1
|
Quah Y, Jung S, Ham O, Jeong JS, Kim S, Kim W, Chan JYL, Park SC, Lee SJ, Yu WJ. Rapid quantitative high-throughput mouse embryoid body model for embryotoxicity assessment. Arch Toxicol 2024; 98:3897-3908. [PMID: 39235594 DOI: 10.1007/s00204-024-03845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Individuals are exposed to a wide arrays of hazardous chemicals on a daily basis through various routes, many of which have not undergone comprehensive toxicity assessments. While traditional developmental toxicity tests involving pregnant animals are known for their reliability, they are also associated with high costs and time requirements. Consequently, there is an urgent demand for alternative, cost-efficient, and rapid in vitro testing methods. This study aims to address the challenges related to automating and streamlining the screening of early developmental toxicity of chemicals by introducing a mouse embryoid body test (EBT) model in a 384-ultra low attachment well format. Embryoid bodies (EBs) generated in this format were characterized by a spontaneous differentiation trajectory into cardiac mesoderm by as analyzed by RNA-seq. Assessing prediction accuracy using reference compounds suggested in the ICH S5(R3) guideline and prior studies resulted in the establishment of the acceptance criteria and applicability domain of the EBT model. The results indicated an 84.38% accuracy in predicting the developmental toxicity of 23 positive and 9 negative reference compounds, with an optimized cutoff threshold of 750 µM. Overall, the developed EBT model presents a promising approach for more rapid, high-throughput chemical screening, thereby facilitating well-informed decision-making in environmental management and safety assessments.
Collapse
Affiliation(s)
- Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Soontag Jung
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Onju Ham
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Sangyun Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Woojin Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jireh Yi-Le Chan
- Institute for Advanced Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
2
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Detection of Novel Potential Regulators of Stem Cell Differentiation and Cardiogenesis through Combined Genome-Wide Profiling of Protein-Coding Transcripts and microRNAs. Cells 2021; 10:cells10092477. [PMID: 34572125 PMCID: PMC8469649 DOI: 10.3390/cells10092477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
In vitro differentiation of embryonic stem cells (ESCs) provides a convenient basis for the study of microRNA-based gene regulation that is relevant for early cardiogenic processes. However, to which degree insights gained from in vitro differentiation models can be readily transferred to the in vivo system remains unclear. In this study, we profiled simultaneous genome-wide measurements of mRNAs and microRNAs (miRNAs) of differentiating murine ESCs (mESCs) and integrated putative miRNA-gene interactions to assess miRNA-driven gene regulation. To identify interactions conserved between in vivo and in vitro, we combined our analysis with a recent transcriptomic study of early murine heart development in vivo. We detected over 200 putative miRNA-mRNA interactions with conserved expression patterns that were indicative of gene regulation across the in vitro and in vivo studies. A substantial proportion of candidate interactions have been already linked to cardiogenesis, supporting the validity of our approach. Notably, we also detected miRNAs with expression patterns that closely resembled those of key developmental transcription factors. The approach taken in this study enabled the identification of miRNA interactions in in vitro models with potential relevance for early cardiogenic development. Such comparative approaches will be important for the faithful application of stem cells in cardiovascular research.
Collapse
|
4
|
Asson-Batres MA, Norwood CW. Effects of vitamin A and retinoic acid on mouse embryonic stem cells and their differentiating progeny. Methods Enzymol 2021; 637:341-365. [PMID: 32359652 DOI: 10.1016/bs.mie.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Embryonic development is controlled by retinoids, and one approach that has been used to investigate the mechanisms for retinoid actions in developmental processes has been to study the effects of adding retinoids to cultures of pluripotent embryonic stem cells (ESC). To date, most in vitro retinoid research has been directed at deciphering the actions of all-trans retinoic acid (atRA). atRA is a derivative of all-trans retinol (a.k.a. vitamin A, VA), which mammals can generate via an enzyme-catalyzed pathway. atRA's effects on development result from its (1) activation of receptor complexes (RARs and RXRs) in the nucleus which then bind to and activate RA response elements (RAREs) in genes and (2) its interactions with processes that are initiated in the cytoplasm. While much work has focused on the impact of atRA on cell differentiation, VA, itself, has been shown to exert effects on the maintenance of ESC identity that are not dependent upon classic RA-signaling pathways. In this chapter, we present results from our laboratory and others using well-documented approaches for investigating the effects of retinoids on the differentiation of ESC in vitro and introduce a novel method that uses chemically-defined growth conditions. The merits of each approach are discussed.
