1
|
Santorini M, Chesneau B, Koskas-Boublil P, Metge F, Caputo G, Chassaing N, Martin G, Plaisancié J. First implication of MIP in bilateral microphthalmia with persistent fetal vasculature. Am J Med Genet A 2023; 191:1373-1377. [PMID: 36734406 DOI: 10.1002/ajmg.a.63133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
Persistent fetal vasculature (PFV) is a rare malformative ocular disorder resulting from the failure of the hyaloid vasculature to regress. The severity of the visual impairment is depending on the underlying eye defects, ranging from discreet hyaloid remnants to severe ocular anomalies. Although PFV is generally unilateral, sporadic and idiopathic, a genetic cause has been described in some individuals, especially those presenting with a bilateral and/or syndromic form of PFV. The genes occasionally described in PFV are most often responsible for a wide spectrum of ocular phenotypes such as ATOH7 or NDP, a gene also known to be involved in Norrie disease, a X-linked vitreoretinopathy with extra-ocular features. We describe here a patient with an ocular phenotype consisting in non-syndromic bilateral PFV with cataract and microphthalmia, in whom a recurrent heterozygous de novo MIP disease-causing variant was detected after using a dedicated 119-ocular genes panel approach. Defects in the MIP gene are classically associated with dominant non-syndromic congenital cataract without other ocular malformative features. Thus, this case highlights the value of exploring individuals with PFV, even those with non-syndromic forms. It also broadens the phenotypic spectrum of the MIP gene, adding new insights into the gene networks underlying PFV pathophysiology, that remains unclear.
Collapse
Affiliation(s)
- Mélissa Santorini
- Ophthalmology Department, Rothschild Foundation Hospital, Paris, France.,Ophthalmology Department, Robert Debré University Hospital, Reims, France
| | - Bertrand Chesneau
- Department of Medical Genetics, Purpan University Hospital, Toulouse, France.,National Reference Centre for the Rare Ophthalmological Disorders (CARGO), Toulouse University Hospital, Toulouse, France
| | | | - Florence Metge
- Ophthalmology Department, Rothschild Foundation Hospital, Paris, France
| | - Georges Caputo
- Ophthalmology Department, Rothschild Foundation Hospital, Paris, France
| | - Nicolas Chassaing
- Department of Medical Genetics, Purpan University Hospital, Toulouse, France.,National Reference Centre for the Rare Ophthalmological Disorders (CARGO), Toulouse University Hospital, Toulouse, France
| | - Gilles Martin
- Ophthalmology Department, Rothschild Foundation Hospital, Paris, France
| | - Julie Plaisancié
- Department of Medical Genetics, Purpan University Hospital, Toulouse, France.,National Reference Centre for the Rare Ophthalmological Disorders (CARGO), Toulouse University Hospital, Toulouse, France.,Inserm 1214 ToNIC, Purpan University Hospital, Toulouse, France
| |
Collapse
|
2
|
Aquaporins Display a Diversity in their Substrates. J Membr Biol 2023; 256:1-23. [PMID: 35986775 DOI: 10.1007/s00232-022-00257-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Aquaporins constitute a family of transmembrane proteins that function to transport water and other small solutes across the cell membrane. Aquaporins family members are found in diverse life forms. Aquaporins share the common structural fold consisting of six transmembrane alpha helices with a central water-transporting channel. Four such monomers assemble together to form tetramers as their biological unit. Initially, aquaporins were discovered as water-transporting channels, but several studies supported their involvement in mediating the facilitated diffusion of different solutes. The so-called water channel is able to transport a variety of substrates ranging from a neutral molecule to a charged molecule or a small molecule to a bulky molecule or even a gas molecule. This article gives an overview of a diverse range of substrates conducted by aquaporin family members. Prime focus is on human aquaporins where aquaporins show a wide tissue distribution and substrate specificity leading to various physiological functions. This review also highlights the structural mechanisms leading to the transport of water and glycerol. More research is needed to understand how one common fold enables the aquaporins to transport an array of solutes.
Collapse
|
3
|
Tran TL, Hamann S, Heegaard S. Aquaporins in Eye. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:203-209. [PMID: 36717496 DOI: 10.1007/978-981-19-7415-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The major part of the eye consists of water. Continuous movement of water and ions between the ocular compartments and to the systemic circulation is pivotal for many physiological functions in the eye. The movement of water facilitates removal of the many metabolic products of corneal-, ciliary body-, lens-, and retinal metabolism, while maintaining transparency in the optical compartments. Transport across the corneal epithelium and endothelium maintains the corneal transparency. Also, aqueous humor is continuously secreted by the epithelia of the ciliary body and maintains the intraocular pressure. In the retina, water is transported into the vitreous body and across the retinal pigment epithelium to regulate the extracellular environment and the hydration of the retina. Aquaporins are a major contributor in the water transport throughout the eye.
Collapse
Affiliation(s)
- Thuy Linh Tran
- Department of Ophthalmology, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Huang Y, Yan S, Su Z, Xia L, Xie J, Zhang F, Du Z, Hou X, Deng J, Hao E. Aquaporins: A new target for traditional Chinese medicine in the treatment of digestive system diseases. Front Pharmacol 2022; 13:1069310. [PMID: 36532729 PMCID: PMC9752864 DOI: 10.3389/fphar.2022.1069310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 11/07/2023] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane proteins expressed in various organ systems. Many studies have shown that the abnormal expression of AQPs is associated with gastrointestinal, skin, liver, kidneys, edema, cancer, and other diseases. The majority of AQPs are expressed in the digestive system and have important implications for the physiopathology of the gastrointestinal tract as well as other tissues and organs. AQP regulators can prevent and treat most gastrointestinal-related diseases, such as colorectal cancer, gastric ulcer, and gastric cancer. Although recent studies have proposed clinically relevant AQP-targeted therapies, such as the development of AQP inhibitors, clinical trials are still lacking and there are many difficulties. Traditional Chinese medicine (TCM) has been used in China for thousands of years to prevent, treat and diagnose diseases, and is under the guidance of Chinese medicine (CM) theory. Herein, we review the latest research on the regulation of AQPs by TCMs and their active components, including Rhei Radix et Rhizoma, Atractylodis macrocephalae Rhizoma, Salviae miltiorrhizae Radix et Rhizoma, Poria, Astragali radix, and another 26 TCMs, as well as active components, which include the active components include anthraquinones, saponins, polysaccharides, and flavonoid glycosides. Through our review and discussion of numerous studies, we attempt to explore the regulatory effects of TCMs and their active components on AQP expression in the corresponding parts of the body in terms of the Triple Energizer concept in Chinese medicine defined as "upper energizer, middle energizer, and lower energizer,"so as to offer unique opportunities for the development of AQP-related therapeutic drugs for digestive system diseases.
Collapse
Affiliation(s)
- Yuchan Huang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Lei Xia
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
5
|
Anterior Umbilication of Lens in a Family with Congenital Cataracts Associated with a Missense Mutation of MIP Gene. Genes (Basel) 2022; 13:genes13111987. [DOI: 10.3390/genes13111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/04/2022] Open
Abstract
Congenital cataracts (CCs) have significant genotypic and phenotypic heterogeneity. The major intrinsic protein (MIP) gene, one of the causative genes of CCs, plays a vital role in maintaining the homeostasis and transparency of the lens. In this study, we identified a unique phenotype of anterior umbilication of the lens in a four-generation pedigree with CCs. All patients in the observed family had nystagmus, nuclear cataracts, and elongated axial lengths compared with their healthy counterparts except for patient I:2, whose axial length was unavailable, and patientII:4, who had total cataracts. We confirmed, using Sanger sequencing based on whole-exon sequencing (WES) data, that all patients carried a heterozygous variant NM_012064.4:c.97C > T (NP_036196.1:p.R33C) in their MIP gene. To our knowledge, 29 variants of the human MIP gene and the relative phenotypes associated with CCs have been identified. Nevertheless, this is the first report on the anterior umbilication of the lens with nuclear or total opacity caused by the c.97C > T (p.R33C) variant in the MIP gene. These results also provide evidence that the elongated axial length might be associated with this variant. This study further confirms the phenotypic heterogeneity of CCs.
Collapse
|
6
|
Li Z, Quan Y, Gu S, Jiang JX. Beyond the Channels: Adhesion Functions of Aquaporin 0 and Connexin 50 in Lens Development. Front Cell Dev Biol 2022; 10:866980. [PMID: 35465319 PMCID: PMC9022433 DOI: 10.3389/fcell.2022.866980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Lens, an avascular tissue involved in light transmission, generates an internal microcirculatory system to promote ion and fluid circulation, thus providing nutrients to internal lens cells and excreting the waste. This unique system makes up for the lack of vasculature and distinctively maintains lens homeostasis and lens fiber cell survival through channels of connexins and other transporters. Aquaporins (AQP) and connexins (Cx) comprise the majority of channels in the lens microcirculation system and are, thus, essential for lens development and transparency. Mutations of AQPs and Cxs result in abnormal channel function and cataract formation. Interestingly, in the last decade or so, increasing evidence has emerged suggesting that in addition to their well-established channel functions, AQP0 and Cx50 play pivotal roles through channel-independent actions in lens development and transparency. Specifically, AQP0 and Cx50 have been shown to have a unique cell adhesion function that mediates lens development and transparency. Precise regulation of cell-matrix and cell-cell adhesion is necessary for cell migration, a critical process during lens development. This review will provide recent advances in basic research of cell adhesion mediated by AQP0 and Cx50.
