1
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
2
|
Becker D, Hirsch AG, Bender L, Lingner T, Salinas G, Krebber H. Nuclear Pre-snRNA Export Is an Essential Quality Assurance Mechanism for Functional Spliceosomes. Cell Rep 2019; 27:3199-3214.e3. [PMID: 31189105 DOI: 10.1016/j.celrep.2019.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
Removal of introns from pre-mRNAs is an essential step in eukaryotic gene expression, mediated by spliceosomes that contain snRNAs as key components. Although snRNAs are transcribed in the nucleus and function in the same compartment, all except U6 shuttle to the cytoplasm. Surprisingly, the physiological relevance for shuttling is unclear, in particular because the snRNAs in Saccharomyces cerevisiae were reported to remain nuclear. Here, we show that all yeast pre-snRNAs including U6 undergo a stepwise maturation process after nuclear export by Mex67 and Xpo1. Sm- and Lsm-ring attachment occurs in the cytoplasm and is important for the snRNA re-import, mediated by Cse1 and Mtr10. Finally, nuclear pre-snRNA cleavage and trimethylation of the 5'-cap finalizes shuttling. Importantly, preventing pre-snRNAs from being exported or processed results in faulty spliceosome assembly and subsequent genome-wide splicing defects. Thus, pre-snRNA export is obligatory for functional splicing and resembles an essential evolutionarily conserved quality assurance step.
Collapse
Affiliation(s)
- Daniel Becker
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Lysann Bender
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Kakihara Y, Makhnevych T, Zhao L, Tang W, Houry WA. Nutritional status modulates box C/D snoRNP biogenesis by regulated subcellular relocalization of the R2TP complex. Genome Biol 2014; 15:404. [PMID: 25060708 PMCID: PMC4165372 DOI: 10.1186/s13059-014-0404-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Box C/D snoRNPs, which are typically composed of box C/D snoRNA and the four core protein components Nop1, Nop56, Nop58, and Snu13, play an essential role in the modification and processing of pre-ribosomal RNA. The highly conserved R2TP complex, comprising the proteins Rvb1, Rvb2, Tah1, and Pih1, has been shown to be required for box C/D snoRNP biogenesis and assembly; however, the molecular basis of R2TP chaperone-like activity is not yet known. RESULTS Here, we describe an unexpected finding in which the activity of the R2TP complex is required for Nop58 protein stability and is controlled by the dynamic subcellular redistribution of the complex in response to growth conditions and nutrient availability. In growing cells, the complex localizes to the nucleus and interacts with box C/D snoRNPs. This interaction is significantly reduced in poorly growing cells as R2TP predominantly relocalizes to the cytoplasm. The R2TP-snoRNP interaction is mainly mediated by Pih1. CONCLUSIONS The R2TP complex exerts a novel regulation on box C/D snoRNP biogenesis that affects their assembly and consequently pre-rRNA maturation in response to different growth conditions.
Collapse
|
4
|
Moser JJ, Fritzler MJ. Relationship of other cytoplasmic ribonucleoprotein bodies (cRNPB) to GW/P bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:213-42. [PMID: 23224973 DOI: 10.1007/978-1-4614-5107-5_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GW/P body components are involved in the post-transcriptional -processing of messenger RNA (mRNA) through the RNA interference and 5' → 3' mRNA degradation pathways, as well as functioning in mRNA transport and stabilization. It is currently thought that the relevant mRNA silencing and degrading factors are partitioned to these cytoplasmic microdomains thus effecting post-transcriptional regulation and the prevention of accidental degradation of functional mRNA. Although much attention has focused on GW/P bodies, a variety of other cytoplasmic RNP bodies (cRNPB) also have highly specialized functions and have been shown to interact or co-localize with components of GW/P bodies. These cRNPB include neuronal transport RNP granules, stress granules, RNP-rich cytoplasmic germline granules or chromatoid bodies, sponge bodies, cytoplasmic prion protein-induced RNP granules, U bodies and TAM bodies. Of clinical relevance, autoantibodies directed against protein and miRNA components of GW/P bodies have been associated with autoimmune diseases, neurological diseases and cancer. Understanding the molecular function of GW/P bodies and their interactions with other cRNPB may provide clues to the etiology or pathogenesis of diseases associated with autoantibodies directed to these structures. This chapter will focus on the similarities and differences of the various cRNPB as an approach to understanding their functional relationships to GW/P bodies.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | |
