1
|
Almeida OAC, de Araujo NO, Mulato ATN, Persinoti GF, Sforça ML, Calderan-Rodrigues MJ, Oliveira JVDC. Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1056082. [PMID: 36844905 PMCID: PMC9948655 DOI: 10.3389/fpls.2022.1056082] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting bacteria (PGPB) represent an eco-friendly alternative to reduce the use of chemical products while increasing the productivity of economically important crops. The emission of small gaseous signaling molecules from PGPB named volatile organic compounds (VOCs) has emerged as a promising biotechnological tool to promote biomass accumulation in model plants (especially Arabidopsis thaliana) and a few crops, such as tomato, lettuce, and cucumber. Rice (Oryza sativa) is the most essential food crop for more than half of the world's population. However, the use of VOCs to improve this crop performance has not yet been investigated. Here, we evaluated the composition and effects of bacterial VOCs on the growth and metabolism of rice. First, we selected bacterial isolates (IAT P4F9 and E.1b) that increased rice dry shoot biomass by up to 83% in co-cultivation assays performed with different durations of time (7 and 12 days). Metabolic profiles of the plants co-cultivated with these isolates and controls (without bacteria and non-promoter bacteria-1003-S-C1) were investigated via 1H nuclear magnetic resonance. The analysis identified metabolites (e.g., amino acids, sugars, and others) with differential abundance between treatments that might play a role in metabolic pathways, such as protein synthesis, signaling, photosynthesis, energy metabolism, and nitrogen assimilation, involved in rice growth promotion. Interestingly, VOCs from IAT P4F9 displayed a more consistent promotion activity and were also able to increase rice dry shoot biomass in vivo. Molecular identification by sequencing the 16S rRNA gene of the isolates IAT P4F9 and E.1b showed a higher identity with Serratia and Achromobacter species, respectively. Lastly, volatilomes of these and two other non-promoter bacteria (1003-S-C1 and Escherichia coli DH5α) were evaluated through headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Compounds belonging to different chemical classes, such as benzenoids, ketones, alcohols, sulfide, alkanes, and pyrazines, were identified. One of these VOCs, nonan-2-one, was validated in vitro as a bioactive compound capable of promoting rice growth. Although further analyses are necessary to properly elucidate the molecular mechanisms, our results suggest that these two bacterial isolates are potential candidates as sources for bioproducts, contributing to a more sustainable agriculture.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Aline Tieppo Nogueira Mulato
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Maurício Luís Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
2
|
Almeida OAC, de Araujo NO, Dias BHS, de Sant’Anna Freitas C, Coerini LF, Ryu CM, de Castro Oliveira JV. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Front Microbiol 2023; 13:951130. [PMID: 36687575 PMCID: PMC9845590 DOI: 10.3389/fmicb.2022.951130] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
Plant diseases caused by phytopathogens result in huge economic losses in agriculture. In addition, the use of chemical products to control such diseases causes many problems to the environment and to human health. However, some bacteria and fungi have a mutualistic relationship with plants in nature, mainly exchanging nutrients and protection. Thus, exploring those beneficial microorganisms has been an interesting and promising alternative for mitigating the use of agrochemicals and, consequently, achieving a more sustainable agriculture. Microorganisms are able to produce and excrete several metabolites, but volatile organic compounds (VOCs) have huge biotechnology potential. Microbial VOCs are small molecules from different chemical classes, such as alkenes, alcohols, ketones, organic acids, terpenes, benzenoids and