Collapse
Affiliation(s)
- Zhen Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
7
|
Henderson SW, Nourmohammadi S, Ramesh SA, Yool AJ. Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Biophys Rev 2022; 14:181-198. [PMID: 35340612 PMCID: PMC8921385 DOI: 10.1007/s12551-021-00925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are multifunctional transmembrane channel proteins permeable to water and an expanding array of solutes. AQP-mediated ion channel activity was first observed when purified AQP0 from bovine lens was incorporated into lipid bilayers. Electrophysiological properties of ion-conducting AQPs since discovered in plants, invertebrates, and mammals have been assessed using native, reconstituted, and heterologously expressed channels. Accumulating evidence is defining amino acid residues that govern differential solute permeability through intrasubunit and central pores of AQP tetramers. Rings of charged and hydrophobic residues around pores influence AQP selectivity, and are candidates for further work to define motifs that distinguish ion conduction capability, versus strict water and glycerol permeability. Similarities between AQP ion channels thus far include large single channel conductances and long open times, but differences in ionic selectivity, permeability to divalent cations, and mechanisms of gating (e.g., by voltage, pH, and cyclic nucleotides) are unique to subtypes. Effects of lipid environments in modulating parameters such as single channel amplitude could explain in part the variations in AQP ion channel properties observed across preparations. Physiological roles of the ion-conducting AQP classes span diverse processes including regulation of cell motility, organellar pH, neural development, signaling, and nutrient acquisition. Advances in computational methods can generate testable predictions of AQP structure-function relationships, which combined with innovative high-throughput assays could revolutionize the field in defining essential properties of ion-conducting AQPs, discovering new AQP ion channels, and understanding the effects of AQP interactions with proteins, signaling cascades, and membrane lipids.
Collapse
Affiliation(s)
- Sam W. Henderson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042 Australia
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
8
|
Galli M, Hameed A, Żbikowski A, Zabielski P. Aquaporins in insulin resistance and diabetes: More than channels! Redox Biol 2021; 44:102027. [PMID: 34090243 PMCID: PMC8182305 DOI: 10.1016/j.redox.2021.102027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Aquaporins (AQPs) are part of the family of the integral membrane proteins. Their function is dedicated to the transport of water, glycerol, ammonia, urea, H2O2, and other small molecules across the biological membranes. Although for many years they were scarcely considered, AQPs have a relevant role in the development of many diseases. Recent discoveries suggest, that AQPs may play an important role in the process of fat accumulation and regulation of oxidative stress, two crucial aspects of insulin resistance and type-2 diabetes (T2D). Insulin resistance (IR) and T2D are multi-faceted systemic diseases with multiple connections to obesity and other comorbidities such as hypertension, dyslipidemia and metabolic syndrome. Both IR and T2D transcends different tissues and organs, creating the maze of mutual relationships between adipose fat depots, skeletal muscle, liver and other insulin-sensitive organs. AQPs with their heterogenous properties, distinctive tissue distribution and documented involvement in both the lipid metabolism and regulation of the oxidative stress appear to be feasible candidates in the search for the explanation to this third-millennium plague. A lot of research has been assigned to adipose tissue AQP7 and liver tissue AQP9, clarifying their relationship and coordinated work in the induction of hepatic insulin resistance. Novel research points also to other aquaporins, such as AQP11 which may be associated with the induction of insulin resistance and T2D through its involvement in hydrogen peroxide transport. In this review we collected recent discoveries in the field of AQP's involvement in the insulin resistance and T2D. Novel paths which connect AQPs with metabolic disorders can give new fuel to the research on obesity, insulin resistance and T2D - one of the most worrying problems of the modern society.
Collapse
Affiliation(s)
- Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Arkadiusz Żbikowski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| |
Collapse
|
9
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The aging mouse lens transcriptome. Exp Eye Res 2021; 209:108663. [PMID: 34119483 DOI: 10.1016/j.exer.2021.108663] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Age is a major risk factor for cataract (ARC). However, the influence of aging on the lens transcriptome is under studied. Lens epithelial (LEC) and fiber cells (LFC) were isolated from young (3 month old) and aged (24 month old) C57BL/6J mice, and the transcriptome elucidated via RNAseq. EdgeR estimated differential gene expression in pairwise contrasts, and Advaita's Ipathway guide and custom R scripts were used to evaluate the potential biological significance of differentially expressed genes (DEGs). This analysis revealed age-dependent decreases in lens differentiation marker expression in both LECs and LFCs, with gamma crystallin transcripts downregulating nearly 50 fold in aged LFCs. The expression of the transcription factors Hsf4 and Maf, which are known to activate lens fiber cell preferred genes, are downregulated, while FoxE3, which represses gamma crystallin expression, is upregulated in aged fibers. Aged LECs upregulate genes controlling the immune response, complement pathways, and cellular stress responses, including glutathione peroxidase 3 (Gpx3). Aged LFCs exhibit broad changes in the expression of genes regulating cell communication, and upregulate genes involved in antigen processing/presentation and cholesterol metabolism, while changes in the expression of mitochondrial respiratory chain genes are consistent with mitochondrial stress, including upregulation of NDufa4l2, which encodes an alternate electron transport chain protein. However, age did not profoundly affect the response of LECs to injury as both young and aged LECs upregulate inflammatory gene signatures at 24 h post injury to similar extents. These RNAseq profiles provide a rich data set that can be mined to understand the genetic regulation of lens aging and how this impinges on the pathophysiology of age related cataract.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware Newark, DE, 19716, USA.
| |
Collapse
|
10
|
Macrophage recruitment in immune-privileged lens during capsule repair, necrotic fiber removal, and fibrosis. iScience 2021; 24:102533. [PMID: 34142044 PMCID: PMC8188486 DOI: 10.1016/j.isci.2021.102533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence challenges the lens as an immune-privileged organ. Here, we provide a direct mechanism supporting a role of macrophages in lens capsule rupture repair. Posterior lens capsule rupture in a connexin 50 and aquaporin 0 double-knockout mouse model resulted in lens tissue extrusion into the vitreous cavity with formation of a “tail-like” tissue containing delayed regressed hyaloid vessels, fibrotic tissue and macrophages at postnatal (P) 15 days. The macrophages declined after P 30 days with M2 macrophages detected inside the lens. By P 90 days, the “tail-like” tissue completely disappeared and the posterior capsule rupture was sealed with thick fibrotic tissue. Colony-stimulating factor 1 (CSF-1) accelerated capsule repair, whereas inhibition of the CSF-1 receptor delayed the repair. Together, these results suggest that lens posterior rupture leads to the recruitment of macrophages delivered by the regression delayed hyaloid vessels. CSF-1-activated M2 macrophages mediate capsule rupture repair and development of fibrosis. Lens posterior rupture delays regression of the hyaloid vessels. Lens posterior rupture recruits macrophages delivered by the hyaloid vessels. Macrophages mediate necrotic fiber cell removal and capsule rupture sealing. CSF-1 activated M2 macrophages facilitate capsular rupture sealing by fibrosis.
Collapse
|
11
|
Wang TF, Lin GL, Chu SC, Chen CC, Liou YS, Chang HH, Sun DS. AQP0 is a novel surface marker for deciphering abnormal erythropoiesis. Stem Cell Res Ther 2021; 12:274. [PMID: 33957977 PMCID: PMC8101103 DOI: 10.1186/s13287-021-02343-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Background Hematopoiesis occurs in the bone marrow, producing a complete spectrum of blood cells to maintain homeostasis. In addition to light microscopy, chromosome analysis, and polymerase chain reaction, flow cytometry is a feasible and fast method for quantitatively analyzing hematological diseases. However, because sufficient specific cell markers are scarce, dyserythropoietic diseases are challenging to identify through flow cytometry. Methods Bone marrow samples from C57BL/B6 mice and one healthy donor were analyzed using traditional two-marker (CD71 and glycophorin A) flow cytometry analysis. After cell sorting, the gene expressions of membrane proteins in early and late erythropoiesis precursors and in nonerythroid cells were characterized using microarray analysis. Results Among characterized gene candidates, aquaporin 0 (AQP0) expressed as a surface protein in early- and late-stage erythropoiesis precursors and was not expressed on nonerythroid cells. With the help of AQP0 staining, we could define up to five stages of erythropoiesis in both mouse and human bone marrow using flow cytometry. In addition, because patients with dyserythropoiesis generally exhibited a reduced population of APQ0high cells relative to healthy participants, the analysis results also suggested that the levels of APQ0high cells in early erythropoiesis serve as a novel biomarker that distinguishes normal from dysregulated erythropoiesis. Conclusions AQP0 was successfully demonstrated to be a marker of erythroid differentiation. The expression levels of AQP0 are downregulated in patients with dyserythropoiesis, indicating a critical role of AQP0 in erythropoiesis. Accordingly, the level of AQP0high in early erythroid precursor cells may serve as a reference parameter for diagnosing diseases associated with dyserythropoiesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02343-4.
Collapse
Affiliation(s)
- Tso-Fu Wang
- Departments of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China.,College of Medicine, Tzu-Chi University, Hualien, Taiwan, Republic of China
| | - Guan-Ling Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Sung-Chao Chu
- Departments of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China.,College of Medicine, Tzu-Chi University, Hualien, Taiwan, Republic of China
| | - Chang-Chin Chen
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.,Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| |
Collapse
|
12
|
Li Z, Gu S, Quan Y, Varadaraj K, Jiang JX. Development of a potent embryonic chick lens model for studying congenital cataracts in vivo. Commun Biol 2021; 4:325. [PMID: 33707565 PMCID: PMC7952907 DOI: 10.1038/s42003-021-01849-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Congenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.
