1
|
Qu W, Guo Y, Xu Y, Zhang J, Wang Z, Ding C, Pan Y. Advance in strategies to build efficient vaccines against tuberculosis. Front Vet Sci 2022; 9:955204. [PMID: 36504851 PMCID: PMC9731747 DOI: 10.3389/fvets.2022.955204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis is a chronic consumptive infectious disease, which can cause great damage to human and animal health all over the world. The emergence of multi-drug resistant strains, the unstable protective effect of Bacillus Calmette-Guérin (BCG) vaccine on adults, and the mixed infection with HIV all warn people to exploit new approaches for conquering tuberculosis. At present, there has been significant progress in developing tuberculosis vaccines, such as improved BCG vaccine, subunit vaccine, DNA vaccine, live attenuated vaccine and inactivated vaccine. Among these candidate vaccines, there are some promising vaccines to improve or replace BCG vaccine effect. Meanwhile, the application of adjuvants, prime-boost strategy, immunoinformatic tools and targeting components have been studied concentratedly, and verified as valid means of raising the efficiency of tuberculosis vaccines as well. In this paper, the latest advance in tuberculosis vaccines in recent years is reviewed to provide reliable information for future tuberculosis prevention and treatment.
Collapse
Affiliation(s)
- Wei Qu
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yinhui Guo
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yan Xu
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Jie Zhang
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zongchao Wang
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Chaoyue Ding
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China,*Correspondence: Yuanhu Pan
| |
Collapse
|
2
|
Toulmin SA, Bhadiadra C, Paris AJ, Lin JH, Katzen J, Basil MC, Morrisey EE, Worthen GS, Eisenlohr LC. Type II alveolar cell MHCII improves respiratory viral disease outcomes while exhibiting limited antigen presentation. Nat Commun 2021; 12:3993. [PMID: 34183650 PMCID: PMC8239023 DOI: 10.1038/s41467-021-23619-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Type II alveolar cells (AT2s) are critical for basic respiratory homeostasis and tissue repair after lung injury. Prior studies indicate that AT2s also express major histocompatibility complex class II (MHCII) molecules, but how MHCII expression by AT2s is regulated and how it contributes to host defense remain unclear. Here we show that AT2s express high levels of MHCII independent of conventional inflammatory stimuli, and that selective loss of MHCII from AT2s in mice results in modest worsening of respiratory virus disease following influenza and Sendai virus infections. We also find that AT2s exhibit MHCII presentation capacity that is substantially limited compared to professional antigen presenting cells. The combination of constitutive MHCII expression and restrained antigen presentation may position AT2s to contribute to lung adaptive immune responses in a measured fashion, without over-amplifying damaging inflammation.
Collapse
Affiliation(s)
- Sushila A. Toulmin
- grid.239552.a0000 0001 0680 8770Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Chaitali Bhadiadra
- grid.239552.a0000 0001 0680 8770Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Andrew J. Paris
- grid.25879.310000 0004 1936 8972Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jeffrey H. Lin
- grid.25879.310000 0004 1936 8972Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jeremy Katzen
- grid.25879.310000 0004 1936 8972Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Maria C. Basil
- grid.25879.310000 0004 1936 8972Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA
| | - Edward E. Morrisey
- grid.25879.310000 0004 1936 8972Department of Medicine, Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Penn Institute for Regenerative Medicine, Perelman School of Medicine, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - G. Scott Worthen
- grid.25879.310000 0004 1936 8972Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA ,grid.239552.a0000 0001 0680 8770Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Laurence C. Eisenlohr
- grid.239552.a0000 0001 0680 8770Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
3
|
Deng J, Lu C, Liu C, Oveissi S, Fairlie WD, Lee EF, Bilsel P, Puthalakath H, Chen W. Influenza A virus infection-induced macroautophagy facilitates MHC class II-restricted endogenous presentation of an immunodominant viral epitope. FEBS J 2020; 288:3164-3185. [PMID: 33830641 DOI: 10.1111/febs.15654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