pyrazines. Interestingly, volatilomes are species-specific and also change according to microbial growth conditions. The interaction of VOCs with other organisms, such as plants, insects, and other bacteria and fungi, can cause a wide range of effects. In this review, we show that a large variety of plant pathogens are inhibited by microbial VOCs with a focus on the in vitro and in vivo inhibition of phytopathogens of greater scientific and economic importance in agriculture, such as Ralstonia solanacearum, Botrytis cinerea, Xanthomonas and Fusarium species. In this scenario, some genera of VOC-producing microorganisms stand out as antagonists, including Bacillus, Pseudomonas, Serratia and Streptomyces. We also highlight the known molecular and physiological mechanisms by which VOCs inhibit the growth of phytopathogens. Microbial VOCs can provoke many changes in these microorganisms, such as vacuolization, fungal hyphal rupture, loss of intracellular components, regulation of metabolism and pathogenicity genes, plus the expression of proteins important in the host response. Furthermore, we demonstrate that there are aspects to investigate by discussing questions that are still not very clear in this research area, especially those that are essential for the future use of such beneficial microorganisms as biocontrol products in field crops. Therefore, we bring to light the great biotechnological potential of VOCs to help make agriculture more sustainable.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno Henrique Silva Dias
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla de Sant’Anna Freitas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,*Correspondence: Juliana Velasco de Castro Oliveira,
| |
Collapse
|
3
|
Powell A, Wilder SL, Housh AB, Scott S, Benoit M, Powell G, Waller S, Guthrie JM, Schueller MJ, Ferrieri RA. Examining effects of rhizobacteria in relieving abiotic crop stresses using carbon-11 radiotracing. PHYSIOLOGIA PLANTARUM 2022; 174:e13675. [PMID: 35316539 PMCID: PMC9310733 DOI: 10.1111/ppl.13675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 06/12/2023]
Abstract
In agriculture, plant growth promoting bacteria (PGPB) are increasingly used for reducing environmental stress-related crop losses through mutualistic actions of these microorganisms, activating physiological and biochemical responses, building tolerances within their hosts. Here we report the use of radioactive carbon-11 (t½ 20.4 min) to examine the metabolic and physiological responses of Zea mays to Azospirillum brasilense (HM053) inoculation while plants were subjected to salinity and low nitrogen stresses. Host metabolism of "new" carbon resources (as 11 C) and physiology including [11 C]-photosynthate translocation were measured in response to imposed growth conditions. Salinity stress caused shortened, dense root growth with a 6-fold increase in foliar [11 C]-raffinose, a potent osmolyte. ICP-MS analyses revealed increased foliar Na+ levels at the expense of K+ . HM053 inoculation relieved these effects, reinstating normal root growth, lowering [11 C]-raffinose levels while increasing [11 C]-sucrose and its translocation to the roots. Na+ levels remained elevated with inoculation, but K+ levels were boosted slightly. Low nitrogen stress yielded longer roots possessing high levels of anthocyanins. Metabolic analysis revealed significant shifts in "new" carbon partitioning into the amino acid pool under low nitrogen stress, with significant increases in foliar [11 C]-glutamate, [11 C]-aspartate, and [11 C]-asparagine, a noted osmoprotectant. 11 CO2 fixation and [11 C]-photosynthate translocation also decreased, limiting carbon supply to roots. However, starch levels in roots were reduced under nitrogen limitation, suggesting that carbon repartitioning could be a compensatory action to support root growth. Finally, inoculation with HM053 re-instated normal root growth, reduced anthocyanin, boosted root starch, and returned 11 C-allocation levels back to those of unstressed plants.