Collapse
|
5
|
Verheggen C, Bertrand E. CRM1 plays a nuclear role in transporting snoRNPs to nucleoli in higher eukaryotes. Nucleus 2012; 3:132-7. [PMID: 22555597 PMCID: PMC3383567 DOI: 10.4161/nucl.19266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Here, we review the sn- and sno-RNA transport pathways in S. cerevisiae and humans, aiming at understanding how they evolved and how common factors can have distinct functions depending on the RNA they bind. We give a particular emphasis on Tgs1, the cap hypermethylase that is conserved from yeast to humans and appears to play a central role in both sn- and sno-RNA biogenesis. In yeast, Tgs1 hypermethylates sn- and sno-RNAs in the nucleolus. In humans, Tgs1 occurs in two forms: a long isoform (Tgs1 LF), which locates in the cytoplasm and Cajal bodies, which is predominantly associated with snRNAs and a short isoform (Tgs1 SF), which is nuclear and mainly associates with snoRNAs. We show that Tgs1 LF is exported by CRM1 and that interaction with CRM1 competes for binding with the C-terminal domain of the core protein Nop58, which contains the Nucleolar localization signal of Box C/D snoRNPs (NoLS). Our data suggest a model where CRM1 removes Tgs1 LF from snoRNPs, thereby promoting nucleolar targeting via activation of their NoLS. In this review, we argue that CRM1, while first described as an export receptor, can also control the composition of nucleoplasmic complexes. Thus, it could coordinate the fate of these complexes with the general nucleo-cytoplasmic trafficking.
Collapse
Affiliation(s)
- Celine Verheggen
- Institut de Génétique Moléculaire de Montpellier; Université Montpellier I and II; Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier; Université Montpellier I and II; Montpellier, France
| |
Collapse
|
6
|
Boulon S, Bertrand E, Pradet-Balade B. HSP90 and the R2TP co-chaperone complex: building multi-protein machineries essential for cell growth and gene expression. RNA Biol 2012; 9:148-54. [PMID: 22418846 DOI: 10.4161/rna.18494] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
HSP90 (Heat Shock Protein 90) is an essential chaperone involved in the last folding steps of client proteins. It has many clients, and these are often recognized through specific adaptors. Recently, the conserved R2TP complex was identified as a key HSP90 co-chaperone. Current evidences indicate that the HSP90/R2TP system assembles multi-molecular protein complexes. Strikingly, these comprise basic machineries of gene expression: (1) nuclear RNA polymerases; (2) the snoRNPs, essential to produce ribosomes; and (3) mTOR Complex 1 and 2, which control translational activity and cell growth. Another important substrate is the telomerase RNP, required for continuous cell proliferation. We discuss here the assembly of RNA polymerases in bacteria and eukaryotes, the role of HSP90/R2TP in this process and in the assembly of snoRNPs and the PIKK family of TORC1 kinase. Finally, we speculate on the roles of R2TP as a master regulator of cell growth under normal or pathological conditions.
Collapse
Affiliation(s)
- Séverine Boulon
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, Université Montpellier; Montpellier, France
| | | | | |
Collapse
|
7
|
Targeted pre-mRNA modification for gene silencing and regulation. Nat Methods 2007; 5:95-100. [PMID: 18066073 DOI: 10.1038/nmeth1142] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/14/2007] [Indexed: 11/08/2022]
Abstract
Most eukaryotic box C/D small nucleolar (sno) or Cajal body-specific RNAs guide base pairing with target RNAs and direct site-specific 2'-O-methylation. We designed an artificial C/D RNA to target the branch point adenosine of ACT1 pre-mRNA to block its splicing. Saccharomyces cerevisiae expressing this guide RNA gene controlled by a GAL1 promoter grew normally on dextrose but not on galactose medium. The pre-mRNA was specifically 2'-O-methylated, prohibiting maturation of ACT1 mRNA. Targeting other adenosines in this region while maintaining almost identical complementarity did not affect ACT1 mRNA level or cell growth, suggesting that targeting the branch-point adenosine was truly 2'-O-methylation-specific rather than an antisense effect; moreover, only the 3'-most branch site adenosine served as the branch point. We targeted other essential intron-containing genes, and observed a similar phenotype. We demonstrated that a Box C/D RNA can guide modification at the pre-mRNA branch point, thus silencing its expression and inducing cell death.
