| | - Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Anna Tattermusch
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Philip Avner
- EMBL Mouse Biology Unit, Monterotondo, 00015 (RM), Italy. .,Institut Pasteur, Unite de Genetique Moleculaire Murine, CNRS, URA2578, Paris, France.
| |
Collapse
|
6
|
Harraghy N, Calabrese D, Fisch I, Girod PA, LeFourn V, Regamey A, Mermod N. Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol J 2015; 10:967-78. [DOI: 10.1002/biot.201400649] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
|
7
|
Barboro P, Ferrari N, Capaia M, Petretto A, Salvi S, Boccardo S, Balbi C. Expression of nuclear matrix proteins binding matrix attachment regions in prostate cancer. PARP-1: New player in tumor progression. Int J Cancer 2015; 137:1574-86. [DOI: 10.1002/ijc.29531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Barboro
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| | - Nicoletta Ferrari
- IRCCs AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Terapie Oncologiche Integrate; Genoa Italy
| | - Matteo Capaia
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| | - Andrea Petretto
- Laboratorio di Spettrometria di Massa, Core Facility, Istituto Giannina Gaslini; Genoa Italy
| | - Sandra Salvi
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| | - Simona Boccardo
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| | - Cecilia Balbi
- IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Dipartimento Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica; Genoa Italy
| |
Collapse
|
8
|
Tai PWL, Zaidi SK, Wu H, Grandy RA, Montecino MM, van Wijnen AJ, Lian JB, Stein GS, Stein JL. The dynamic architectural and epigenetic nuclear landscape: developing the genomic almanac of biology and disease. J Cell Physiol 2014; 229:711-27. [PMID: 24242872 PMCID: PMC3996806 DOI: 10.1002/jcp.24508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Sayyed K. Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Hai Wu
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Rodrigo A. Grandy
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Martin M. Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
9
|
Barboro P, Borzì L, Repaci E, Ferrari N, Balbi C. Androgen receptor activity is affected by both nuclear matrix localization and the phosphorylation status of the heterogeneous nuclear ribonucleoprotein K in anti-androgen-treated LNCaP cells. PLoS One 2013; 8:e79212. [PMID: 24236111 PMCID: PMC3827347 DOI: 10.1371/journal.pone.0079212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) plays a central role in the development and progression of prostate cancer (PCa) and anti-androgen therapy is a standard treatment. Unfortunately, after a few years, the majority of patients progress, developing androgen-independent PCa. AR-driven gene transcription recruits a large number of co-activator/co-repressor complexes; among these, the heterogeneous nuclear ribonucleoprotein K (hnRNP K) directly interacts with and regulates the AR translational apparatus. Here we examined AR and hnRNP K expression in response to the treatment of LNCaP cells with anti-androgen cyproterone acetate (CPA) or bicalutamide (BIC). AR and hnRNP K modulation and compartmentalization were studied by Western blot and confocal microscopy. Phosphate-affinity gel electrophoresis was employed to examine how anti-androgens modified hnRNP K phosphorylation. 10(-6) M CPA significantly stimulated LNCaP proliferation, whereas for 10(-4) M CPA or 10(-5) M BIC an antagonistic effect was observed. After anti-androgen treatment, AR expression was remarkably down-regulated within both the cytoplasm and the nucleus; however, when CPA had an agonist activity, the AR associated with the nuclear matrix (NM) increased approximately 2.5 times. This increase was synchronous with a higher PSA expression, indicating that the NM-associated AR represents the active complex. After BIC treatment, hnRNP K expression was significantly lower in the NM, the protein was hypophosphorylated and the co-localization of AR and hnRNP K decreased. In contrast, CPA as an agonist caused hnRNP K hyperphosphorylation and an increase in the co-localization of two proteins. These findings demonstrate that, in vitro, there is a strong relationship between NM-associated AR and both cell viability and PSA levels, indicating that AR transcriptional activity is critically dependent on its subnuclear localization. Moreover, the agonistic/antagonistic activity of anti-androgens is associated with modifications in hnRNP K phosphorylation, indicating an involvement of this protein in the AR transcriptional activity and likely in the onset of the androgen-independent phenotype.