Collapse
Affiliation(s)
- Avery Powell
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - Stacy L. Wilder
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
| | - Alexandra B. Housh
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Chemistry DepartmentUniversity of MissouriColumbiaMissouriUSA
- Interdisciplinary Plant GroupUniversity of MissouriColumbiaMissouriUSA
| | - Stephanie Scott
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | - Mary Benoit
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Division of Plant Sciences and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Garren Powell
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | - Spenser Waller
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - James M. Guthrie
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
| | - Michael J. Schueller
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Chemistry DepartmentUniversity of MissouriColumbiaMissouriUSA
| | - Richard A. Ferrieri
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Chemistry DepartmentUniversity of MissouriColumbiaMissouriUSA
- Interdisciplinary Plant GroupUniversity of MissouriColumbiaMissouriUSA
- Division of Plant Sciences and TechnologyUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
4
|
Minerdi D, Maggini V, Fani R. Volatile organic compounds: from figurants to leading actors in fungal symbiosis. FEMS Microbiol Ecol 2021; 97:6261439. [PMID: 33983430 DOI: 10.1093/femsec/fiab067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Symbiosis involving two (or more) prokaryotic and/or eukaryotic partners is extremely widespread in nature, and it has performed, and is still performing, a key role in the evolution of several biological systems. The interaction between symbiotic partners is based on the emission and perception of a plethora of molecules, including volatile organic compounds (VOCs), synthesized by both prokaryotic and eukaryotic (micro)organisms. VOCs acquire increasing importance since they spread above and below ground and act as infochemicals regulating a very complex network. In this work we review what is known about the VOCs synthesized by fungi prior to and during the interaction(s) with their partners (either prokaryotic or eukaryotic) and their possible role(s) in establishing and maintaining the symbiosis. Lastly, we also describe the potential applications of fungal VOCs from different biotechnological perspectives, including medicinal, pharmaceutical and agronomical.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Department of Agricultural, Forestry, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), Italy
| | - Valentina Maggini
- Department of Biology, Laboratory of Microbial and Molecular Evolution, University of Florence, Via Madonna del Piano 6, Sesto F.no (FI), Italy
| | - Renato Fani
- Department of Biology, Laboratory of Microbial and Molecular Evolution, University of Florence, Via Madonna del Piano 6, Sesto F.no (FI), Italy
| |
Collapse
|
5
|
Del Rosario Cappellari L, Chiappero J, Banchio E. Invisible signals from the underground: A practical method to investigate the effect of microbial volatile organic compounds emitted by rhizobacteria on plant growth. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:388-393. [PMID: 30964236 DOI: 10.1002/bmb.21243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/29/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Rhizobacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria, and this can stimulate plant growth either indirectly or directly. Volatile organic compounds (VOCs) emitted by rhizobacteria have the capacity to promote plant growth as well as perform biocontrol of fungal pathogens. The microbial volatile organic compounds (mVOCs) are characterized by a low molecular weight and a high vapor pressure, which facilitate evaporation and diffusion at normal temperatures and at above-ground and below-ground pressures. mVOCs can travel far from the point of production through the atmosphere, porous soils and liquids, thereby making them ideal infochemicals for mediating interspecific interactions. However, knowledge about the biological and ecological roles of microbial VOCs is still limited compared with that of plant VOCs. Here, we describe a simple and inexpensive laboratory class aimed at biotechnology or soil microbiology students, which uses techniques to increase their understanding of the mechanisms of plant growth promoting rhizobacteria and also illustrate the effects of mVOCs emitted by rhizobacteria on plant growth promotion, as well as evaluating their potential as a biocontrol. The laboratory class is divided into two sessions: an initial 3-hour experimental session and a second 2-hour analytical one. The experimental session involves two separate experiments: one of which is dedicated to illustrating the effect of mVOCs on plant growth parameters, while the second explores the capacity of VOCs as a biocontrol. Also, the class provides students with an opportunity to perform useful assays, draw conclusions from their results, and discuss possible extensions of the study. © 2019 International Union of Biochemistry and Molecular Biology, 47(4):388-393, 2019.