CD4+ T cells recognize peptides presented by major histocompatibility complex class II molecules (MHC-II). These peptides are generally derived from exogenous antigens. Macroautophagy has been reported to promote endogenous antigen presentation in viral infections. However, whether influenza A virus (IAV) infection-induced macroautophagy also leads to endogenous antigen presentation through MHC-II is still debated. In this study, we show that IAV infection leads to endogenous presentation of an immunodominant viral epitope NP311-325 by MHC-II to CD4+ T cells. Mechanistically, such MHC-II-restricted endogenous IAV antigen presentation requires de novo protein synthesis as it is inhibited by the protein synthesis inhibitor cycloheximide, and a functional ER-Golgi network as it is totally blocked by Brefeldin A. These results indicate that MHC-II-restricted endogenous IAV antigen presentation is dependent on de novo antigen and/or MHC-II synthesis, and transportation through the ER-Golgi network. Furthermore, such endogenous IAV antigen presentation by MHC-II is enhanced by TAP deficiency, indicating some antigenic peptides are of cytosolic origin. Most importantly, the bulk of such MHC-II-restricted endogenous IAV antigen presentation is blocked by autophagy inhibitors (3-MA and E64d) and deletion of autophagy-related genes, such as Beclin1 and Atg7. We have further demonstrated that in dendritic cells, IAV infection prevents autophagosome-lysosome fusion and promotes autophagosome fusion with MHC class II compartment (MIIC), which likely promotes endogenous IAV antigen presentation by MHC-II. Our results provide strong evidence that IAV infection-induced autophagosome formation facilitates endogenous IAV antigen presentation by MHC-II to CD4+ T cells. The implication for influenza vaccine design is discussed.
Collapse
Affiliation(s)
- Jieru Deng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - Chunni Lu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,School of Medicine, Deakin University, Waurn Ponds, Vic., Australia
| | - Chuanxin Liu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - Sara Oveissi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Erinna F Lee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | | | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
4
|
Forsyth KS, Roy NH, Peauroi E, DeHaven BC, Wold ED, Hersperger AR, Burkhardt JK, Eisenlohr LC. Ectromelia-encoded virulence factor C15 specifically inhibits antigen presentation to CD4+ T cells post peptide loading. PLoS Pathog 2020; 16:e1008685. [PMID: 32745153 PMCID: PMC7425992 DOI: 10.1371/journal.ppat.1008685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/13/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
Smallpox and monkeypox pose severe threats to human health. Other orthopoxviruses are comparably virulent in their natural hosts, including ectromelia, the cause of mousepox. Disease severity is linked to an array of immunomodulatory proteins including the B22 family, which has homologs in all pathogenic orthopoxviruses but not attenuated vaccine strains. We demonstrate that the ectromelia B22 member, C15, is necessary and sufficient for selective inhibition of CD4+ but not CD8+ T cell activation by immunogenic peptide and superantigen. Inhibition is achieved not by down-regulation of surface MHC- II or co-stimulatory protein surface expression but rather by interference with antigen presentation. The appreciable outcome is interference with CD4+ T cell synapse formation as determined by imaging studies and lipid raft disruption. Consequently, CD4+ T cell activating stimulus shifts to uninfected antigen-presenting cells that have received antigen from infected cells. This work provides insight into the immunomodulatory strategies of orthopoxviruses by elucidating a mechanism for specific targeting of CD4+ T cell activation, reflecting the importance of this cell type in control of the virus.
Collapse
Affiliation(s)
- Katherine S. Forsyth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elise Peauroi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian C. DeHaven
- Department of Biology, La Salle University, Philadelphia, Pennsylvania, United States of America
| | - Erik D. Wold
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam R. Hersperger
- Department of Biology, Albright College, Reading, Pennsylvania, United States of America
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Laurence C. Eisenlohr
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Morales J, Barrera-Avalos C, Castro C, Castillo S, Barrientos C, Robles-Planells C, López X, Torres E, Montoya M, Cortez-San Martín M, Riquelme D, Escobar A, Fernández R, Imarai M, Sauma D, Rojo LE, Leiva-Salcedo E, Acuña-Castillo C. Dead Tumor Cells Expressing Infectious Salmon Anemia Virus Fusogenic Protein Favor Antigen Cross-Priming In Vitro. Front Immunol 2017; 8:1170. [PMID: 29062313 PMCID: PMC5640808 DOI: 10.3389/fimmu.2017.01170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022] Open
Abstract
Antigen cross-presentation is a crucial step in the assembly of an antitumor immune response leading to activation of naïve CD8 T cells. This process has been extensively used in clinical trials, in which dendritic cells generated in vitro are loaded with tumor antigens and then autotransplanted to the patients. Recently, the use of autologous transplant of dendritic cells fused with dying tumor cells has demonstrated good results in clinical studies. In this work, we generated a similar process in vivo by treating mice with dead tumor cells [cell bodies (CBs)] expressing the fusogenic protein of the infectious salmon anemia virus (ISAV). ISAV fusion protein retains its fusogenic capability when is expressed on mammalian cells in vitro and the CBs expressing it facilitates DCs maturation, antigen transfer by antigen-presenting cells, and increase cross-presentation by DCs in vitro. Additionally, we observed in the melanoma model that CBs with or without ISAV fusion protein reduce tumor growth in prophylactic treatment; however, only ISAV expressing CBs showed an increase CD4 and CD8 cells in spleen. Overall, our results suggest that CBs could be used as a complement with other type of strategies to amplify antitumor immune response.