Collapse
Affiliation(s)
- Paola Barboro
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Luana Borzì
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Erica Repaci
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Cecilia Balbi
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
- * E-mail:
| |
Collapse
|
10
|
Doetsch M, Gluch A, Poznanović G, Bode J, Vidaković M. YY1-binding sites provide central switch functions in the PARP-1 gene expression network. PLoS One 2012; 7:e44125. [PMID: 22937159 PMCID: PMC3429435 DOI: 10.1371/journal.pone.0044125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
Evidence is presented for the involvement of the interplay between transcription factor Yin Yang 1 (YY1) and poly(ADP-ribose) polymerase-1 (PARP-1) in the regulation of mouse PARP-1 gene (muPARP-1) promoter activity. We identified potential YY1 binding motifs (BM) at seven positions in the muPARP-1 core-promoter (-574/+200). Binding of YY1 was observed by the electrophoretic supershift assay using anti-YY1 antibody and linearized or supercoiled forms of plasmids bearing the core promoter, as well as with 30 bp oligonucleotide probes containing the individual YY1 binding motifs and four muPARP-1 promoter fragments. We detected YY1 binding to BM1 (-587/-558), BM4 (-348/-319) and a very prominent association with BM7 (+86/+115). Inspection of BM7 reveals overlap of the muPARP-1 translation start site with the Kozak sequence and YY1 and PARP-1 recognition sites. Site-directed mutagenesis of the YY1 and PARP-1 core motifs eliminated protein binding and showed that YY1 mediates PARP-1 binding next to the Kozak sequence. Transfection experiments with a reporter gene under the control of the muPARP-1 promoter revealed that YY1 binding to BM1 and BM4 independently repressed the promoter. Mutations at these sites prevented YY1 binding, allowing for increased reporter gene activity. In PARP-1 knockout cells subjected to PARP-1 overexpression, effects similar to YY1 became apparent; over expression of YY1 and PARP-1 revealed their synergistic action. Together with our previous findings these results expand the PARP-1 autoregulatory loop principle by YY1 actions, implying rigid limitation of muPARP-1 expression. The joint actions of PARP-1 and YY1 emerge as important contributions to cell homeostasis.
Collapse
Affiliation(s)
- Martina Doetsch
- Helmholtz Centre for Infection Research/Epigenetic Regulation, Braunschweig, Germany
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Angela Gluch
- Helmholtz Centre for Infection Research/Epigenetic Regulation, Braunschweig, Germany
- BIOBASE GmbH, Wolfenbuettel, Germany
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Juergen Bode
- Helmholtz Centre for Infection Research/Epigenetic Regulation, Braunschweig, Germany
- Hannover Medical School (MHH), Experimental Hematology, Hannover, Germany
| | - Melita Vidaković
- Helmholtz Centre for Infection Research/Epigenetic Regulation, Braunschweig, Germany
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Barboro P, Repaci E, D’Arrigo C, Balbi C. The role of nuclear matrix proteins binding to matrix attachment regions (Mars) in prostate cancer cell differentiation. PLoS One 2012; 7:e40617. [PMID: 22808207 PMCID: PMC3394767 DOI: 10.1371/journal.pone.0040617] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/11/2012] [Indexed: 11/19/2022] Open
Abstract
In tumor progression definite alterations in nuclear matrix (NM) protein composition as well as in chromatin structure occur. The NM interacts with chromatin via specialized DNA sequences called matrix attachment regions (MARs). In the present study, using a proteomic approach along with a two-dimensional Southwestern assay and confocal laser microscopy, we show that the differentiation of stabilized human prostate carcinoma cells is marked out by modifications both NM protein composition and bond between NM proteins and MARs. Well-differentiated androgen-responsive and slowly growing LNCaP cells are characterized by a less complex pattern and by a major number of proteins binding MAR sequences in comparison to 22Rv1 cells expressing androgen receptor but androgen-independent. Finally, in the poorly differentiated and strongly aggressive androgen-independent PC3 cells the complexity of NM pattern further increases and a minor number of proteins bind the MARs. Furthermore, in this cell line with respect to LNCaP cells, these changes are synchronous with modifications in both the nuclear distribution of the MAR sequences and in the average loop dimensions that significantly increase. Although the expression of many NM proteins changes during dedifferentiation, only a very limited group of MAR-binding proteins seem to play a key role in this process. Variations in the expression of poly (ADP-ribose) polymerase (PARP) and special AT-rich sequence-binding protein-1 (SATB1) along with an increase in the phosphorylation of lamin B represent changes that might trigger passage towards a more aggressive phenotype. These results suggest that elucidating the MAR-binding proteins that are involved in the differentiation of prostate cancer cells could be an important tool to improve our understanding of this carcinogenesis process, and they could also be novel targets for prostate cancer therapy.