Collapse
Affiliation(s)
| | - Julieta Chiappero
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, RN36 601, Río Cuarto, Córdoba, Argentina
| | - Erika Banchio
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, RN36 601, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
6
|
Direct pathway cloning of the sodorifen biosynthetic gene cluster and recombinant generation of its product in E. coli. Microb Cell Fact 2019; 18:32. [PMID: 30732610 PMCID: PMC6366047 DOI: 10.1186/s12934-019-1080-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 01/15/2023] Open
Abstract
Background Serratia plymuthica WS3236 was selected for whole genome sequencing based on preliminary genetic and chemical screening indicating the presence of multiple natural product pathways. This led to the identification of a putative sodorifen biosynthetic gene cluster (BGC). The natural product sodorifen is a volatile organic compound (VOC) with an unusual polymethylated hydrocarbon bicyclic structure (C16H26) produced by selected strains of S. plymuthica. The BGC encoding sodorifen consists of four genes, two of which (sodA, sodB) are homologs of genes encoding enzymes of the non-mevalonate pathway and are thought to enhance the amounts of available farnesyl pyrophosphate (FPP), the precursor of sodorifen. Proceeding from FPP, only two enzymes are necessary to produce sodorifen: an S-adenosyl methionine dependent methyltransferase (SodC) with additional cyclisation activity and a terpene-cyclase (SodD). Previous analysis of S. plymuthica found sodorifen production titers are generally low and vary significantly among different producer strains. This precludes studies on the still elusive biological function of this structurally and biosynthetically fascinating bacterial terpene. Results Sequencing and mining of the S. plymuthica WS3236 genome revealed the presence of 38 BGCs according to antiSMASH analysis, including a putative sodorifen BGC. Further genome mining for sodorifen and sodorifen-like BGCs throughout bacteria was performed using SodC and SodD as queries and identified a total of 28 sod-like gene clusters. Using direct pathway cloning (DiPaC) we intercepted the 4.6 kb candidate sodorifen BGC from S. plymuthica WS3236 (sodA–D) and transformed it into Escherichia coli BL21. Heterologous expression under the control of the tetracycline inducible PtetO promoter firmly linked this BGC to sodorifen production. By utilizing this newly established expression system, we increased the production yields by approximately 26-fold when compared to the native producer. In addition, sodorifen was easily isolated in high purity by simple head-space sampling. Conclusions Genome mining of all available genomes within the NCBI and JGI IMG databases led to the identification of a wealth of sod-like pathways which may be responsible for producing a range of structurally unknown sodorifen analogs. Introduction of the S. plymuthica WS3236 sodorifen BGC into the fast-growing heterologous expression host E. coli with a very low VOC background led to a significant increase in both sodorifen product yield and purity compared to the native producer. By providing a reliable, high-level production system, this study sets the stage for future investigations of the biological role and function of sodorifen and for functionally unlocking the bioinformatically identified putative sod-like pathways. Electronic supplementary material The online version of this article (10.1186/s12934-019-1080-6) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Matilla MA, Krell T. Plant Growth Promotion and Biocontrol Mediated by Plant-Associated Bacteria. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Hao HT, Zhao X, Shang QH, Wang Y, Guo ZH, Zhang YB, Xie ZK, Wang RY. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens. PLoS One 2016; 11:e0158621. [PMID: 27513952 PMCID: PMC4981348 DOI: 10.1371/journal.pone.0158621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022] Open
Abstract
Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic stress and hormone-related genes were firstly founded response to FZB42 volatiles.
Collapse
Affiliation(s)
- Hai-Ting Hao
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Zhao
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Han Shang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Hong Guo
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Bao Zhang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Kui Xie
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-Yu Wang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Domik D, Magnus N, Piechulla B. Analysis of a new cluster of genes involved in the synthesis of the unique volatile organic compound sodorifen ofSerratia plymuthica4Rx13. FEMS Microbiol Lett 2016; 363:fnw139. [DOI: 10.1093/femsle/fnw139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 02/03/2023] Open
|
10
|
Domik D, Thürmer A, Weise T, Brandt W, Daniel R, Piechulla B. A Terpene Synthase Is Involved in the Synthesis of the Volatile Organic Compound Sodorifen of Serratia plymuthica 4Rx13. Front Microbiol 2016; 7:737. [PMID: 27242752 PMCID: PMC4872519 DOI: 10.3389/fmicb.2016.00737] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022] Open
Abstract
Bacteria release a plethora of volatile organic compounds, including compounds with extraordinary structures. Sodorifen (IUPAC name: 1,2,4,5,6,7,8-heptamethyl-3-methylenebicyclo[3.2.1]oct-6-ene) is a recently identified and unusual volatile hydrocarbon that is emitted by the rhizobacterium Serratia plymuthica 4R×13. Sodorifen comprises a bicyclic ring structure solely consisting of carbon and hydrogen atoms, where every carbon atom of the skeleton is substituted with either a methyl or a methylene group. This unusual feature of sodorifen made a prediction of its biosynthetic origin very difficult and so far its biosynthesis is unknown. To unravel the biosynthetic pathway we performed genome and transcriptome analyses to identify candidate genes. One knockout mutant (SOD_c20750) showed the desired negative sodorifen phenotype. Here it was shown for the first time that this gene is indispensable for the synthesis of sodorifen and strongly supports the hypothesis that sodorifen descends from the terpene metabolism. SOD_c20750 is the first bacterial terpene cyclase isolated from Serratia spp. and Enterobacteriales. Homology modeling revealed a 3D structure, which exhibits a functional role of amino acids for intermediate cation stabilization (W325) and putative proton acception (Y332). Moreover, the size and hydrophobicity of the active site strongly indicates that indeed the enzyme may catalyze the unusual compound sodorifen.