Collapse
Affiliation(s)
- Jonathan Morales
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Carlos Barrera-Avalos
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Carlos Castro
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Stephanie Castillo
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Claudio Barrientos
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Claudia Robles-Planells
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Ximena López
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Ernesto Torres
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Margarita Montoya
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Denise Riquelme
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | | | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Leonel E Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Elias Leiva-Salcedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| |
Collapse
|
6
|
Designing a Novel Multi-epitope DNA- Based Vaccine Against Tuberculosis: In Silico Approach. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.43950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
7
|
Santarelli R, Granato M, Pentassuglia G, Lacconi V, Gilardini Montani MS, Gonnella R, Tafani M, Torrisi MR, Faggioni A, Cirone M. KSHV reduces autophagy in THP-1 cells and in differentiating monocytes by decreasing CAST/calpastatin and ATG5 expression. Autophagy 2016; 12:2311-2325. [PMID: 27715410 DOI: 10.1080/15548627.2016.1235122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously shown that Kaposi sarcoma-associated herpesvirus (KSHV) impairs monocyte differentiation into dendritic cells (DCs). Macroautophagy/autophagy has been reported to be essential in such a differentiating process. Here we extended these studies and found that the impairment of DC formation by KSHV occurs through autophagy inhibition. KSHV indeed reduces CAST (calpastatin) and consequently decreases ATG5 expression in both THP-1 monocytoid cells and primary monocytes. We unveiled a new mechanism put in place by KSHV to escape from immune control. The discovery of viral immune suppressive strategies that contribute to the onset and progression of viral-associated malignancies is of fundamental importance for finding new therapeutic approaches against them.
Collapse
Affiliation(s)
- R Santarelli
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M Granato
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - G Pentassuglia
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - V Lacconi
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | | | - R Gonnella
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M Tafani
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M R Torrisi
- b Istituto Pasteur-Fondazione Cenci Bolognetti , Department of Clinical and Molecular Medicine , Sapienza University of Rome , Rome , Italy.,c Azienda Ospedaliera Sant'Andrea , Rome , Italy
| | - A Faggioni
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - M Cirone
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
8
|
Fonteneau JF, Brilot F, Münz C, Gannagé M. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer. THE JOURNAL OF IMMUNOLOGY 2015; 196:64-71. [PMID: 26608910 DOI: 10.4049/jimmunol.1402664] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/13/2015] [Indexed: 01/13/2023]
Abstract
NY-ESO-1-specific CD4(+) T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4(+) T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4(+) T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4(+) T cells and should be explored during immunotherapy of melanoma.