Collapse
Affiliation(s)
- Zhen Li
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Sumin Gu
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Yumeng Quan
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Kulandaiappan Varadaraj
- grid.36425.360000 0001 2216 9681Department of Physiology and Biophysics, Stony Brook University, New York, NY USA
| | - Jean X. Jiang
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| |
Collapse
|
13
|
Bai C, You Y, Liu X, Xia M, Wang W, Jia T, Pu T, Lu Y, Zhang C, Li X, Yin Y, Wang L, Zhou J, Niu L. A novel missense mutation in the gene encoding major intrinsic protein (MIP) in a Giant panda with unilateral cataract formation. BMC Genomics 2021; 22:100. [PMID: 33530927 PMCID: PMC7856726 DOI: 10.1186/s12864-021-07386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Cataracts are defects of the lens that cause progressive visual impairment and ultimately blindness in many vertebrate species. Most cataracts are age-related, but up to one third have an underlying genetic cause. Cataracts are common in captive zoo animals, but it is often unclear whether these are congenital or acquired (age-related) lesions. Results Here we used a functional candidate gene screening approach to identify mutations associated with cataracts in a captive giant panda (Ailuropoda melanoleuca). We screened 11 genes often associated with human cataracts and identified a novel missense mutation (c.686G > A) in the MIP gene encoding major intrinsic protein. This is expressed in the lens and normally accumulates in the plasma membrane of lens fiber cells, where it plays an important role in fluid transport and cell adhesion. The mutation causes the replacement of serine with asparagine (p.S229N) in the C-terminal tail of the protein, and modeling predicts that the mutation induces conformational changes that may interfere with lens permeability and cell–cell interactions. Conclusion The c.686G > A mutation was found in a captive giant panda with a unilateral cataract but not in 18 controls from diverse regions in China, suggesting it is most likely a genuine disease-associated mutation rather than a single-nucleotide polymorphism. The mutation could therefore serve as a new genetic marker to predict the risk of congenital cataracts in captive giant pandas. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07386-8.
Collapse
Affiliation(s)
- Chao Bai
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yuyan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Wei Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Yan Lu
- Beijing Zoo, Beijing, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | | | | | - Jun Zhou
- , Chongqing Zoo, Chongqing, China
| | | |
Collapse
|
14
|
Sun W, Xu J, Gu Y, Du C. The relationship between major intrinsic protein genes and cataract. Int Ophthalmol 2020; 41:375-387. [PMID: 32920712 DOI: 10.1007/s10792-020-01583-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Genetic factors play an essential role in the development of cataracts, and the major intrinsic protein (MIP) gene is a type of causative genes. Our study aims to discuss the current research progress of MIP genes responsible for cataractogenesis in DNA and protein levels, which is essential in achieving a response to the molecular deficiencies and pathophysiologic features of cataract. METHODS We developed a search strategy using a combination of the words "Cataract", "Mutation", "MIP gene", and "AQP0" to identify all articles from PubMed, Web of Science, Scopus, and Google Scholar up to December 2019. To find more articles and to ensure that databases were thoroughly searched, the reference lists of selected items were also reviewed. RESULTS A total of 29 MIP gene mutations causing congenital cataract were obtained by searching these databases and analyzing the results of genetic mutation pathogenicity prediction software tools; most of them caused amino acid codon changes in the H4, H5, H6, C-TIDs, and loop C in the structure of the MIP protein. However, there was no clear causality between lens morphology, phenotypes, and genotypes. The genotype TC in polymorphism c.-4T > C and haplotype CCG of rs2269348, c.-4T > C, and rs74641138 in MIP may attach an additional genetic risk factor for age-related cataract. CONCLUSION These single-base mutations and single nucleotide polymorphisms might be importantly involved in the pathogenesis of congenital cataract and age-related cataract, respectively. This review provides a significant reference for clinical trials and theoretical studies.
Collapse
Affiliation(s)
- Wen Sun
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, 310003, Hangzhou, China
| | - Jiawei Xu
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, 310003, Hangzhou, China
| | - Yangshun Gu
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, 310003, Hangzhou, China
| | - Chixin Du
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, 310003, Hangzhou, China.
| |
Collapse
|
15
|
Shihan MH, Kanwar M, Wang Y, Jackson EE, Faranda AP, Duncan MK. Fibronectin has multifunctional roles in posterior capsular opacification (PCO). Matrix Biol 2020; 90:79-108. [PMID: 32173580 DOI: 10.1016/j.matbio.2020.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Fibrotic posterior capsular opacification (PCO), one of the major complications of cataract surgery, occurs when lens epithelial cells (LCs) left behind post cataract surgery (PCS) undergo epithelial to mesenchymal transition, migrate into the optical axis and produce opaque scar tissue. LCs left behind PCS robustly produce fibronectin, although its roles in fibrotic PCO are not known. In order to determine the function of fibronectin in PCO pathogenesis, we created mice lacking the fibronectin gene (FN conditional knock out -FNcKO) from the lens. While animals from this line have normal lenses, upon lens fiber cell removal which models cataract surgery, FNcKO LCs exhibit a greatly attenuated fibrotic response from 3 days PCS onward as assessed by a reduction in surgery-induced cell proliferation, and fibrotic extracellular matrix (ECM) production and deposition. This is correlated with less upregulation of Transforming Growth Factor β (TGFβ) and integrin signaling in FNcKO LCs PCS concomitant with sustained Bone Morphogenetic Protein (BMP) signaling and elevation of the epithelial cell marker E cadherin. Although the initial fibrotic response of FNcKO LCs was qualitatively normal at 48 h PCS as measured by the upregulation of fibrotic marker protein αSMA, RNA sequencing revealed that the fibrotic response was already quantitatively attenuated at this time, as measured by the upregulation of mRNAs encoding molecules that control, and are controlled by, TGFβ signaling, including many known markers of fibrosis. Most notably, gremlin-1, a known regulator of TGFβ superfamily signaling, was upregulated sharply in WT LCs PCS, while this response was attenuated in FNcKO LCs. As exogenous administration of either active TGFβ1 or gremlin-1 to FNcKO lens capsular bags rescued the attenuated fibrotic response of fibronectin null LCs PCS including the loss of SMAD2/3 phosphorylation, this suggests that fibronectin plays multifunctional roles in fibrotic PCO development.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mallika Kanwar
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin E Jackson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
16
|
Hernando M, Orriss G, Perodeau J, Lei S, Ferens FG, Patel TR, Stetefeld J, Nieuwkoop AJ, O'Neil JD. Solution structure and oligomeric state of the E. coliglycerol facilitator. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183191. [PMID: 31953232 DOI: 10.1016/j.bbamem.2020.183191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
Protein dynamics at atomic resolution can provide deep insights into the biological activities of proteins and enzymes but they can also make structure and dynamics studies challenging. Despite their well-known biological and pharmaceutical importance, integral membrane protein structure and dynamics studies lag behind those of water-soluble proteins mainly owing to solubility problems that result upon their removal from the membrane. Escherichia coli glycerol facilitator (GF) is a member of the aquaglyceroporin family that allows for the highly selective passive diffusion of its substrate glycerol across the inner membrane of the bacterium. Previous molecular dynamics simulations and hydrogen-deuterium exchange studies suggested that protein dynamics play an important role in the passage of glycerol through the protein pore. With the aim of studying GF dynamics by solution and solid-state nuclear magnetic resonance (NMR) spectroscopy we optimized the expression of isotope-labelled GF and explored various solubilizing agents including detergents, osmolytes, amphipols, random heteropolymers, lipid nanodiscs, bicelles and other buffer additives to optimize the solubility and polydispersity of the protein. The GF protein is most stable and soluble in lauryl maltose neopentyl glycol (LMNG), where it exists in a tetramer-octamer equilibrium. The solution structures of the GF tetramer and octamer were determined by negative-stain transmission electron microscopy (TEM), size-exclusion chromatography small-angle X-ray scattering (SEC-SAXS) and solid-state magic-angle spinning NMR spectroscopy. Although NMR sample preparation still needs optimization for full structure and dynamics studies, negative stain TEM and SEC-SAXS revealed low-resolution structures of the detergent-solubilized tetramer and octamer particles. The non-native octamer appears to form from the association of the cytoplasmic faces of two tetramers, the interaction apparently mediated by their disordered N- and C-termini. This information may be useful in future studies directed at reducing the heterogeneity and self-association of the protein.