Collapse
|
8
|
Girard C, Verheggen C, Neel H, Cammas A, Vagner S, Soret J, Bertrand E, Bordonné R. Characterization of a short isoform of human Tgs1 hypermethylase associating with small nucleolar ribonucleoprotein core proteins and produced by limited proteolytic processing. J Biol Chem 2007; 283:2060-9. [PMID: 18039666 DOI: 10.1074/jbc.m704209200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tgs1 is the hypermethylase responsible for m(3)G cap formation of U small nuclear RNAs (U snRNAs) and small nucleolar RNAs (snoRNAs). In vertebrates, hypermethylation of snRNAs occurs in the cytoplasm, whereas this process takes place in the nucleus for snoRNAs. Accordingly, the hypermethylase is found in both compartments with a diffuse localization in the cytoplasm and a concentration in Cajal bodies in the nucleoplasm. In this study, we report that the Tgs1 hypermethylase exists as two species, a full-length cytoplasmic isoform and a shorter nuclear isoform of 65-70 kDa. The short isoform exhibits methyltransferase activity and associates with components of box C/D and H/ACA snoRNPs, pointing to a role of this isoform in hypermethylation of snoRNAs. We also show that production of the short Tgs1 isoform is inhibited by MG132, suggesting that it results from proteasomal limited processing of the full-length Tgs1 protein. Together, our results suggest that proteasome maturation constitutes a mechanism regulating Tgs1 function by generating Tgs1 species with different substrate specificities, subcellular localizations, and functions.
Collapse
Affiliation(s)
- Cyrille Girard
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, IFR 122, CNRS et Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nat Struct Mol Biol 2007; 14:1077-83. [PMID: 17934474 DOI: 10.1038/nsmb1303] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 08/28/2007] [Indexed: 12/12/2022]
Abstract
Prp8 protein (Prp8p) is a highly conserved pre-mRNA splicing factor and a component of spliceosomal U5 small nuclear ribonucleoproteins (snRNPs). Although it is ubiquitously expressed, mutations in the C terminus of human Prp8p cause the retina-specific disease retinitis pigmentosa (RP). The biogenesis of U5 snRNPs is poorly characterized. We present evidence for a cytoplasmic precursor U5 snRNP in yeast that lacks the mature U5 snRNP component Brr2p and depends on a nuclear localization signal in Prp8p for its efficient nuclear import. The association of Brr2p with the U5 snRNP occurs within the nucleus. RP mutations in Prp8p in yeast result in nuclear accumulation of the precursor U5 snRNP, apparently as a consequence of disrupting the interaction of Prp8p with Brr2p. We therefore propose a novel assembly pathway for U5 snRNP complexes that is disrupted by mutations that cause human RP.
Collapse
|
10
|
A stochastic view of spliceosome assembly and recycling in the nucleus. PLoS Comput Biol 2007; 3:2019-31. [PMID: 17967051 PMCID: PMC2041977 DOI: 10.1371/journal.pcbi.0030201] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/04/2007] [Indexed: 12/16/2022] Open
Abstract
How splicing factors are recruited to nascent transcripts in the nucleus in order to assemble spliceosomes on newly synthesised pre-mRNAs is unknown. To address this question, we compared the intranuclear trafficking kinetics of small nuclear ribonucleoprotein particles (snRNP) and non-snRNP proteins in the presence and absence of splicing activity. Photobleaching experiments clearly show that spliceosomal proteins move continuously throughout the entire nucleus independently of ongoing transcription or splicing. Using quantitative experimental data, a mathematical model was applied for spliceosome assembly and recycling in the nucleus. The model assumes that splicing proteins move by Brownian diffusion and interact stochastically with binding sites located at different subnuclear compartments. Inhibition of splicing, which reduces the number of pre-mRNA binding sites available for spliceosome assembly, was modeled as a decrease in the on-rate binding constant in the nucleoplasm. Simulation of microscopy experiments before and after splicing inhibition yielded results consistent with the experimental observations. Taken together, our data argue against the view that spliceosomal components are stored in nuclear speckles until a signal triggers their recruitment to nascent transcripts. Rather, the results suggest that splicing proteins are constantly diffusing throughout the entire nucleus and collide randomly and transiently with pre-mRNAs. Understanding the genomic program of an organism requires knowledge of how the information encoded in DNA is processed to generate messenger RNAs that can be translated into proteins. The initial products of gene transcription are extensively modified in the cell nucleus, and a major processing reaction consists of splicing of specific sequences from the middle of the primary transcripts. Splicing is catalyzed by the spliceosome, a large complex composed of five small RNAs and over 100 different proteins. Spliceosomes form anew on primary transcripts and disassemble after splicing, but what triggers the recruitment of individual spliceosomal components to selected gene products is unclear. Here, we have combined imaging and computational approaches to address this question. We obtained quantitative experimental data on the mobility and subnuclear distribution of splicing proteins before and after splicing inhibition, and we applied mathematical models to analyze and interpret the results. We conclude that spliceosomal components do not require a signal in order to be recruited to nascent transcripts. Our results favor the view that splicing proteins are constantly diffusing throughout the entire nucleus and collide randomly and transiently with primary gene products.