Collapse
Affiliation(s)
- Dajana Domik
- Institute for Biological Sciences, University of Rostock Rostock, Germany
| | - Andrea Thürmer
- Institute of Microbiology and Genetics, Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen Göttingen, Germany
| | | | | | - Rolf Daniel
- Institute of Microbiology and Genetics, Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen Göttingen, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock Rostock, Germany
| |
Collapse
|
11
|
Schenkel D, Lemfack MC, Piechulla B, Splivallo R. A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. FRONTIERS IN PLANT SCIENCE 2015; 6:707. [PMID: 26442022 PMCID: PMC4568395 DOI: 10.3389/fpls.2015.00707] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/24/2015] [Indexed: 05/20/2023]
Abstract
Volatile organic compounds are secondary metabolites emitted by all organisms, especially by plants and microbes. Their role as aboveground signals has been established for decades. Recent evidence suggests that they might have a non-negligible role belowground and might be involved in root-root and root-microbial/pest interactions. Our aim here was to make a comprehensive review of belowground volatile diversity using a meta-analysis approach. At first we synthesized current literature knowledge on plant root volatiles and classified them in terms of chemical diversity. In a second step, relying on the mVOC database of microbial volatiles, we classified volatiles based on their emitters (bacteria vs. fungi) and their specific ecological niche (i.e., rhizosphere, soil). Our results highlight similarities and differences among root and microbial volatiles and also suggest that some might be niche specific. We further explored the possibility that volatiles might be involved in intra- and inter-specific root-root communication and discuss the ecological implications of such scenario. Overall this work synthesizes current knowledge on the belowground volatilome and the potential signaling role of its constituents. It also highlights that the total diversity of belowground volatiles might be orders of magnitude larger that the few hundreds of compounds described to date.
Collapse
Affiliation(s)
- Denis Schenkel
- Institute for Molecular Biosciences, Goethe University FrankfurtFrankfurt, Germany
- Integrative Fungal Research ClusterFrankfurt, Germany
| | - Marie C. Lemfack
- Institute for Biological Sciences, University of RostockRostock, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of RostockRostock, Germany
| | - Richard Splivallo
- Institute for Molecular Biosciences, Goethe University FrankfurtFrankfurt, Germany
- Integrative Fungal Research ClusterFrankfurt, Germany
| |
Collapse
|
12
|
Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP. Biogenic volatile emissions from the soil. PLANT, CELL & ENVIRONMENT 2014; 37:1866-91. [PMID: 24689847 DOI: 10.1111/pce.12340] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 05/18/2023]
Abstract
Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed.
Collapse
Affiliation(s)
- J Peñuelas
- Global Ecology Unit CREAF-CEAB-CSIC-UAB, CSIC, Catalonia, Spain; CREAF, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Hung R, Lee S, Rodriguez-Saona C, Bennett JW. Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana. AMB Express 2014; 4:53. [PMID: 25045602 PMCID: PMC4100562 DOI: 10.1186/s13568-014-0053-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/05/2014] [Indexed: 11/10/2022] Open
Abstract
Fungal volatile organic compounds (VOCs) play important ecophysiological roles in mediating inter-kingdom signaling with arthropods but less is known about their interactions with plants. In this study, Arabidopsis thaliana was used as a model in order to test the physiological effects of 23 common vapor-phase fungal VOCs that included alcohols, aldehydes, ketones, and other chemical classes. After exposure to a shared atmosphere with the 23 individual VOCs for 72 hrs, seeds were assayed for rate of germination and seedling formation; vegetative plants were assayed for fresh weight and chlorophyll concentration. All but five of the VOCs tested (1-decene, 2-n-heptylfuran, nonanal, geosmin and -limonene) had a significant effect in inhibiting either germination, seedling formation or both. Seedling formation was entirely inhibited by exposure to 1-octen-3-one, 2-ethylhexanal, 3-methylbutanal, and butanal. As assayed by a combination of fresh weight and chlorophyll concentration, 2-ethylhexanal had a negative impact on two-week-old vegetative plants. Three other compounds (1-octen-3-ol, 2-ethylhexanal, and 2-heptylfuran) decreased fresh weight alone. Most of the VOCs tested did not change the fresh weight or chlorophyll concentration of vegetative plants. In summary, when tested as single compounds, fungal VOCs affected A. thaliana in positive, negative or neutral ways.