Collapse
Affiliation(s)
- Paola Barboro
- IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Department of Diagnostic Technologies, Genoa, Italy
| | - Erica Repaci
- IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Department of Diagnostic Technologies, Genoa, Italy
| | - Cristina D’Arrigo
- C.N.R., Istituto per lo Studio delle Macromolecole, ISMAC, Sezione di Genova, Genoa, Italy
| | - Cecilia Balbi
- IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Department of Diagnostic Technologies, Genoa, Italy
- * E-mail:
| |
Collapse
|
12
|
Zaalishvili G, Zaldastanishvili E, Karapetian M, Zaalishvili T. Increased PARP-1 levels in nuclear matrix isolated from heat shock treated rat liver. BIOCHEMISTRY (MOSCOW) 2012; 77:105-10. [PMID: 22339640 DOI: 10.1134/s0006297912010130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), a chromatin-associated enzyme that catalyzes the NAD+-dependent addition of ADP-ribose polymers onto a variety of nuclear proteins, has been shown to be associated with the nuclear matrix. PARP-1 levels in the nuclear matrix vary depending on the matrix isolation method used. The nuclear matrix appears to be the most thermosensitive nuclear structure during heat shock. Here we provide evidence for the extensive translocation of PARP-1 from chromatin to the nuclear matrix during heat shock. This translocation is accompanied by inhibition of PARP activity in the nucleus and elevation of PARP activity in the nuclear matrix. Our data suggest that thermal destabilization of the nuclear matrix is less likely to contribute to the translocation of PARP-1 to the nuclear matrix.
Collapse
Affiliation(s)
- G Zaalishvili
- Department of Genome Structure and Function, Life Sciences Research Center, Tbilisi, Georgia.
| | | | | | | |
Collapse
|
13
|
Sjeklocha L, Chen Y, Daly MC, Steer CJ, Kren BT. β-globin matrix attachment region improves stable genomic expression of the Sleeping Beauty transposon. J Cell Biochem 2011; 112:2361-2375. [PMID: 21520245 DOI: 10.1002/jcb.23159] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The liver is an attractive target for gene therapy due to its extensive capability for protein production and the numerous diseases resulting from a loss of gene function it normally provides. The Sleeping Beauty Transposon (SB-Tn)(1) system is a non-viral vector capable of delivering and mediating therapeutic transgene(s) insertion into the host genome for long-term expression. A current challenge for this system is the low efficiency of integration of the transgene. In this study we use a human hepatoma cell line (HuH-7) and primary human blood outgrowth endothelial cells (BOECs) to test vectors containing DNA elements to enhance transposition without integrating themselves. We employed the human β-globin matrix attachment region (MAR) and the Simian virus 40 (SV40) nuclear translocation signal to increase the percent of HuH-7 cells persistently expressing a GFP::Zeo reporter construct by ∼50% for each element; while combining both did not show an additive effect. Interestingly, both elements together displayed an additive effect on the number of insertion sites, and in BOECs the SV40 alone appeared to have an inhibitory effect on transposition. In long-term cultures the loss of plasmid DNA, transposase expression and mapping of insertion sites demonstrated bona fide transposition without episomal expression. These results show that addition of the β-globin MAR and potentially other elements to the backbone of SB-Tn system can enhance transposition and expression of therapeutic transgenes. These findings may have a significant influence on the use of SB transgene delivery to liver for the treatment of a wide variety of disorders.
Collapse
Affiliation(s)
- Lucas Sjeklocha
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, 55455
| | - Yixin Chen
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, 55455
| | - Meghan C Daly
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, 55455
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, 55455.,Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, 55455
| | - Betsy T Kren
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, 55455
| |
Collapse
|
14
|
Keaton MA, Taylor CM, Layer RM, Dutta A. Nuclear scaffold attachment sites within ENCODE regions associate with actively transcribed genes. PLoS One 2011; 6:e17912. [PMID: 21423757 PMCID: PMC3056778 DOI: 10.1371/journal.pone.0017912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 02/14/2011] [Indexed: 01/30/2023] Open
Abstract
The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment sites purified by lithium-3,5-iodosalicylate extraction of HeLa nuclei across 30 Mb of the human genome studied by the ENCODE pilot project. The scaffold attachment sites mapped predominately near expressed genes and localized near transcription start sites and the ends of genes but not to boundary elements. In addition, these regions were enriched for RNA polymerase II and transcription factor binding sites and were located in early replicating regions of the genome. We believe these sites correspond to genome-interactions mediated by transcription factors and transcriptional machinery immobilized on a nuclear substructure.