Collapse
|
11
|
Liu JL, Gall JG. U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci U S A 2007; 104:11655-9. [PMID: 17595295 PMCID: PMC1899408 DOI: 10.1073/pnas.0704977104] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are involved in key steps of pre-mRNA processing in the nucleus of eukaryotic cells. U snRNPs are enriched in the nucleus in discrete organelles that include speckles, Cajal bodies, and histone locus bodies. However, most U snRNPs are assembled in the cytoplasm, not in the nucleus. Despite extensive biochemical information, little is known about the spatial organization of U snRNPs in the cytoplasm. Here we show that U snRNPs in Drosophila are concentrated in discrete cytoplasmic structures, which we call U bodies, because they contain the major U snRNPs. In addition to snRNPs, U bodies contain essential snRNP assembly factors, suggesting that U bodies are sites for assembly or storage of snRNPs before their import into the nucleus. U bodies invariably associate with P bodies, which are involved in RNA surveillance and decay. Genetic disruption of P body components affects the organization of U bodies, suggesting that the two cytoplasmic bodies may cooperate in regulating aspects of snRNP metabolism. The identification of U bodies provides an opportunity to correlate specific biochemical steps of snRNP biogenesis with structural features of the cytoplasm.
Collapse
Affiliation(s)
- Ji-Long Liu
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218
| | - Joseph G. Gall
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Spiller MP, Boon KL, Reijns MAM, Beggs JD. The Lsm2-8 complex determines nuclear localization of the spliceosomal U6 snRNA. Nucleic Acids Res 2007; 35:923-9. [PMID: 17251193 PMCID: PMC1807951 DOI: 10.1093/nar/gkl1130] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lsm proteins are ubiquitous, multifunctional proteins that are involved in the processing and/or turnover of many, if not all, RNAs in eukaryotes. They generally interact only transiently with their substrate RNAs, in keeping with their likely roles as RNA chaperones. The spliceosomal U6 snRNA is an exception, being stably associated with the Lsm2-8 complex. The U6 snRNA is generally considered to be intrinsically nuclear but the mechanism of its nuclear retention has not been demonstrated, although La protein has been implicated. We show here that the complete Lsm2-8 complex is required for nuclear accumulation of U6 snRNA in yeast. Therefore, just as Sm proteins effect nuclear localization of the other spliceosomal snRNPs, the Lsm proteins mediate U6 snRNP localization except that nuclear retention is the likely mechanism for the U6 snRNP. La protein, which binds only transiently to the nascent U6 transcript, has a smaller, apparently indirect, effect on U6 localization that is compatible with its proposed role as a chaperone in facilitating U6 snRNP assembly.
Collapse
Affiliation(s)
- Michael P. Spiller
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Present address: Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Present address: Center for Molecular Neurobiology, The Ohio State University, 190 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Kum-Loong Boon
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Present address: Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Present address: Center for Molecular Neurobiology, The Ohio State University, 190 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | - Jean D. Beggs
- *To whom correspondence should be addressed. Tel: +44 131 650 5351; Fax: +44 131 650 8650;
| |
Collapse
|
13
|
Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, Bordonné R, Lührmann R. Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell 2006; 17:3221-31. [PMID: 16687569 PMCID: PMC1483051 DOI: 10.1091/mbc.e06-03-0247] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.
Collapse
Affiliation(s)
- Ira Lemm
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Cyrille Girard
- Institut de Génétique Moléculaire, UMR5535 CNRS, Montpellier, France; and
| | - Andreas N. Kuhn
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Nicholas J. Watkins
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Marc Schneider
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Rémy Bordonné
- Institut de Génétique Moléculaire, UMR5535 CNRS, Montpellier, France; and
| | - Reinhard Lührmann
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|