Collapse
|
5
|
Gao X, Cui X, Zhang X, Zhao C, Zhang N, Zhao Y, Ren Y, Su C, Ge L, Wu S, Yang J. Differential genetic mutations of ectoderm, mesoderm, and endoderm-derived tumors in TCGA database. Cancer Cell Int 2020; 20:595. [PMID: 33308219 PMCID: PMC7730784 DOI: 10.1186/s12935-020-01678-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/26/2020] [Indexed: 12/02/2022] Open
Abstract
Background In terms of biological behavior, gene regulation, or signaling pathways, there is a certain similarity between tumorigenesis and embryonic development of humans. Three germ layer structure exhibits the distinct ability to form specific tissues and organs. Methods The present study set out to investigate the genetic mutation characteristics of germ layer differentiation-related genes using the tumor cases of the cancer genome atlas (TCGA) database. Results These tumor samples were divided into three groups, including the ectoderm, mesoderm, and endoderm. Children cases less than 9 years old accounted for a larger proportion for the cases in the ectoderm and mesoderm groups; whereas the middle-aged and elderly individuals (from 50 to 89 years old) were more susceptible to tumors of endoderm. There was a better prognosis for the cases of mesoderm, especially the male with the race of White, compared with the other groups. A missense mutation was frequently detected for the cases of ectoderm and endoderm, while deletion mutation was common for that of mesoderm. We could not identify the ectoderm, mesoderm, or endoderm-specific mutated genes or variants with high mutation frequency. However, there was a relatively higher mutation incidence of endoderm markers (GATA6, FOXA2, GATA4, AFP) in the endoderm group, compared with the groups of ectoderm and mesoderm. Additionally, four members (SMO, GLI1, GLI2, GLI3) within the Hedgehog signaling pathway genes showed a relatively higher mutation rate in the endoderm group than the other two groups. Conclusions TCGA tumors of ectoderm, mesoderm, and endoderm groups exhibit the distinct subject distribution, survival status, and genomic alteration characteristics. The synergistic mutation effect of specific genes closely related to embryonic development may contribute to the tumorigenesis of tissues or organs derived from the specific germ layers. This study provides a novel reference for exploring the functional connection between embryogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China. .,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China.
| | - Xiaoteng Cui
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China
| | - Xinxin Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China
| | - Chunyan Zhao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Zhao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China
| | - Chao Su
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China
| | - Lin Ge
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China
| | - Shaoyuan Wu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Heping District Qixiangtai Road No.22, Tianjin, 300070, People's Republic of China. .,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
6
|
Bluhmki T, Traub S, Schruf E, Garnett J, Gantner F, Bischoff D, Heilker R. Differentiation of hiPS Cells into Definitive Endoderm for High-Throughput Screening. Methods Mol Biol 2019; 1994:101-115. [PMID: 31124108 DOI: 10.1007/978-1-4939-9477-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In drug discovery, there is an increasing demand for more physiological in vitro models that recapitulate the disease situation in patients. Human induced pluripotent stem (hiPS) cell-derived model cells could serve this purpose. To date, several directed differentiation approaches have been described to generate definitive endoderm (DE) from hiPS cells, but protocols suitable for drug development and high-throughput screening (HTS) have not been reported yet. In this work, a large-scale expansion of hiPS cells for high-throughput adaption is presented and an optimized stepwise differentiation of hiPS cells into DE cells is described. The produced DE cells were demonstrated to express classical DE markers on the gene expression and protein level. The here described DE cells are multipotent progenitors and act as starting points for a broad spectrum of endodermal model cells in HTS and other areas of drug discovery.