Collapse
Affiliation(s)
- Mary Hernando
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - George Orriss
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jacqueline Perodeau
- Department of Chemistry and Chemical Biology, Rutgers School of Arts and Sciences, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Shixing Lei
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fraser G Ferens
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Trushar R Patel
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, Lethbridge University, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers School of Arts and Sciences, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Joe D O'Neil
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
17
|
Liu P, Edassery SL, Ali L, Thomson BR, Savas JN, Jin J. Long-lived metabolic enzymes in the crystalline lens identified by pulse-labeling of mice and mass spectrometry. eLife 2019; 8:50170. [PMID: 31820737 PMCID: PMC6914337 DOI: 10.7554/elife.50170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/04/2019] [Indexed: 01/29/2023] Open
Abstract
The lenticular fiber cells are comprised of extremely long-lived proteins while still maintaining an active biochemical state. Dysregulation of these activities has been implicated in diseases such as age-related cataracts. However, the lenticular protein dynamics underlying health and disease is unclear. We sought to measure the global protein turnover rates in the eye using nitrogen-15 labeling of mice and mass spectrometry. We measured the 14N/15N-peptide ratios of 248 lens proteins, including Crystallin, Aquaporin, Collagen and enzymes that catalyze glycolysis and oxidation/reduction reactions. Direct comparison of lens cortex versus nucleus revealed little or no 15N-protein contents in most nuclear proteins, while there were a broad range of 14N/15N ratios in cortex proteins. Unexpectedly, like Crystallins, many enzymes with relatively high abundance in nucleus were also exceedingly long-lived. The slow replacement of these enzymes in spite of young age of mice suggests their potential roles in age-related metabolic changes in the lens.
Collapse
Affiliation(s)
- Pan Liu
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Seby Louis Edassery
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Laith Ali
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Jing Jin
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
18
|
Molecular genetics of congenital cataracts. Exp Eye Res 2019; 191:107872. [PMID: 31770519 DOI: 10.1016/j.exer.2019.107872] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Congenital cataracts, the most common cause of visual impairment and blindness in children worldwide, have diverse etiologies. According to statistics analysis, about one quarter of congenital cataracts caused by genetic defects. Various mutations of more than one hundred genes have been identified in hereditary cataracts so far. In this review, we briefly summarize recent developments about the genetics, molecular mechanisms, and treatments of congenital cataracts. The studies of these pathogenic mutations and molecular genetics is making it possible for us to comprehend the underlying mechanisms of cataractogenesis and providing new insights into the preventive, diagnostic and therapeutic approaches of cataracts.
Collapse
|
19
|
Dong SH, Kim SS, Kim SH, Yeo SG. Expression of aquaporins in inner ear disease. Laryngoscope 2019; 130:1532-1539. [PMID: 31593306 DOI: 10.1002/lary.28334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
The inner ear is responsible for hearing and balance and consists of a membranous labyrinth within a bony labyrinth. The balance structure is divided into the otolith organ that recognizes linear acceleration and the semicircular canal that is responsible for rotational movement. The cochlea is the hearing organ. The external and middle ear are covered with skin and mucosa, respectively, and the space is filled with air, whereas the inner ear is composed of endolymph and perilymph. The inner ear is a fluid-filled sensory organ composed of hair cells with cilia on the upper part of the cells that convert changes in sound energy and balance into electric energy through the hair cells to transmit signals to the auditory nerve through synapses. Aquaporins (AQPs) are a family of transmembrane proteins present in all species that can be roughly divided into three subfamilies according to structure and function: 1) classical AQP, 2) aquaglyceroporin, and 3) superaquaporin. Currently, the subfamily of mammalian species is known to include 13 AQP members (AQP0-AQP12). AQPs have a variety of functions depending on their structure and are related to inner ear diseases such as Meniere's disease, sensorineural hearing loss, and presbycusis. Additional studies on the relationship between the inner ear and AQPs may be helpful in the diagnosis and treatment of inner ear disease. Laryngoscope, 130:1532-1539, 2020.
Collapse
Affiliation(s)
- Sung Hwa Dong
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Sung Su Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School, Kyung Hee University, Seoul, South Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
20
|
Abstract
Visual impairment leads to a decrease in quality of life. Cataract is the most commonly
observed ocular disease in humans that causes vision disorders. The risk factors
associated with cataract development include aging, infections, eye injuries,
environmental causes, such as radiation and exposure to ultraviolet rays in sunlight, and
genetic mutations. Additionally, several cataract patients display phenotypic
heterogeneity, suggesting the role of genetic modifiers in the modulation of severity and
onset time of cataractogenesis. However, the genetic modifiers associated with cataract
have not been identified in humans yet. In contrast, the identification and mapping of
genetic modifiers have been successfully carried out in mice and rats. In this review, we
focus on the genetic modifiers of cataract in the rodent models.
Collapse
Affiliation(s)
- Kenta Wada
- Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan.,Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shumpei P Yasuda
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
21
|
Jiang J, Shihan MH, Wang Y, Duncan MK. Lens Epithelial Cells Initiate an Inflammatory Response Following Cataract Surgery. Invest Ophthalmol Vis Sci 2019; 59:4986-4997. [PMID: 30326070 PMCID: PMC6188467 DOI: 10.1167/iovs.18-25067] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Lens epithelial cell (LEC) conversion to myofibroblast is responsible for fibrotic cataract surgery complications including posterior capsular opacification. While transforming growth factor beta (TGFβ) signaling is important, the mechanisms by which the TGFβ pathway is activated post cataract surgery (PCS) are not well understood. Methods RNA-seq was performed on LECs obtained from a mouse cataract surgery model at the time of surgery and 24 hours later. Bioinformatic analysis was performed with iPathwayGuide. Expression dynamics were determined by immunofluorescence. Results The LEC transcriptome is massively altered by 24 hours PCS. The differentially expressed genes included those important for lens biology, and fibrotic markers. However, the most dramatic changes were in the expression of genes regulating the innate immune response, with the top three altered genes exhibiting greater than 1000-fold upregulation. Immunolocalization revealed that CXCL1, S100a9, CSF3, COX-2, CCL2, LCN2, and HMOX1 protein levels upregulate in LECs between 1 hour and 6 hours PCS and peak at 24 hours PCS, while their levels sharply attenuate by 3 days PCS. This massive upregulation of known inflammatory mediators precedes the infiltration of neutrophils into the eye at 18 hours PCS, the upregulation of canonical TGFβ signaling at 48 hours PCS, and the infiltration of macrophages at 3 days PCS. Conclusions These data demonstrate that LECs produce proinflammatory cytokines immediately following lens injury that could drive postsurgical flare, and suggest that inflammation may be a major player in the onset of lens-associated fibrotic disease PCS.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
22
|
Abir-Awan M, Kitchen P, Salman MM, Conner MT, Conner AC, Bill RM. Inhibitors of Mammalian Aquaporin Water Channels. Int J Mol Sci 2019; 20:ijms20071589. [PMID: 30934923 PMCID: PMC6480248 DOI: 10.3390/ijms20071589] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/29/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.
Collapse
Affiliation(s)
- Mohammed Abir-Awan
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Matthew T Conner
- Research Institute of Health Sciences, School of Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
23
|
Xiu Y, Fan Y, Wu K, Chen S, Pan M, Xu X, Zhu Y. A novel causative mutation for congenital cataract and its underlying pathogenesis. Ophthalmic Genet 2018; 40:66-68. [PMID: 30585525 DOI: 10.1080/13816810.2018.1558262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yanghui Xiu
- a Eye Institute & Xiamen eye Center , Affiliated Xiamen University , Xiamen , Fujian , China
| | - Yuanrong Fan
- b Department of Ophthalmology , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian , China
| | - Kangni Wu
- c Department of Hematology , The First Hospital Affiliated Xiamen University , Xiamen , China
| | - Shuimiao Chen
- a Eye Institute & Xiamen eye Center , Affiliated Xiamen University , Xiamen , Fujian , China
| | - Meihua Pan
- a Eye Institute & Xiamen eye Center , Affiliated Xiamen University , Xiamen , Fujian , China
| | - Xun Xu
- d Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General hospital , Shanghai Jiao Tong University , Shanghai , China
| | - Yihua Zhu
- b Department of Ophthalmology , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian , China
| |
Collapse
|
24
|
Zhou Z, Li L, Lu L, Min L. Identification of a missense mutation in MIP gene via mutation analysis of a Guangxi Zhuang ethnic pedigree with congenital nuclear cataracts. Exp Ther Med 2018; 16:3256-3260. [PMID: 30214549 DOI: 10.3892/etm.2018.6557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 06/29/2018] [Indexed: 01/04/2023] Open
Abstract
At present, congenital cataract is the world's leading cause of blindness among children. The aim of the present study was to determine and analyze the genetic disorder associated with a congenital nuclear cataract in a three-generation family of Guangxi Zhuang ethnicity. A total of 3 affected individuals and 5 unaffected family members underwent appropriate comprehensive medical examinations, mainly of the eyes. The white blood cells of the family members were collected and genomic DNA was extracted from 100 healthy individuals, as the control group. The sequences of candidate genes were determined by polymerase chain reaction amplification followed by direct sequencing. The functional consequences of the mutation were analysed with biology software. A missense mutation (c.97C>T) was found in exon 1 of major intrinsic protein of lens fiber (MIP) gene. Therefore, the arginine of the highly conserved codon 33 was changed to cysteine. This mutation was identified in the affected family members, but not identified in unaffected family members or the 100 normal controls. The mutation in the MIP gene is the genetic cause of the congenital cataract in the ethnic Guangxi Zhuang family.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Lu Lu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Li Min
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
25
|
A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Hum Genet 2018; 137:315-328. [PMID: 29713869 DOI: 10.1007/s00439-018-1884-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cause aphakia, cataracts, sclerocornea and microphthalmia in humans. We used clustered regularly interspaced short palindromic repeats/Cas9 injections to target the foxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant, c.296_300delTGCAG, predicting p.(Val99Alafs*2), demonstrated severe eye defects, including small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with zl-1 antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygotes for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba1l1, mipa and hsf4. Comparative analysis of this RNA-seq data with iSyTE data identified several lens-enriched genes to be down-regulated in foxe3 indel mutants. We also noted upregulation of lgsn and crygmxl2 and downregulation of fmodb and cx43.4, genes that are expressed in the zebrafish lens, but that are not yet associated with an eye phenotype in humans. These findings demonstrate that this new zebrafish foxe3 mutant model is highly relevant to the study of the gene regulatory networks conserved in vertebrate lens and eye development.