Collapse
Affiliation(s)
| | - Fabienne Brilot
- Neuroimmunology Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, St. Westmead, New South Wales 2145, Australia
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich 8006, Switzerland
| | - Monique Gannagé
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich 8006, Switzerland; Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva 1211, Switzerland; and Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva 1205, Switzerland
| |
Collapse
|
9
|
Miller MA, Ganesan APV, Luckashenak N, Mendonca M, Eisenlohr LC. Endogenous antigen processing drives the primary CD4+ T cell response to influenza. Nat Med 2015; 21:1216-22. [PMID: 26413780 PMCID: PMC4629989 DOI: 10.1038/nm.3958] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Abstract
By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with MHC class II molecules. Alternative pathways of epitope production have been identified but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome, and gamma-interferon inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Asha Purnima V Ganesan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nancy Luckashenak
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mark Mendonca
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laurence C Eisenlohr
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Annexin A2 promotes phagophore assembly by enhancing Atg16L⁺ vesicle biogenesis and homotypic fusion. Nat Commun 2015; 6:5856. [PMID: 25597631 PMCID: PMC4299943 DOI: 10.1038/ncomms6856] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/13/2014] [Indexed: 12/22/2022] Open
Abstract
Plasma membrane budding of Atg-16L-positive vesicles represents a very early event in the generation of the phagophore and in the process of macroautophagy. Here we show that the membrane curvature-inducing protein annexin A2 contributes to the formation of these vesicles and their fusion to form phagophores. Ultrastructural, proteomic and FACS analyses of Atg16L-positive vesicles reveal that 30% of Atg16L-positive vesicles are also annexin A2-positive. Lipidomic analysis of annexin A2-deficient mouse cells indicates that this protein plays a role in recruiting phosphatidylserine and phosphatidylinositides to Atg16L-positive vesicles. Absence of annexin A2 reduces both vesicle formation and homotypic Atg16L vesicle fusion. Ultimately, a reduction in LC3 flux and dampening of macroautophagy are observed in dendritic cells from Anxa2−/− mice. Together, our analyses highlight the importance of annexin A2 in vesiculation of a population of Atg16L-positive structures from the plasma membrane, and in their homotypic fusion to form phagophore structures. The earliest steps in autophagy are thought to include the budding of Atg16L-containing vesicles from the plasma membrane and their homotypic fusion to form a phagophore. Morozova et al. reveal a role for the membrane curvature-inducing protein Annexin A2 in the formation and fusion of these vesicles.
Collapse
|
11
|
Yuk JM, Jo EK. Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis. Clin Exp Vaccine Res 2014; 3:155-67. [PMID: 25003089 PMCID: PMC4083068 DOI: 10.7774/cevr.2014.3.2.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 01/17/2023] Open
Abstract
Tuberculosis (TB) remains a worldwide health problem, causing around 2 million deaths per year. Despite the bacillus Calmette Guérin vaccine being available for more than 80 years, it has limited effectiveness in preventing TB, with inconsistent results in trials. This highlights the urgent need to develop an improved TB vaccine, based on a better understanding of host-pathogen interactions and immune responses during mycobacterial infection. Recent studies have revealed a potential role for autophagy, an intracellular homeostatic process, in vaccine development against TB, through enhanced immune activation. This review attempts to understand the host innate immune responses induced by a variety of protein antigens from Mycobacterium tuberculosis, and to identify future vaccine candidates against TB. We focus on recent advances in vaccine development strategies, through identification of new TB antigens using a variety of innovative tools. A new understanding of the host-pathogen relationship, and the usefulness of mycobacterial antigens as novel vaccine candidates, will contribute to the design of the next generation of vaccines, and to improving the host protective immune responses while limiting immunopathology during M. tuberculosis infection.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
12
|
Miller MA, Ganesan APV, Eisenlohr LC. Toward a Network Model of MHC Class II-Restricted Antigen Processing. Front Immunol 2013; 4:464. [PMID: 24379819 PMCID: PMC3864185 DOI: 10.3389/fimmu.2013.00464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/03/2013] [Indexed: 11/16/2022] Open
Abstract
The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen processing depicts a straightforward, linear pathway: internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4(+) T cells (TCD4+). Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell.
Collapse
Affiliation(s)
- Michael A. Miller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Asha Purnima V. Ganesan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laurence C. Eisenlohr
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Ratikan JA, Sayre JW, Schaue D. Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int J Radiat Oncol Biol Phys 2013; 87:761-8. [PMID: 24138918 DOI: 10.1016/j.ijrobp.2013.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE This study used chloroquine to direct radiation-induced tumor cell death pathways to harness the antitumor activity of the immune system. METHODS AND MATERIALS Chloroquine given immediately after tumor irradiation increased the cure rate of MCaK breast cancer in C3H mice. Chloroquine blocked radiation-induced autophagy and drove MCaK cells into a more rapid apoptotic and more immunogenic form of cell death. RESULTS Chloroquine treatment made irradiated tumor vaccines superior at inducing strong interferon gamma-associated immune responses in vivo and protecting mice from further tumor challenge. In vitro, chloroquine slowed antigen uptake and degradation by dendritic cells, although T-cell stimulation was unaffected. CONCLUSIONS This study illustrates a novel approach to improve the efficacy of breast cancer radiation therapy by blocking endosomal pathways, which enhances radiation-induced cell death within the field and drives antitumor immunity to assist therapeutic cure. The study illuminates and merges seemingly disparate concepts regarding the importance of autophagy in cancer therapy.