Collapse
Affiliation(s)
- Teresa Bluhmki
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Eva Schruf
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - James Garnett
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Florian Gantner
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Daniel Bischoff
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ralf Heilker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
7
|
Jang S, Choubey S, Furchtgott L, Zou LN, Doyle A, Menon V, Loew EB, Krostag AR, Martinez RA, Madisen L, Levi BP, Ramanathan S. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. eLife 2017; 6:20487. [PMID: 28296635 PMCID: PMC5352225 DOI: 10.7554/elife.20487] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development. DOI:http://dx.doi.org/10.7554/eLife.20487.001
Collapse
Affiliation(s)
- Sumin Jang
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Sandeep Choubey
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Leon Furchtgott
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Biophysics Program, Harvard University, Cambridge, United States
| | - Ling-Nan Zou
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
| | - Adele Doyle
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Vilas Menon
- Allen Institute for Brain Science, Seattle, United States
| | - Ethan B Loew
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | | | | | - Linda Madisen
- Allen Institute for Brain Science, Seattle, United States
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, United States
| | - Sharad Ramanathan
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Allen Institute for Brain Science, Seattle, United States.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States
| |
Collapse
|
8
|
Al Madhoun A, Ali H, AlKandari S, Atizado VL, Akhter N, Al-Mulla F, Atari M. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells. Stem Cell Res Ther 2016; 7:165. [PMID: 27852316 PMCID: PMC5111269 DOI: 10.1186/s13287-016-0426-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/18/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are gaining increasing interest as an alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE) specification is a prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a defined 3D differentiation protocol of WJ-MSCs into DE cells. METHODS WJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch. RESULTS We obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE lineage. CONCLUSIONS In this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing 3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative lineages including liver-like and pancreatic insulin-producing cells.
Collapse
Affiliation(s)
| | - Hamad Ali
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Al-Jabriya, Kuwait
| | - Sarah AlKandari
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | | | - Nadeem Akhter
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Molecular Pathology Unit, Faculty of Medicine, Health Sciences Center, Kuwait University, Al-Jabriya, Kuwait
| | - Maher Atari
- UIC Regenerative Medicine Research Institute, International University of Catalonia, Barcelona, Spain
| |
Collapse
|
9
|
Siltanen C, Yaghoobi M, Haque A, You J, Lowen J, Soleimani M, Revzin A. Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomater 2016; 34:125-132. [PMID: 26774761 DOI: 10.1016/j.actbio.2016.01.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/11/2015] [Accepted: 01/12/2016] [Indexed: 01/17/2023]
Abstract
A major challenge in tissue engineering is to develop robust protocols for differentiating ES and iPS cells to functional adult tissues at a clinically relevant scale. The goal of this study is to develop a high throughput platform for generating bioactive, stem cell-laden microgels to direct differentiation in a well-defined microenvironment. We describe a droplet microfluidics system for fabricating microgels composed of polyethylene glycol and heparin, with tunable geometric, mechanical, and chemical properties, at kHz rates. Heparin-containing hydrogel particles sequestered growth factors Nodal and FGF-2, which are implicated in specifying pluripotent cells to definitive endoderm. Mouse ESCs were encapsulated into heparin microgels with a single dose of Nodal and FGF-2, and expressed high levels of endoderm markers Sox17 and FoxA2 after 5 days. These results highlight the use of microencapsulation for tailoring the stem cell microenvironment to promote directed differentiation, and may provide a straightforward path to large scale bioprocessing in the future. STATEMENT OF SIGNIFICANCE Multicellular spheroids and microtissues are valuable for tissue engineering, but fabrication approaches typically sacrifice either precision or throughput. Microfluidic encapsulation in polymeric biomaterials is a promising technique for rapidly generating cell aggregates with excellent control of microenvironmental parameters. Here we describe the microfluidic fabrication of bioactive, heparin-based microgels, and demonstrate the adsorption of heparin-binding growth factors for enhancing directed differentiation of embryonic stem cells toward endoderm. This approach also facilitated a ∼90-fold decrease in consumption of exogenous growth factors compared to conventional differentiation protocols.