Collapse
|
26
|
Kourghi M, Pei JV, De Ieso ML, Nourmohammadi S, Chow PH, Yool AJ. Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clin Exp Pharmacol Physiol 2018; 45:401-409. [PMID: 29193257 DOI: 10.1111/1440-1681.12900] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Aquaporin (AQP) channels in the major intrinsic protein (MIP) family are known to facilitate transmembrane water fluxes in prokaryotes and eukaryotes. Some classes of AQPs also conduct ions, glycerol, urea, CO2 , nitric oxide, and other small solutes. Ion channel activity has been demonstrated for mammalian AQPs 0, 1, 6, Drosophila Big Brain (BIB), soybean nodulin 26, and rockcress AtPIP2;1. More classes are likely to be discovered. Newly identified blockers are providing essential tools for establishing physiological roles of some of the AQP dual water and ion channels. For example, the arylsulfonamide AqB011 which selectively blocks the central ion pore of mammalian AQP1 has been shown to impair migration of HT29 colon cancer cells. Traditional herbal medicines are sources of selective AQP1 inhibitors that also slow cancer cell migration. The finding that plant AtPIP2;1 expressed in root epidermal cells mediates an ion conductance regulated by calcium and protons provided insight into molecular mechanisms of environmental stress responses. Expression of lens MIP (AQP0) is essential for maintaining the structure, integrity and transparency of the lens, and Drosophila BIB contributes to neurogenic signalling pathways to control the developmental fate of fly neuroblast cells; however, the ion channel roles remain to be defined for MIP and BIB. A broader portfolio of pharmacological agents is needed to investigate diverse AQP ion channel functions in situ. Understanding the dual water and ion channel roles of AQPs could inform the development of novel agents for rational interventions in diverse challenges from agriculture to human health.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael L De Ieso
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | | | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
27
|
Kourghi M, Nourmohammadi S, Pei JV, Qiu J, McGaughey S, Tyerman SD, Byrt CS, Yool AJ. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins. Int J Mol Sci 2017; 18:ijms18112323. [PMID: 29099773 PMCID: PMC5713292 DOI: 10.3390/ijms18112323] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
Aquaporins (AQPs) are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophilamelanogaster DmBIB) were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+) on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2) showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Saeed Nourmohammadi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jiaen Qiu
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Samantha McGaughey
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Caitlin S Byrt
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
28
|
Sutka M, Amodeo G, Ozu M. Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives. Biophys Rev 2017; 9:545-562. [PMID: 28871493 DOI: 10.1007/s12551-017-0313-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Aquaporins (AQPs) can be revisited from a distinct and complementary perspective: the outcome from analyzing them from both plant and animal studies. (1) The approach in the study. Diversity found in both kingdoms contrasts with the limited number of crystal structures determined within each group. While the structure of almost half of mammal AQPs was resolved, only a few were resolved in plants. Strikingly, the animal structures resolved are mainly derived from the AQP2-lineage, due to their important roles in water homeostasis regulation in humans. The difference could be attributed to the approach: relevance in animal research is emphasized on pathology and in consequence drug screening that can lead to potential inhibitors, enhancers and/or regulators. By contrast, studies on plants have been mainly focused on the physiological role that AQPs play in growth, development and stress tolerance. (2) The transport capacity. Besides the well-described AQPs with high water transport capacity, large amount of evidence confirms that certain plant AQPs can carry a large list of small solutes. So far, animal AQP list is more restricted. In both kingdoms, there is a great amount of evidence on gas transport, although there is still an unsolved controversy around gas translocation as well as the role of the central pore of the tetramer. (3) More roles than expected. We found it remarkable that the view of AQPs as specific channels has evolved first toward simple transporters to molecules that can experience conformational changes triggered by biochemical and/or mechanical signals, turning them also into signaling components and/or behave as osmosensor molecules.
Collapse
Affiliation(s)
- Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Saboe PO, Rapisarda C, Kaptan S, Hsiao YS, Summers SR, De Zorzi R, Dukovski D, Yu J, de Groot BL, Kumar M, Walz T. Role of Pore-Lining Residues in Defining the Rate of Water Conduction by Aquaporin-0. Biophys J 2017; 112:953-965. [PMID: 28297654 DOI: 10.1016/j.bpj.2017.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/22/2016] [Accepted: 01/26/2017] [Indexed: 11/19/2022] Open
Abstract
Compared to other aquaporins (AQPs), lens-specific AQP0 is a poor water channel, and its permeability was reported to be pH-dependent. To date, most water conduction studies on AQP0 were performed on protein expressed in Xenopus oocytes, and the results may therefore also reflect effects introduced by the oocytes themselves. Experiments with purified AQP0 reconstituted into liposomes are challenging because the water permeability of AQP0 is only slightly higher than that of pure lipid bilayers. By reconstituting high amounts of AQP0 and using high concentrations of cholesterol to reduce the permeability of the lipid bilayer, we improved the signal-to-noise ratio of water permeability measurements on AQP0 proteoliposomes. Our measurements show that mutation of two pore-lining tyrosine residues, Tyr-23 and Tyr-149 in sheep AQP0, to the corresponding residues in the high-permeability water channel AQP1 have additive effects and together increase the water permeability of AQP0 40-fold to a level comparable to that of AQP1. Molecular dynamics simulations qualitatively support these experimental findings and suggest that mutation of Tyr-23 changes the pore profile at the gate formed by residue Arg-187.
Collapse
Affiliation(s)
- Patrick O Saboe
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Chiara Rapisarda
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Shreyas Kaptan
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yu-Shan Hsiao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Samantha R Summers
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Rita De Zorzi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Danijela Dukovski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Jiaheng Yu
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manish Kumar
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania.
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
30
|
Takahashi G, Hasegawa S, Fukutomi Y, Harada C, Furugori M, Seki Y, Kikkawa Y, Wada K. A novel missense mutation of Mip causes semi-dominant cataracts in the Nat mouse. Exp Anim 2017; 66:271-282. [PMID: 28442635 PMCID: PMC5543248 DOI: 10.1538/expanim.17-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Major intrinsic protein of lens fiber (MIP) is one of the proteins essential for maintaining lens transparency while also contributing to dominant cataracts in humans. The Nodai cataract (Nat) mice harbor a spontaneous mutation in Mip and develop early-onset nuclear cataracts. The Nat mutation is a c.631G>A mutation (MipNat), resulting in a glycine-to-arginine substitution (p.Gly211Arg) in the sixth transmembrane domain. The MipNat/Nat homozygotes exhibit congenital cataracts caused by the degeneration of lens fiber cells. MIP normally localizes to the lens fiber cell membranes. However, the MipNat/Nat mice were found to lack an organelle-free zone, and the MIP was mislocalized to the nuclear membrane and perinuclear region. Furthermore, the MipNat/+ mice exhibited milder cataracts than MipNat/Nat mice due to the slight degeneration of the lens fiber cells. Although there were no differences in the localization of MIP to the membranes of lens fiber cells in MipNat/+ mice compared to that in wild-type mice, the protein levels of MIP were significantly reduced in the eyes. These findings suggest that cataractogenesis in MipNat mutants are caused by defects in MIP expression. Overall, the MipNat mice offer a novel model to better understand the phenotypes and mechanisms for the development of cataracts in patients that carry missense mutations in MIP.
Collapse
Affiliation(s)
- Gou Takahashi
- Graduate School of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Sayaka Hasegawa
- Graduate School of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Yukiko Fukutomi
- Department of Bioproduction, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Chihiro Harada
- Department of Bioproduction, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Masamune Furugori
- Graduate School of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Yuta Seki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kenta Wada
- Graduate School of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan.,Department of Bioproduction, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan.,Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
31
|
Briones R, Aponte-Santamaría C, de Groot BL. Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects. Front Physiol 2017; 8:124. [PMID: 28303107 PMCID: PMC5332469 DOI: 10.3389/fphys.2017.00124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers separated by a layer of annular lipids.