Collapse
|
14
|
Bitas V, Kim HS, Bennett JW, Kang S. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:835-43. [PMID: 23581824 DOI: 10.1094/mpmi-10-12-0249-cr] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Secreted proteins and metabolites play diverse and critical roles in organismal and organism-environment interactions. Volatile organic compounds (VOC) can travel far from the point of production through the atmosphere, porous soils, and liquid, making them ideal info-chemicals for mediating both short- and long-distance intercellular and organismal interactions. Critical ecological roles for animal- and plant-derived VOC in directing animal behaviors and for VOC as a language for plant-to-plant communication and regulators of various physiological processes have been well documented. Similarly, microbial VOC appear to be involved in antagonism, mutualism, intra- and interspecies regulation of cellular and developmental processes, and modification of their surrounding environments. However, the available knowledge of how microbial VOC affect other organisms is very limited. Evidence supporting diverse roles of microbial VOC with the focus on their impact on plant health is reviewed here. Given the vast diversity of microbes in nature and the critical importance of microbial communities associated with plants for their ecology and fitness, systematic exploration of microbial VOC and characterization of their biological functions and ecological roles will likely uncover novel mechanisms for controlling diverse biological processes critical to plant health and will also offer tangible practical benefits in addressing agricultural and environmental problems.
Collapse
Affiliation(s)
- Vasileios Bitas
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
15
|
Weise T, Kai M, Piechulla B. Bacterial ammonia causes significant plant growth inhibition. PLoS One 2013; 8:e63538. [PMID: 23691060 PMCID: PMC3655192 DOI: 10.1371/journal.pone.0063538] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/02/2013] [Indexed: 11/19/2022] Open
Abstract
Many and complex plant-bacteria inter-relationships are found in the rhizosphere, since plants release a variety of photosynthetic exudates from their roots and rhizobacteria produce multifaceted specialized compounds including rich mixtures of volatiles, e.g., the bouquet of Serratia odorifera 4Rx13 is composed of up to 100 volatile organic and inorganic compounds. Here we show that when growing on peptone-rich nutrient medium S. odorifera 4Rx13 and six other rhizobacteria emit high levels of ammonia, which during co-cultivation in compartmented Petri dishes caused alkalization of the neighboring plant medium and subsequently reduced the growth of A. thaliana. It is argued that in nature high-protein resource degradations (carcasses, whey, manure and compost) are also accompanied by bacterial ammonia emission which alters the pH of the rhizosphere and thereby influences organismal diversity and plant-microbe interactions. Consequently, bacterial ammonia emission may be more relevant for plant colonization and growth development than previously thought.
Collapse
Affiliation(s)
- Teresa Weise
- University of Rostock, Institute of Biological Sciences, Rostock, Germany
| | - Marco Kai
- University of Rostock, Institute of Biological Sciences, Rostock, Germany
| | - Birgit Piechulla
- University of Rostock, Institute of Biological Sciences, Rostock, Germany
- * E-mail:
| |
Collapse
|
16
|
Volatile Mediated Interactions Between Bacteria and Fungi in the Soil. J Chem Ecol 2012; 38:665-703. [DOI: 10.1007/s10886-012-0135-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/30/2012] [Accepted: 05/04/2012] [Indexed: 01/18/2023]
|