Collapse
|
10
|
Lu W, Fang L, Ouyang B, Zhang X, Zhan S, Feng X, Bai Y, Han X, Kim H, He Q, Wan M, Shi FT, Feng XH, Liu D, Huang J, Songyang Z. Actl6a protects embryonic stem cells from differentiating into primitive endoderm. Stem Cells 2016; 33:1782-93. [PMID: 25802002 DOI: 10.1002/stem.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Actl6a (actin-like protein 6A, also known as Baf53a or Arp4) is a subunit shared by multiple complexes including esBAF, INO80, and Tip60-p400, whose main components (Brg1, Ino80, and p400, respectively) are crucial for the maintenance of embryonic stem cells (ESCs). However, whether and how Actl6a functions in ESCs has not been investigated. ESCs originate from the epiblast (EPI) that is derived from the inner cell mass (ICM) in blastocysts, which also give rise to primitive endoderm (PrE). The molecular mechanisms for EPI/PrE specification remain unclear. In this study, we provide the first evidence that Actl6a can protect mouse ESCs (mESCs) from differentiating into PrE. While RNAi knockdown of Actl6a, which appeared highly expressed in mESCs and downregulated during differentiation, induced mESCs to differentiate towards the PrE lineage, ectopic expression of Actl6a was able to repress PrE differentiation. Our work also revealed that Actl6a could interact with Nanog and Sox2 and promote Nanog binding to pluripotency genes such as Oct4 and Sox2. Interestingly, cells depleted of p400, but not of Brg1 or Ino80, displayed similar PrE differentiation patterns. Mutant Actl6a with impaired ability to bind Tip60 and p400 failed to block PrE differentiation induced by Actl6a dysfunction. Finally, we showed that Actl6a could target to the promoters of key PrE regulators (e.g., Sall4 and Fgf4), repressing their expression and inhibiting PrE differentiation. Our findings uncover a novel function of Actl6a in mESCs, where it acts as a gatekeeper to prevent mESCs from entering into the PrE lineage through a Yin/Yang regulating pattern.
Collapse
Affiliation(s)
- Weisi Lu
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lekun Fang
- Guangdong Gastroenterology Institute, Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Urology, The First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoquan Zhan
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuyang Feng
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaofu Bai
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ma Wan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Feng-Tao Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Davenport C, Diekmann U, Naujok O. A Quick and Efficient Method for the Purification of Endoderm Cells Generated from Human Embryonic Stem Cells. J Vis Exp 2016. [PMID: 26966833 DOI: 10.3791/53655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The differentiation capabilities of pluripotent stem cells such as embryonic stem cells (ESCs) allow a potential therapeutic application for cell replacement therapies. Terminally differentiated cell types could be used for the treatment of various degenerative diseases. In vitro differentiation of these cells towards tissues of the lung, liver and pancreas requires as a first step the generation of definitive endodermal cells. This step is rate-limiting for further differentiation towards terminally matured cell types such as insulin-producing beta cells, hepatocytes or other endoderm-derived cell types. Cells that are committed towards the endoderm lineage highly express a multitude of transcription factors such as FOXA2, SOX17, HNF1B, members of the GATA family, and the surface receptor CXCR4. However, differentiation protocols are rarely 100% efficient. Here, we describe a method for the purification of a CXCR4+ cell population after differentiation into the DE by using magnetic microbeads. This purification additionally removes cells of unwanted lineages. The gentle purification method is quick and reliable and might be used to improve downstream applications and differentiations.