Collapse
Affiliation(s)
- Rodolfo Briones
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Camilo Aponte-Santamaría
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies and Interdisciplinary Center for Scientific Computing Heidelberg, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
32
|
Jiang B, Chen Y, Xu B, Hong N, Liu R, Qi M, Shen L. Identification of a novel missense mutation of MIP in a Chinese family with congenital cataracts by target region capture sequencing. Sci Rep 2017; 7:40129. [PMID: 28059152 PMCID: PMC5216388 DOI: 10.1038/srep40129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
Congenital cataract is both clinically diverse and genetically heterogeneous. To investigate the underlying genetic defect in three-generations of a Chinese family with autosomal dominant congenital cataracts, we recruited family members who underwent comprehensive ophthalmic examinations. A heterozygous missense mutation c.634G > C (p.G212R) substitution was identified in the MIP gene through target region capture sequencing. The prediction results of PolyPhen-2 and SIFT indicated that this mutation was likely to damage the structure and function of MIP. Confocal microscopy images showed that the intensity of the green fluorescent signal revealed much weaker signal from the mutant compared to the wild-type MIP. The expressed G212R-MIP was diminished and almost exclusively cytoplasmic in the HeLa cells; whereas the WT-MIP was stable dispersed throughout the cytoplasm, and it appeared to be in the membrane structure. Western blot analysis indicated that the protein expression level of the mutant form of MIP was remarkably reduced compared with that of the wild type, however, the mRNA levels of the wild-type and mutant cells were comparable. In conclusion, our study presented genetic and functional evidence for a novel MIP mutation of G212R, which leads to congenital progressive cortical punctate with or without Y suture.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Ophthalmology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhua Chen
- BGI-Shenzhen, Shenzhen, China.,School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Casey Eye Institute Molecular Diagnostic Laboratory, Portland, Oregon, USA
| | - Baisheng Xu
- Department of Ophthalmology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Nan Hong
- Department of Ophthalmology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongrong Liu
- Division of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Qi
- Department of Cell Biology and Medical Genetics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology and Laboratory of Medicine, University of Rochester Medical Centre, Rochester, New York, USA
| | - Liping Shen
- Department of Ophthalmology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Abstract
The major part of the eye consists of water . Continuous movement of water and ions between the ocular compartments and to the systemic circulation is pivotal for many physiological functions in the eye. The movement of water facilitates removal of the many metabolic products of corneal-, ciliary body-, lens- and retinal metabolism, while maintaining transparency in the optical compartments. Transport across the corneal epithelium and endothelium maintains the corneal transparency. Also, aqueous humour is continuously secreted by the epithelia of the ciliary body and maintains the intraocular pressure. In the retina, water is transported into the vitreous body and across the retinal pigment epithelium to regulate the extracellular environment and the hydration of the retina. Aquaporins (AQPs ) take part in the water transport throughout the eye.
Collapse
|
34
|
Ricci M, Quinlan RA, Voïtchovsky K. Sub-nanometre mapping of the aquaporin-water interface using multifrequency atomic force microscopy. SOFT MATTER 2016; 13:187-195. [PMID: 27373564 DOI: 10.1039/c6sm00751a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aquaporins are integral membrane proteins that regulate the transport of water and small molecules in and out of the cell. In eye lens tissue, circulation of water, ions and metabolites is ensured by a microcirculation system in which aquaporin-0 (AQP0) plays a central role. AQP0 allows water to flow beyond the diffusion limit through lens membranes. AQP0 naturally arranges in a square lattice. The malfunction of AQP0 is related to numerous diseases such as cataracts. Despite considerable research into its structure, function and dynamics, the interface between the protein and the surrounding liquid and the effect of the lattice arrangement on the behaviour of water at the interface with the membrane are still not fully understood. Here we use a multifrequency atomic force microscopy (AFM) approach to map both the liquid at the interface with AQP0 and the protein itself with sub-nanometer resolution. Imaging using the fundamental eigenmode of the AFM cantilever probes mainly the interfacial water at the surface of the membrane. The results highlight a well-defined region that surrounds AQP0 tetramers and where water exhibits a higher affinity for the protein. Imaging in the second eigenmode is dominated by the mechanical response of the protein and provides sub-molecular details of the protein surface and the sub-surface structure. The relationship between modes and harmonics is also examined.
Collapse
Affiliation(s)
- Maria Ricci
- Biological and Soft Systems, Cavendish Laboratory, Cambridge University, Cambridge, UK
| | - Roy A Quinlan
- School of Biological and Biomedical Sciences, Durham University, Durham, UK.
| | | |
Collapse
|
35
|
Pescosolido N, Barbato A, Giannotti R, Komaiha C, Lenarduzzi F. Age-related changes in the kinetics of human lenses: prevention of the cataract. Int J Ophthalmol 2016; 9:1506-1517. [PMID: 27803872 DOI: 10.18240/ijo.2016.10.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
The crystalline lens is a transparent, biconvex structure in the eye that, along with the cornea, helps to refract light to be focused on the retina and, by changing shape, it adjusts focal distance (accommodation). The three classes of structural proteins found in the lens are α, β, and γ crystallins. These proteins make up more than 90% of the total dry mass of the eye lens. Other components which can be found are sugars, lipids, water, several antioxidants and low weight molecules. When ageing changes occur in the lens, it causes a gradual reduction in transparency, presbyopia and an increase in the scattering and aberration of light waves as well as a degradation of the optical quality of the eye. The main changes that occur with aging are: 1) reduced diffusion of water from the outside to the inside of the lens and from its cortical to its nuclear zone; 2) crystalline change due to the accumulation of high molecular weight aggregates and insoluble proteins; 3) production of advanced glycation end products (AGEs), lipid accumulation, reduction of reduced glutathione content and destruction of ascorbic acid. Even if effective strategies in preventing cataract onset are not already known, good results have been reached in some cases with oral administration of antioxidant substances such as caffeine, pyruvic acid, epigallocatechin gallate (EGCG), α-lipoic acid and ascorbic acid. Furthermore, methionine sulfoxide reductase A (MSRA) over expression could protect lens cells both in presence and in absence of oxidative stress-induced damage. Nevertheless, promising results have been obtained by reducing ultraviolet-induced oxidative damage.
Collapse
Affiliation(s)
- Nicola Pescosolido
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Barbato
- Department of Sense Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Rossella Giannotti
- Department of Sense Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Chiara Komaiha
- Department of Sense Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Fiammetta Lenarduzzi
- Department of Sense Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
36
|
Bennett TM, Zhou Y, Shiels A. Lens transcriptome profile during cataract development in Mip-null mice. Biochem Biophys Res Commun 2016; 478:988-93. [PMID: 27524245 DOI: 10.1016/j.bbrc.2016.08.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023]
Abstract
Major intrinsic protein or aquaporin-0 (MIP/AQP0) functions as a water channel and a cell-junction molecule in the vertebrate eye lens. Loss of MIP function in the lens leads to degraded optical quality and cataract formation by pathogenic mechanisms that are unclear. Here we have used microarray-hybridization analysis to detect lens transcriptome changes during cataract formation in mice that are functionally null for MIP (Mip-/-). In newborn Mip-/- lenses (P1) 11 genes were up-regulated and 18 were down-regulated (>2-fold, p=<0.05) and a similar number of genes was differentially regulated at P7. The most up-regulated genes (>6-fold) in the Mip-/- lens at P1 included those coding for a mitochondrial translocase (Timmdc1), a matrix metallopeptidase (Mmp2), a Rho GTPase-interacting protein (Ubxn11) and a transcription factor (Twist2). Apart from Mip, the most down-regulated genes (>4-fold) in the Mip-/- lens at P1 included those coding for a proteasome sub-unit (Psmd8), a ribonuclease (Pop4), and a heat-shock protein (Hspb1). Lens fiber cell degeneration in the Mip-/- lens was associated with increased numbers of TUNEL-positive cell nuclei and dramatically elevated levels of calpain-mediated proteolysis of αII-spectrin. However red-ox status, measured by glutathione and free-radical levels, was similar to that of wild-type. These data suggest that while relatively few genes (∼1.5% of the transcriptome) were differentially regulated >2-fold in the Mip-/- lens, calpain hyper-activation acts as a terminal pathogenic event during lens fiber cell death and cataract formation.
Collapse
Affiliation(s)
- Thomas M Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
37
|
Zhou Y, Bennett TM, Shiels A. Lens ER-stress response during cataract development in Mip-mutant mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1433-42. [PMID: 27155571 DOI: 10.1016/j.bbadis.2016.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Major intrinsic protein (MIP) is a functional water-channel (AQP0) that also plays a key role in establishing lens fiber cell architecture. Genetic variants of MIP have been associated with inherited and age-related forms of cataract; however, the underlying pathogenic mechanisms are unclear. Here we have used lens transcriptome profiling by microarray-hybridization and qPCR to identify pathogenic changes during cataract development in Mip-mutant (Lop/+) mice. In postnatal Lop/+ lenses (P7) 99 genes were up-regulated and 75 were down-regulated (>2-fold, p=<0.05) when compared with wild-type. A pathway analysis of up-regulated genes in the Lop/+ lens (P7) was consistent with endoplasmic reticulum (ER)-stress and activation of the unfolded protein response (UPR). The most up-regulated UPR genes (>4-fold) in the Lop/+ lens included Chac1>Ddit3>Atf3>Trib3>Xbp1 and the most down-regulated genes (>5-fold) included two anti-oxidant genes, Hspb1 and Hmox1. Lop/+ lenses were further characterized by abundant TUNEL-positive nuclei within central degenerating fiber cells, glutathione depletion, free-radical overproduction, and calpain hyper-activation. These data suggest that Lop/+ lenses undergo proteotoxic ER-stress induced cell-death resulting from prolonged activation of the Eif2ak3/Perk-Atf4-Ddit3-Chac1 branch of the UPR coupled with severe oxidative-stress.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Giblin JP, Comes N, Strauss O, Gasull X. Ion Channels in the Eye: Involvement in Ocular Pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:157-231. [PMID: 27038375 DOI: 10.1016/bs.apcsb.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology.
Collapse
Affiliation(s)
- Jonathan P Giblin
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Comes
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Xavier Gasull
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
39
|
Kitchen P, Day RE, Salman MM, Conner MT, Bill RM, Conner AC. Beyond water homeostasis: Diverse functional roles of mammalian aquaporins. Biochim Biophys Acta Gen Subj 2015; 1850:2410-21. [PMID: 26365508 DOI: 10.1016/j.bbagen.2015.08.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. SCOPE OF REVIEW AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. MAJOR CONCLUSIONS As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. GENERAL SIGNIFICANCE Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.