Collapse
Affiliation(s)
- Josephine Anna Ratikan
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | |
Collapse
|
14
|
Hossain A, Radwan FFY, Doonan BP, God JM, Zhang L, Bell PD, Haque A. A possible cross-talk between autophagy and apoptosis in generating an immune response in melanoma. Apoptosis 2013; 17:1066-78. [PMID: 22847295 DOI: 10.1007/s10495-012-0745-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Melanoma is the most aggressive form of skin cancer, responsible for the majority of skin cancer related deaths. Thus, the search for natural molecules which can effectively destroy tumors while promoting immune activation is essential for designing novel therapies against metastatic melanoma. Here, we report for the first time that a natural triterpenoid, Ganoderic acid DM (GA-DM), induces an orchestrated autophagic and apoptotic cell death, as well as enhanced immunological responses via increased HLA class II presentation in melanoma cells. Annexin V staining and flow cytometry showed that GA-DM treatment induced apoptosis of melanoma cells, which was supported by a detection of increased Bax proteins, co-localization and elevation of Apaf-1 and cytochrome c, and a subsequent cleavage of caspases 9 and 3. Furthermore, GA-DM treatment initiated a possible cross-talk between autophagy and apoptosis as evidenced by increased levels of Beclin-1 and LC3 proteins, and their timely interplay with apoptotic and/or anti-apoptotic molecules in melanoma cells. Despite GA-DM's moderate cytotoxicity, viable cells expressed high levels of HLA class II proteins with improved antigen presentation and CD4+ T cell recognition. The antitumor efficacy of GA-DM was also investigated in vivo in murine B16 melanoma model, where GA-DM treatment slowed tumor formation with a significant reduction in tumor volume. Taken together, these findings demonstrate the potential of GA-DM as a natural chemo-immunotherapeutic capable of inducing a possible cross-talk between autophagy and apoptosis, as well as improved immune recognition for sustained melanoma tumor clearance.
Collapse
Affiliation(s)
- Azim Hossain
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB-201, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Tack CJ, Stienstra R, Joosten LAB, Netea MG. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol Rev 2013; 249:239-52. [PMID: 22889226 DOI: 10.1111/j.1600-065x.2012.01145.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of evidence suggests that cytokines of the interleukin-1 (IL-1) family, particularly IL-1β but also IL-1Ra and IL-18, are involved in obesity-associated inflammation. IL-1β is produced via cleavage of pro-IL-1β by caspase-1, which in turn is activated by a multiprotein complex called the inflammasome. The components of the NLRP3 inflammasome are involved in sensing obesity-associated danger signals, both in mice and in human (obese) subjects, with caspase-1 seemingly the most crucial regulator. Autophagy is upregulated in obesity and may function as a mechanism to control IL-1β gene expression in adipose tissue to mitigate chronic inflammation. All these mechanisms are operative in human adipose tissue and appear to be more pronounced in human visceral compared to subcutaneous tissue. In animal studies, blocking caspase-1 activity results in decreased weight gain, decreased inflammation, and improved insulin sensitivity. Human intervention studies with IL-1Ra (anakinra) have reported beneficial effects in patients with diabetes, yet without significant changes in insulin sensitivity. Clearly, the IL-1 family of cytokines, especially IL-1β, plays an important role in obesity-associated inflammation and insulin resistance and may represent a therapeutic target to reverse the detrimental metabolic consequences of obesity.