Collapse
Affiliation(s)
| | - Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School;
| |
Collapse
|
12
|
Abstract
Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.
Collapse
|
13
|
Hhex Is Necessary for the Hepatic Differentiation of Mouse ES Cells and Acts via Vegf Signaling. PLoS One 2016; 11:e0146806. [PMID: 26784346 PMCID: PMC4718667 DOI: 10.1371/journal.pone.0146806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Elucidating the molecular mechanisms involved in the differentiation of stem cells to hepatic cells is critical for both understanding normal developmental processes as well as for optimizing the generation of functional hepatic cells for therapy. We performed in vitro differentiation of mouse embryonic stem cells (mESCs) with a null mutation in the homeobox gene Hhex and show that Hhex-/- mESCs fail to differentiate from definitive endoderm (Sox17+/Foxa2+) to hepatic endoderm (Alb+/Dlk+). In addition, hepatic culture elicited a >7-fold increase in Vegfa mRNA expression in Hhex-/- cells compared to Hhex+/+ cells. Furthermore, we identified VEGFR2+/ALB+/CD34- in early Hhex+/+ hepatic cultures. These cells were absent in Hhex-/- cultures. Finally, through manipulation of Hhex and Vegfa expression, gain and loss of expression experiments revealed that Hhex shares an inverse relationship with the activity of the Vegf signaling pathway in supporting hepatic differentiation. In summary, our results suggest that Hhex represses Vegf signaling during hepatic differentiation of mouse ESCs allowing for cell-type autonomous regulation of Vegfr2 activity independent of endothelial cells.
Collapse
|
14
|
Vojnits K, Pan H, Mu X, Li Y. Characterization of an Injury Induced Population of Muscle-Derived Stem Cell-Like Cells. Sci Rep 2015; 5:17355. [PMID: 26611864 PMCID: PMC4661568 DOI: 10.1038/srep17355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/29/2015] [Indexed: 12/16/2022] Open
Abstract
We recently discovered a novel population of stem cells from the injured murine skeletal muscle. These injury induced muscle-derived stem cell-like cells (iMuSCs) are partially reprogrammed from differentiated myogenic cells and display a pluripotent-like state. The iMuSCs exhibit stem cell properties including the ability to differentiate into multiple lineages, such as neurogenic and myogenic differentiations; they also display a superior migration capacity that demonstrating a strong ability of muscle engraftment in vivo. IMuSCs express several pluripotent and myogenic stem cell markers; have the capability to form embryoid bodies and teratomas, and can differentiate into all three germ layers. Moreover, blastocyst microinjection showed that the iMuSCs contributed to chimeric embryos but could not complete germline transmission. Our results indicate that the iMuSCs are in a partially reprogrammed state of pluripotency, which are generated by the microenvironment of injured skeletal muscle.