Collapse
Affiliation(s)
- Philip Kitchen
- Molecular Organisation and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Rebecca E Day
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Mootaz M Salman
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Matthew T Conner
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Roslyn M Bill
- School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alex C Conner
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
40
|
Shentu X, Miao Q, Tang X, Yin H, Zhao Y. Identification and Functional Analysis of a Novel MIP Gene Mutation Associated with Congenital Cataract in a Chinese Family. PLoS One 2015; 10:e0126679. [PMID: 25946197 PMCID: PMC4422749 DOI: 10.1371/journal.pone.0126679] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/06/2015] [Indexed: 11/18/2022] Open
Abstract
Congenital cataracts are major cause of visual impairment and blindness in children and previous studies have shown about 1/3 of non-syndromic congenital cataracts are inherited. Major intrinsic protein of the lens (MIP), also known as AQP0, plays a critical role in transparency and development of the lens. To date, more than 10 mutations in MIP have been linked to hereditary cataracts in humans. In this study, we investigated the genetic and functional defects underlying a four-generation Chinese family affected with congenital progressive cortical punctate cataract. Mutation screening of the candidate genes revealed a missense mutation at position 448 (c.448G>C) of MIP, which resulted in the substitution of a conserved aspartic acid with histidine at codon 150 (p.D150H). By linkage and haplotype analysis, we obtained positive multipoint logarithm of odds (LOD) scores at microsatellite markers D12S1632 (Zmax = 1.804 at α = 1.000) and D12S1691 (Zmax = 1.806 at α = 1.000), which flanked the candidate locus. The prediction results of PolyPhen-2 and SIFT indicated that the p.D150H mutation was likely to damage to the structure and function of AQP0. The wild type and p.D150H mutant AQP0 were expressed in HeLa cells separately and the immunofluorescence results showed that the WT-AQP0 distributed at the plasma membrane and in cytoplasm, while AQP0-D150H failed to reach the plasma membrane and was mainly retained in the Golgi apparatus. Moreover, protein levels of AQP0-D150H were significantly lower than those of wide type AQP0 in membrane-enriched lysates when the HEK-293T cells were transfected with the same amount of wild type and mutant plasmids individually. Taken together, our data suggest the p.D150H mutation is a novel disease-causing mutation in MIP, which leads to congenital progressive cortical punctate cataract by impairing the trafficking mechanism of AQP0.
Collapse
Affiliation(s)
- Xingchao Shentu
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
- * E-mail:
| | - Qi Miao
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiajing Tang
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Houfa Yin
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Yingying Zhao
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
41
|
Song Z, Wang L, Liu Y, Xiao W. A novel nonsense mutation in the MIP gene linked to congenital posterior polar cataracts in a Chinese family. PLoS One 2015; 10:e0119296. [PMID: 25803033 PMCID: PMC4372439 DOI: 10.1371/journal.pone.0119296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
Purpose To detect the causative mutation for congenital posterior polar cataracts in a five-generation Chinese family and further explore the potential pathogenesis of this disease. Methods Coding exons, with flanking sequences of five candidate genes, were screened using direct DNA sequencing. The identified mutations were confirmed by restriction fragment length polymorphism (RFLP) analysis. A full-length wild-type or an Y219* mutant aquaporin0 (AQP0) fused with an N-terminal FLAG tag, was transfected into HEK293T cells. For co-localization studies, FLAG-WT-AQP0 and Myc-Y219*-AQP0 constructs were co-transfected. Quantitative real-time RT-PCR, western blotting and immunofluorescence studies were performed to determine protein expression levels and sub-cellular localization, respectively. Results We identified a novel nonsense mutation in MIP (c.657 C>G; p.Y219*) (major intrinsic protein gene) that segregates with congenital posterior polar cataract in a Chinese family. This mutation altered a highly conserved tyrosine to a stop codon (Y219*) within AQP0.When FLAG-WT-AQP0 and FLAG-Y219*-AQP0 expression constructs were singly transfected into HEK 293T cells, mRNA expression showed no significant difference between the wild-type and the mutant, while Y219*-AQP0 protein expression was significantly lower than that of wild-type AQP0. Wild-type AQP0 predominantly localized to the plasma membrane, while the mutated protein was abundant within the cytoplasm of HEK293T cells. However, when FLAG-WT-AQP0 andMyc-MU-AQP0were co-expressed, both proteins showed high fluorescence in the cytoplasm. Conclusions The novel nonsense mutation in the MIP gene (c.657 C>G) identified in a Chinese family may cause posterior polar cataracts. The dominant negative effect of the mutated protein on the wild-type protein interfered with the trafficking of wild-type protein to the cell membrane and both the mutant and wild-type protein were trapped in the cytoplasm. Consequently, both wild-type and mutant protein lost their function as a water channel on the cell membrane, and may result in a cataract phenotype. Our data also expands the spectrum of known MIP mutations.
Collapse
Affiliation(s)
- Zixun Song
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Lianqing Wang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Yaping Liu
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Wei Xiao
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
- * E-mail:
| |
Collapse
|
42
|
Chauvigné F, Zapater C, Stavang JA, Taranger GL, Cerdà J, Finn RN. The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. FASEB J 2015; 29:2172-84. [PMID: 25667219 PMCID: PMC4423293 DOI: 10.1096/fj.14-267625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
Water homeostasis and the structural integrity of the vertebrate lens is partially mediated by AQP0 channels. Emerging evidence indicates that external pH may be involved in channel gating. Here we show that a tetraploid teleost, the Atlantic salmon, retains 4 aqp0 genes (aqp0a1, -0a2, -0b1, and -0b2), which are highly, but not exclusively, expressed in the lens. Functional characterization reveals that, although each paralog permeates water efficiently, the permeability is respectively shifted to the neutral, alkaline, or acidic pH in Aqp0a1, -0a2, and -0b1, whereas that of Aqp0b2 is not regulated by external pH. Mutagenesis studies demonstrate that Ser(38), His(39), and His(40) residues in the extracellular transmembrane domain of α-helix 2 facing the water pore are critical for the pH modulation of water transport. To validate these findings, we show that both zebrafish Aqp0a and -0b are functional water channels with respective pH sensitivities toward alkaline or acid pH ranges and that an N-terminal allelic variant (Ser(19)) of Aqp0b exists that abolishes water transport in Xenopus laevis oocytes. The data suggest that the alkaline pH sensitivity is a conserved trait in teleost Aqp0 a-type channels, whereas mammalian AQP0 and some teleost Aqp0 b-type channels display an acidic pH permeation preference.
Collapse
Affiliation(s)
- François Chauvigné
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Cinta Zapater
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Jon Anders Stavang
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Geir Lasse Taranger
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Joan Cerdà
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Roderick Nigel Finn
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| |
Collapse
|
43
|
Manthey AL, Terrell AM, Lachke SA, Polson SW, Duncan MK. Development of novel filtering criteria to analyze RNA-sequencing data obtained from the murine ocular lens during embryogenesis. GENOMICS DATA 2014; 2:369-374. [PMID: 25478318 PMCID: PMC4248573 DOI: 10.1016/j.gdata.2014.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Next-generation sequencing of the transcriptome (RNA-Seq) is a powerful method that allows for the quantitative determination of absolute gene expression, and can be used to investigate how these levels change in response to an experimental manipulation or disease condition. The sensitivity of this method allows one to analyze transcript levels of all expressed genes, including low abundance transcripts that encode important regulatory molecules, providing valuable insights into the global effects of experimental manipulations. However, this increased sensitivity can also make it challenging to ascertain which expression changes are biologically significant. Here, we describe a novel set of filtering criteria - based on biological insights and computational approaches - that were applied to prioritize genes for further study from an extensive number of differentially expressed transcripts in lenses lacking Smad interacting protein 1 (Sip1) obtained via RNA-Seq by Manthey and colleagues in Mechanisms of Development (Manthey et al., 2014). Notably, this workflow allowed an original list of over 7,100 statistically significant differentially expressed genes (DEGs) to be winnowed down to 190 DEGs that likely play a biologically significant role in Sip1 function during lens development. Focusing on genes whose expression was upregulated or downregulated in a manner opposite to what normally occurs during lens development, we identified 78 genes that appear to be strongly dependent on Sip1 function. From these data (GEO accession number GSE49949), it appears that Sip1 regulates multiple genes in the lens that are generally distinct from those regulated by Sip1 in other cellular contexts, including genes whose expression is prominent in the early head ectoderm, from which the lens differentiates. Further, the analysis criteria outlined here represent a filtering scheme that can be used to prioritize genes in future RNA-Seq investigations performed at this stage of ocular lens development.