Collapse
Affiliation(s)
- Cees J Tack
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Goto M, Kuribayashi K, Takahashi Y, Kondoh T, Tanaka M, Kobayashi D, Watanabe N. Identification of autoantibodies expressed in acquired aplastic anaemia. Br J Haematol 2012; 160:359-62. [PMID: 23116149 DOI: 10.1111/bjh.12116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/25/2012] [Indexed: 01/27/2023]
Abstract
Acquired aplastic anaemia (aAA) is recognized as an autoimmune disorder; however, the autoantigens and target cells involved remain elusive. Expression of autoantibodies and their target cells were examined using the haematopoietic cell line K562 and bone marrow stromal cell line hTS-5; 43·5% and 21·7% of aAA expressed autoantibody against K562 and hTS-5 cells, respectively. The autoantigens were identified by serological identification of antigens through recombinant cDNA expression cloning. This study indicates that haematopoietic cells are the targets of immune abnormality in aAA. These autoantibodies may be utilized to distinguish patients associated with immune abnormality from bone marrow failure syndrome.
Collapse
Affiliation(s)
- Maki Goto
- Division of Laboratory Diagnosis, Sapporo Medical University Hospital, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Rosello A, Warnes G, Meier UC. Cell death pathways and autophagy in the central nervous system and its involvement in neurodegeneration, immunity and central nervous system infection: to die or not to die--that is the question. Clin Exp Immunol 2012; 168:52-7. [PMID: 22385237 DOI: 10.1111/j.1365-2249.2011.04544.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Death rules our lives. In this short paper, we summarize new insights into molecular mechanisms of neurodegeneration. Here we review the most important processes of cell death: apoptosis and oncosis. We focus on autophagy, which is pivotal for neuronal homeostasis, in the context of neurodegeneration, infection and immunity. Its dysfunction has been linked to several neurodegenerative diseases such as Parkinson's, Huntington's and Alzheimer's diseases. Our understanding is still incomplete, but may highlight attractive new avenues for the development of treatment strategies to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- A Rosello
- Neuroimmunology Group, Centre for Neuroscience and Trauma, Flow Cytometry Group, Blizard Institute, Queen Mary University of London, Barts and The London, London, UK
| | | | | |
Collapse
|
18
|
Eisenlohr LC, Luckashenak N, Apcher S, Miller MA, Sinnathamby G. Beyond the classical: influenza virus and the elucidation of alternative MHC class II-restricted antigen processing pathways. Immunol Res 2012; 51:237-48. [PMID: 22101673 DOI: 10.1007/s12026-011-8257-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CD4+ T cells (T(CD4+)) are activated by peptides, generally 13-17 amino acids in length, presented at the cell surface in combination with highly polymorphic MHC class II molecules. According to the classical model, these peptides are generated by endosomal digestion of internalized antigen and loaded onto MHC class II molecules in the late endosome. Historically, this "exogenous" pathway has been defined through the extensive use of purified proteins. However, the relatively recent use of clinically relevant antigens, those of influenza virus in our case, has revealed several additional pathways of peptide production, including some that are truly "endogenous", entailing synthesis of the protein within the infected cell. Indeed, some peptides appear to be created only via endogenous processing. The cell biology that underlies these alternative pathways remains poorly understood as do their relative contributions to defence against infectious agents and cancer, and the triggering of autoimmune diseases.
Collapse
Affiliation(s)
- Laurence C Eisenlohr
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
19
|
Lista P, Straface E, Brunelleschi S, Franconi F, Malorni W. On the role of autophagy in human diseases: a gender perspective. J Cell Mol Med 2011; 15:1443-57. [PMID: 21362130 PMCID: PMC3823190 DOI: 10.1111/j.1582-4934.2011.01293.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytopathological features of cells from males and females, i.e. XX and XY isolated cells, have been demonstrated to represent a key variable in the mechanism underlying gender disparity in human diseases. Major insights came from the studies of gender differences in cell fate, e.g. in apoptotic susceptibility. We report here some novel insights recently emerged from literature that are referred as to a cytoprotection mechanism by which cells recycle cytoplasm and dispose of excess or defective organelles, i.e. autophagy. Autophagy and related genes have first been identified in yeast. Orthologue genes have subsequently been found in other organisms, including human beings. This stimulated the research in the field and, thanks to the use of molecular genetics and cell biology in different model systems, autophagy gained the attention of several research groups operating to analyse the pathogenetic mechanisms of human diseases. It remains unclear, however, whether autophagy can exert a protective effect or instead contribute to the pathogenesis of important human diseases. On the basis of the growing importance of sex/gender as key determinant of human pathology and of the known differences between males and females in the onset, progression, drug susceptibility and outcome of a plethora of diseases, the idea that autophagy could represent key and critical factor should be taken into account. In the review, we summarize our current knowledge about the role of autophagy in some paradigmatic human diseases (cancer, neurodegenerative, autoimmune, cardiovascular) and the role of ‘cell sex’ differences in this context.