Collapse
Affiliation(s)
- Mignon A. Keaton
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Christopher M. Taylor
- Department of Computer Science, University of New Orleans, New Orleans, Louisiana, United States of America
| | - Ryan M. Layer
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
15
|
Garee JP, Oesterreich S. SAFB1's multiple functions in biological control-lots still to be done! J Cell Biochem 2010; 109:312-9. [PMID: 20014070 DOI: 10.1002/jcb.22420] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The examination of scaffold attachment factor B1 (SAFB1) and its multiple functions and tasks in cellular processes provides insight into its role in diseases, such as cancer. SAFB1 is a large multi-domain protein with well-described functions in transcriptional repression, and RNA splicing. It is ubiquitously expressed, and has been shown to be important in numerous cellular processes including cell growth, stress response, and apoptosis. SAFB1 is part of a protein family with at least two other family members, SAFB2 and the SAFB-like transcriptional modulator SLTM. The goal of this prospect article is to summarize known functions of SAFB1, and its roles in cellular processes, but also to speculate on less well described, novel attributes of SAFB1, such as a potential role in chromatin organization. This timely review shows aspects of SAFB1, which are proving to have a complexity far greater than was previously thought.
Collapse
Affiliation(s)
- Jason P Garee
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
16
|
Vidaković M, Gluch A, Qiao J, Oumard A, Frisch M, Poznanović G, Bode J. PARP-1 expression in the mouse is controlled by an autoregulatory loop: PARP-1 binding to an upstream S/MAR element and to a novel recognition motif in its promoter suppresses transcription. J Mol Biol 2009; 388:730-50. [PMID: 19303024 DOI: 10.1016/j.jmb.2009.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/26/2009] [Accepted: 03/09/2009] [Indexed: 11/16/2022]
Abstract
This work identifies central components of a feedback mechanism for the expression of mouse poly(ADP-ribose) polymerase-1 (PARP-1). Using the stress-induced duplex destabilization algorithm, multiple base-unpairing regions (BURs) could be localized in the 5' region of the mouse PARP-1 gene (muPARP-1). Some of these could be identified as scaffold/matrix-attachment regions (S/MARs), suggesting an S/MAR-mediated transcriptional regulation. PARP-1 binding to the most proximal element, S/MAR 1, and to three consensus motifs, AGGCC, in its own promoter (basepairs -956 to +100), could be traced by electrophoretic mobility-shift assay. The AGGCC-complementary GGCCT motif was detected by cis-diammine-dichloro platinum cross-linking and functionally characterized by the effects of site-directed mutagenesis on its performance in wild type (PARP-1(+/+)) and PARP-1 knockout cells (PARP-1(-/-)). Mutation of the central AGGCC tract at basepairs -554 to -550 prevented PARP-1/promoter interactions, whereby muPARP-1 expression became up-regulated. Transfection of a series of reporter gene constructs with or without S/MAR 1 (basepairs -1523 to -1007) and the more distant S/MAR 2 (basepairs -8373 to -6880), into PARP-1(+/+) as well as PARP-1(-/-) cells, revealed an additional, major level of muPARP-1 promoter down-regulation, triggered by PARP-1 binding to S/MAR 1. We conclude that S/MAR 1 represents an upstream control element that acts in conjunction with the muPARP-1 promoter. These interactions are part of a negative autoregulatory loop.
Collapse
Affiliation(s)
- Melita Vidaković
- Helmholtz Centre for Infection Research, Epigenetic Regulation, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Brázdová M, Quante T, Tögel L, Walter K, Loscher C, Tichý V, Cincárová L, Deppert W, Tolstonog GV. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences. Nucleic Acids Res 2009; 37:1486-500. [PMID: 19139068 PMCID: PMC2655687 DOI: 10.1093/nar/gkn1085] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Missense point mutations in the TP53 gene are frequent genetic alterations in human tumor tissue and cell lines derived thereof. Mutant p53 (mutp53) proteins have lost sequence-specific DNA binding, but have retained the ability to interact in a structure-selective manner with non-B DNA and to act as regulators of transcription. To identify functional binding sites of mutp53, we established a small library of genomic sequences bound by p53R273H in U251 human glioblastoma cells using chromatin immunoprecipitation (ChIP). Mutp53 binding to isolated DNA fragments confirmed the specificity of the ChIP. The mutp53 bound DNA sequences are rich in repetitive DNA elements, which are dispersed over non-coding DNA regions. Stable down-regulation of mutp53 expression strongly suggested that mutp53 binding to genomic DNA is functional. We identified the PPARGC1A and FRMD5 genes as p53R273H targets regulated by binding to intronic and intra-genic sequences. We propose a model that attributes the oncogenic functions of mutp53 to its ability to interact with intronic and intergenic non-B DNA sequences and modulate gene transcription via re-organization of chromatin.
Collapse
Affiliation(s)
- Marie Brázdová
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, D-20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dechat T, Adam SA, Goldman RD. Nuclear lamins and chromatin: when structure meets function. ADVANCES IN ENZYME REGULATION 2008; 49:157-66. [PMID: 19154754 PMCID: PMC3253622 DOI: 10.1016/j.advenzreg.2008.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Thomas Dechat
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| | - Stephen A. Adam
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| |
Collapse
|