Collapse
Affiliation(s)
- Abby L. Manthey
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Anne M. Terrell
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Shawn W. Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Corresponding author at: Melinda K. Duncan, Professor, Department of Biological Sciences, University of Delaware, Newark DE 19716.
| |
Collapse
|
44
|
Wada K, Matsushima Y, Tada T, Hasegawa S, Obara Y, Yoshizawa Y, Takahashi G, Hiai H, Shimanuki M, Suzuki S, Saitou J, Yamamoto N, Ichikawa M, Watanabe K, Kikkawa Y. Expression of truncated PITX3 in the developing lens leads to microphthalmia and aphakia in mice. PLoS One 2014; 9:e111432. [PMID: 25347445 PMCID: PMC4210183 DOI: 10.1371/journal.pone.0111432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/28/2014] [Indexed: 11/18/2022] Open
Abstract
Microphthalmia is a severe ocular disorder, and this condition is typically caused by mutations in transcription factors that are involved in eye development. Mice carrying mutations in these transcription factors would be useful tools for defining the mechanisms underlying developmental eye disorders. We discovered a new spontaneous recessive microphthalmos mouse mutant in the Japanese wild-derived inbred strain KOR1/Stm. The homozygous mutant mice were histologically characterized as microphthalmic by the absence of crystallin in the lens, a condition referred to as aphakia. By positional cloning, we identified the nonsense mutation c.444C>A outside the genomic region that encodes the homeodomain of the paired-like homeodomain transcription factor 3 gene (Pitx3) as the mutation responsible for the microphthalmia and aphakia. We examined Pitx3 mRNA expression of mutant mice during embryonic stages using RT-PCR and found that the expression levels are higher than in wild-type mice. Pitx3 over-expression in the lens during developmental stages was also confirmed at the protein level in the microphthalmos mutants via immunohistochemical analyses. Although lens fiber differentiation was not observed in the mutants, strong PITX3 protein signals were observed in the lens vesicles of the mutant lens. Thus, we speculated that abnormal PITX3, which lacks the C-terminus (including the OAR domain) as a result of the nonsense mutation, is expressed in mutant lenses. We showed that the expression of the downstream genes Foxe3, Prox1, and Mip was altered because of the Pitx3 mutation, with large reductions in the lens vesicles in the mutants. Similar profiles were observed by immunohistochemical analysis of these proteins. The expression profiles of crystallins were also altered in the mutants. Therefore, we speculated that the microphthalmos/aphakia in this mutant is caused by the expression of truncated PITX3, resulting in the abnormal expression of downstream targets and lens fiber proteins.
Collapse
Affiliation(s)
- Kenta Wada
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshibumi Matsushima
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Tomoki Tada
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Sayaka Hasegawa
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Yo Obara
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Yoshizawa
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Gou Takahashi
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Hiroshi Hiai
- Medical Innovation Center, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Midori Shimanuki
- Basic Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sari Suzuki
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junichi Saitou
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Naoki Yamamoto
- Institute of Joint Research, Fujita Health University, Toyoake, Japan
| | - Masumi Ichikawa
- Basic Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kei Watanabe
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail:
| |
Collapse
|
45
|
Abstract
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators.
Collapse
|
46
|
Kumari SS, Gandhi J, Mustehsan MH, Eren S, Varadaraj K. Functional characterization of an AQP0 missense mutation, R33C, that causes dominant congenital lens cataract, reveals impaired cell-to-cell adhesion. Exp Eye Res 2013; 116:371-85. [PMID: 24120416 DOI: 10.1016/j.exer.2013.09.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/30/2013] [Indexed: 01/25/2023]
Abstract
Aquaporin 0 (AQP0) performs dual functions in the lens fiber cells, as a water pore and as a cell-to-cell adhesion molecule. Mutations in AQP0 cause severe lens cataract in both humans and mice. An arginine to cysteine missense mutation at amino acid 33 (R33C) produced congenital autosomal dominant cataract in a Chinese family for five generations. We re-created this mutation in wild type human AQP0 (WT-AQP0) cDNA by site-directed mutagenesis, and cloned and expressed the mutant AQP0 (AQP0-R33C) in heterologous expression systems. Mutant AQP0-R33C showed proper trafficking and membrane localization like WT-AQP0. Functional studies conducted in Xenopus oocytes showed no significant difference (P > 0.05) in water permeability between AQP0-R33C and WT-AQP0. However, the cell-to-cell adhesion property of AQP0-R33C was significantly reduced (P < 0.001) compared to that of WT-AQP0, indicated by cell aggregation and cell-to-cell adhesion assays. Scrape-loading assay using Lucifer Yellow dye showed reduction in cell-to-cell adhesion affecting gap junction coupling (P < 0.001). The data provided suggest that this mutation might not have caused significant alterations in protein folding since there was no obstruction in protein trafficking or water permeation. Reduction in cell-to-cell adhesion and development of cataract suggest that the conserved positive charge of Extracellular Loop A may play an important role in bringing fiber cells closer. The proposed schematic models illustrate that cell-to-cell adhesion elicited by AQP0 is vital for lens transparency and homeostasis.
Collapse
Affiliation(s)
- Sindhu S Kumari
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | | | | | | | | |
Collapse
|
47
|
Watanabe K, Wada K, Ohashi T, Okubo S, Takekuma K, Hashizume R, Hayashi JI, Serikawa T, Kuramoto T, Kikkawa Y. A 5-bp insertion in Mip causes recessive congenital cataract in KFRS4/Kyo rats. PLoS One 2012; 7:e50737. [PMID: 23226368 PMCID: PMC3511373 DOI: 10.1371/journal.pone.0050737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022] Open
Abstract
We discovered a new cataract mutation, kfrs4, in the Kyoto Fancy Rat Stock (KFRS) background. Within 1 month of birth, all kfrs4/kfrs4 homozygotes developed cataracts, with severe opacity in the nuclei of the lens. In contrast, no opacity was observed in the kfrs4/+ heterozygotes. We continued to observe these rats until they reached 1 year of age and found that cataractogenesis did not occur in kfrs4/+ rats. To define the histological defects in the lenses of kfrs4 rats, sections of the eyes of these rats were prepared. Although the lenses of kfrs4/kfrs4 homozygotes showed severely disorganised fibres and vacuolation, the lenses of kfrs4/+ heterozygotes appeared normal and similar to those of wild-type rats. We used positional cloning to identify the kfrs4 mutation. The mutation was mapped to an approximately 9.7-Mb region on chromosome 7, which contains the Mip gene. This gene is responsible for a dominant form of cataract in humans and mice. Sequence analysis of the mutant-derived Mip gene identified a 5-bp insertion. This insertion is predicted to inactivate the MIP protein, as it produces a frameshift that results in the synthesis of 6 novel amino acid residues and a truncated protein that lacks 136 amino acids in the C-terminal region, and no MIP immunoreactivity was observed in the lens fibre cells of kfrs4/kfrs4 homozygous rats using an antibody that recognises the C- and N-terminus of MIP. In addition, the kfrs4/+ heterozygotes showed reduced expression of Mip mRNA and MIP protein and the kfrs4/kfrs4 homozygotes showed no expression in the lens. These results indicate that the kfrs4 mutation conveys a loss-of-function, which leads to functional inactivation though the degradation of Mip mRNA by an mRNA decay mechanism. Therefore, the kfrs4 rat represents the first characterised rat model with a recessive mutation in the Mip gene.
Collapse
Affiliation(s)
- Kei Watanabe
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kenta Wada
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Tomoko Ohashi
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Saki Okubo
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Kensuke Takekuma
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Ryoichi Hashizume
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Jun-Ichi Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail:
| |
Collapse
|
48
|
Öberg F, Hedfalk K. Recombinant production of the human aquaporins in the yeastPichia pastoris(Invited Review). Mol Membr Biol 2012; 30:15-31. [DOI: 10.3109/09687688.2012.665503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Hooker L, Smoczer C, KhosrowShahian F, Wolanski M, Crawford MJ. Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. Dev Dyn 2012; 241:1487-505. [PMID: 22826267 DOI: 10.1002/dvdy.23836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Unexpected phenotypes resulting from morpholino-mediated translational knockdown of Pitx3 in Xenopus laevis required further investigation regarding the genetic networks in which the gene might play a role. Microarray analysis was, therefore, used to assess global transcriptional changes downstream of Pitx3. RESULTS From the large data set generated, selected candidate genes were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization. CONCLUSIONS We have identified four genes as likely direct targets of Pitx3 action: Pax6, β Crystallin-b1 (Crybb1), Hes7.1, and Hes4. Four others show equivocal promise worthy of consideration: Vent2, and Ripply2 (aka Ledgerline or Stripy), eFGF and RXRα. We also describe the expression pattern of additional and novel genes that are Pitx3-sensitive but that are unlikely to be direct targets.
Collapse
Affiliation(s)
- Lara Hooker
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | | | | | | | | |
Collapse
|
50
|
Abstract
The aquaporins are a family of membrane water channels, some of which also transport glycerol. They are involved in a wide range of physiological functions (including water/salt homeostasis, exocrine fluid secretion, and epidermal hydration) and human diseases (including glaucoma, cancer, epilepsy, and obesity). At the cellular level, aquaporin-mediated osmotic water transport across cell plasma membranes facilitates transepithelial fluid transport, cell migration, and neuroexcitation; aquaporin-mediated glycerol transport regulates cell proliferation, adipocyte metabolism, and epidermal water retention. Genetic diseases caused by loss-of-function mutations in aquaporins include nephrogenic diabetes insipidus and congenital cataracts. The neuroinflammatory demyelinating disease neuromyelitis optica is marked by pathogenic autoantibodies against astrocyte water channel aquaporin-4. There remain broad opportunities for the development of aquaporin-based diagnostics and therapeutics. Disease-relevant aquaporin polymorphisms are beginning to be explored. There is great promise in the development of small-molecule aquaporin modulators for therapy of some types of refractory edema, brain swelling, neuroinflammation, glaucoma, epilepsy, cancer, pain, and obesity.
Collapse
Affiliation(s)
- A S Verkman
- Department of Medicine, University of California, San Francisco, California 94143-0521, USA.
| |
Collapse
|