Collapse
Affiliation(s)
- Pasquale Lista
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanitá, Viale Regina Elena 299, Rome, Italy
| | | | | | | | | |
Collapse
|
20
|
Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J Virol 2011; 85:13185-94. [PMID: 21994453 DOI: 10.1128/jvi.06099-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases. A high risk of chronicity is the major concern of HCV infection, since chronic HCV infection often leads to liver cirrhosis and hepatocellular carcinoma. Infection with the HCV genotype 1 in particular is considered a clinical risk factor for the development of hepatocellular carcinoma, although the molecular mechanisms of the pathogenesis are largely unknown. Autophagy is involved in the degradation of cellular organelles and the elimination of invasive microorganisms. In addition, disruption of autophagy often leads to several protein deposition diseases. Although recent reports suggest that HCV exploits the autophagy pathway for viral propagation, the biological significance of the autophagy to the life cycle of HCV is still uncertain. Here, we show that replication of HCV RNA induces autophagy to inhibit cell death. Cells harboring an HCV replicon RNA of genotype 1b strain Con1 but not of genotype 2a strain JFH1 exhibited an incomplete acidification of the autolysosome due to a lysosomal defect, leading to the enhanced secretion of immature cathepsin B. The suppression of autophagy in the Con1 HCV replicon cells induced severe cytoplasmic vacuolation and cell death. These results suggest that HCV harnesses autophagy to circumvent the harmful vacuole formation and to maintain a persistent infection. These findings reveal a unique survival strategy of HCV and provide new insights into the genotype-specific pathogenicity of HCV.
Collapse
|
21
|
Fu X, Tao L, Zhang X. A short polypeptide from the herpes simplex virus type 2 ICP10 gene can induce antigen aggregation and autophagosomal degradation for enhanced immune presentation. Hum Gene Ther 2011; 21:1687-96. [PMID: 20583863 DOI: 10.1089/hum.2010.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
It has been reported that certain polypeptides derived from aggregation-prone cellular proteins can turn soluble green fluorescent protein (GFP) into aggregates. Here we report our finding that a short peptide derived from a viral gene, ICP10 of herpes simplex virus (HSV)-2, also possesses such a property. A sequence as short as 13 amino acids from the middle region of the gene can convert GFP into an aggregation-prone toxic protein once it is fused to the C terminus. Moreover, this short peptide can direct a surrogate tumor antigen into the autophagosome/lysosome degradation pathway, drastically increasing both MHC class I and class II antigen presentation. The simultaneous induction of both arms of the T cell immune response to the tumor antigen effectively protects the immunized animals from tumor challenge. Designated VIPA (i.e., viral inducer of protein aggregation), this unique viral sequence may represent an attractive candidate as a molecular adjuvant for cancer immunotherapy and for other immunologically preventable diseases.
Collapse
Affiliation(s)
- Xinping Fu
- Department of Biology and Biochemistry, University of Houston, TX 77204, USA
| | | | | |
Collapse
|
22
|
Autophagy facilitates an IFN-γ response and signal transduction. Microbes Infect 2011; 13:888-94. [PMID: 21664983 DOI: 10.1016/j.micinf.2011.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/20/2011] [Indexed: 12/24/2022]
Abstract
Autophagy, that is directly triggered by invaded pathogens and indirectly triggered by IFN-γ, acts as a defense by mediating intracellular microbial recognition and clearance. In addition, autophagy contributes to inflammation by facilitating an IFN-γ response and signal transduction. For immune escape, downregulated autophagy may be a strategy used by microbes.
Collapse
|
23
|
Functional macroautophagy induction by influenza A virus without a contribution to major histocompatibility complex class II-restricted presentation. J Virol 2011; 85:6453-63. [PMID: 21525345 DOI: 10.1128/jvi.02122-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex (MHC) class II-presented peptides can be derived from both exogenous (extracellular) and endogenous (biosynthesized) sources of antigen. Although several endogenous antigen-processing pathways have been reported, little is known about their relative contributions to global CD4(+) T cell responses against complex antigens. Using influenza virus for this purpose, we assessed the role of macroautophagy, a process in which cytosolic proteins are delivered to the lysosome by de novo vesicle formation and membrane fusion. Influenza infection triggered productive macroautophagy, and autophagy-dependent presentation was readily observed with model antigens that naturally traffic to the autophagosome. Furthermore, treatments that enhance or inhibit macroautophagy modulated the level of presentation from these model antigens. However, validated enzyme-linked immunospot (ELISpot) assays of influenza-specific CD4(+) T cells from infected mice using a variety of antigen-presenting cells, including primary dendritic cells, revealed no detectable macroautophagy-dependent component. In contrast, the contribution of proteasome-dependent endogenous antigen processing to the global influenza CD4(+) response was readily appreciated. The contribution of macroautophagy to the MHC class II-restricted response may vary depending upon the pathogen.
Collapse
|
24
|
Clyde K, Glaunsinger BA. Getting the message direct manipulation of host mRNA accumulation during gammaherpesvirus lytic infection. Adv Virus Res 2011; 78:1-42. [PMID: 21040830 DOI: 10.1016/b978-0-12-385032-4.00001-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Gammaherpesvirinae subfamily of herpesviruses comprises lymphotropic viruses, including the oncogenic human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. During lytic infection, gammaherpesviruses manipulate host gene expression to optimize the cellular environment for viral replication and to evade the immune response. Additionally, although a lytically infected cell will itself be killed in the process of viral replication, lytic infection can contribute to pathogenesis by inducing the secretion of paracrine factors with functions in cell survival and proliferation, and angiogenesis. The mechanisms by which these viruses manipulate host gene expression are varied and target the accumulation of cellular mRNAs and their translation, signaling pathways, and protein stability. Here, we discuss how gammaherpesviral proteins directly influence host mRNA biogenesis and stability, either selectively or globally, in order to fine-tune the cellular environment to the advantage of the virus. Appreciation of the mechanisms by which these viruses interface with and adapt normal cellular processes continues to inform our understanding of gammaherpesviral biology and the regulation of mRNA accumulation and turnover in our own cells.
Collapse
Affiliation(s)
- Karen Clyde
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | | |
Collapse
|
25
|
Whitmire JK. Induction and function of virus-specific CD4+ T cell responses. Virology 2011; 411:216-28. [PMID: 21236461 DOI: 10.1016/j.virol.2010.12.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/18/2022]
Abstract
CD4+ T cells - often referred to as T-helper cells - play a central role in immune defense and pathogenesis. Virus infections and vaccines stimulate and expand populations of antigen-specific CD4+ T cells in mice and in man. These virus-specific CD4+ T cells are extremely important in antiviral protection: deficiencies in CD4+ T cells are associated with virus reactivation, generalized susceptibility to opportunistic infections, and poor vaccine efficacy. As described below, CD4+ T cells influence effector and memory CD8+ T cell responses, humoral immunity, and the antimicrobial activity of macrophages and are involved in recruiting cells to sites of infection. This review summarizes a few key points about the dynamics of the CD4+ T cell response to virus infection, the positive role of pro-inflammatory cytokines in the differentiation of virus-specific CD4+ T cells, and new areas of investigation to improve vaccines against virus infection.
Collapse
Affiliation(s)
- Jason K Whitmire
- Carolina Vaccine Institute, The University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Abstract
Pattern recognition receptors detect microbial components and induce innate immune responses, the first line of host defense against infectious agents. However, aberrant activation of immune responses often causes massive inflammation, leading to the development of autoimmune diseases. Therefore, both activation and inactivation of innate immune responses must be strictly controlled. Recent studies have shown that the cellular machinery associated with protein degradation, such as autophagy, is important for the regulation of innate immunity. These studies reveal that autophagy-related proteins are involved in the innate immune response and may contribute to the development of inflammatory disorders.
Collapse
Affiliation(s)
- Tatsuya Saitoh
- Laboratory of Host Defense, World Premiere International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|