Collapse
Affiliation(s)
- Kinga Vojnits
- Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston (UTHealth), TX 77030, USA
| | - HaiYing Pan
- Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston (UTHealth), TX 77030, USA
| | - Xiaodong Mu
- Stem Cell Research Center, University of Pittsburgh, Medical School, Pittsburgh, PA 15213, USA
| | - Yong Li
- Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston (UTHealth), TX 77030, USA
| |
Collapse
|
15
|
Wang Z, Li W, Chen T, Yang J, Wen Z, Yan X, Shen T, Liang R. Activin A can induce definitive endoderm differentiation from human parthenogenetic embryonic stem cells. Biotechnol Lett 2015; 37:1711-7. [PMID: 25851951 DOI: 10.1007/s10529-015-1829-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/01/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES As activin/nodal signaling plays a key role in definitive endoderm (DE) differentiation, we have explored activin A-induced differentiation of DE from human parthenogenetic embryonic stem cells (hPESCs). RESULTS Administration of 5 ng activin A/ml had no effect on the expression of markers of DE differentiation. However, higher concentrations of activin A (50 and 100 ng/ml) upregulated Sox17 and Cxcr4, as well upregulating the mesendodermal precursor marker, Brachyury. CONCLUSIONS These findings demonstrate that low dose activin A can maintain the undifferentiated potency of hPESCs, whereas higher doses induce DE differentiation; 50 ng/ml is the optimal concentration for inducing DE from hPESCs.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pimton P, Lecht S, Stabler CT, Johannes G, Schulman ES, Lelkes PI. Hypoxia enhances differentiation of mouse embryonic stem cells into definitive endoderm and distal lung cells. Stem Cells Dev 2014; 24:663-76. [PMID: 25226206 DOI: 10.1089/scd.2014.0343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the effects of hypoxia on spontaneous (SP)- and activin A (AA)-induced definitive endoderm (DE) differentiation of mouse embryonic stem cells (mESCs) and their subsequent differentiation into distal pulmonary epithelial cells. SP differentiation for 6 days of mESCs toward endoderm at hypoxia of 1% O2, but not at 3% or 21% (normoxia), increased the expression of Sox17 and Foxa2 by 31- and 63-fold above maintenance culture, respectively. Treatment of mESCs with 20 ng/mL AA for 6 days under hypoxia further increased the expression of DE marker genes Sox17, Foxa2, and Cxcr4 by 501-, 1,483-, and 126-fold above maintenance cultures, respectively. Transient exposure to hypoxia, as short as 24 h, was sufficient to enhance AA-induced endoderm formation. The involvement of hypoxia-inducible factor (HIF)-1α and reactive oxygen species (ROS) in the AA-induced endoderm enrichment was assessed using HIF-1α(-/-) mESCs and the ROS scavenger N-acetylcysteine (NAC). Under SP conditions, HIF-1α(-/-) mESCs failed to increase the expression of endodermal marker genes but rather shifted toward ectoderm. Hypoxia induced only a marginal potentiation of AA-induced endoderm differentiation in HIF-1α(-/-) mESCs. Treatment of mESCs with AA and NAC led to a dose-dependent decrease in Sox17 and Foxa2 expression. In addition, the duration of exposure to hypoxia in the course of a recently reported lung differentiation protocol resulted in differentially enhanced expression of distal lung epithelial cell marker genes aquaporin 5 (Aqp5), surfactant protein C (Sftpc), and secretoglobin 1a1 (Scgb1a1) for alveolar epithelium type I, type II, and club cells, respectively. Our study is the first to show the effects of in vitro hypoxia on efficient formation of DE and lung lineages. We suggest that the extent of hypoxia and careful timing may be important components of in vitro differentiation bioprocesses for the differential generation of distal lung epithelial cells from pluripotent progenitors.
Collapse
Affiliation(s)
- Pimchanok Pimton
- 1 Department of Biology, School of Science, Walailak University , Nakhon Si Thammarat, Thailand
| | | | | | | | | | | |
Collapse
|
17
|
Li JY, Yu T, Xia ZS, Chen GC, Yuan YH, Zhong W, Zhao LN, Chen QK. Enhanced proliferation in colorectal epithelium of patients with type 2 diabetes correlates with β-catenin accumulation. J Diabetes Complications 2014; 28:689-97. [PMID: 24930713 DOI: 10.1016/j.jdiacomp.2014.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/23/2022]
Abstract
AIMS β-Catenin accumulation promotes proliferation. However, the correlation between proliferation of colorectal epithelium and β-catenin in type 2 diabetes mellitus (DM) patients remains unclear. METHODS Colorectal epithelium samples from distal ends of colorectal adenocarcinomas without histological aberrances were divided into two groups: DM patients with type 2 DM for more than 1year (n=27) and non-DM patients without hyperglycemia (n=20). Samples from patients without colorectal epithelial disease or hyperglycemia served as a control group (n=6). Proliferative index was calculated as the percentage of proliferating cell nuclear antigen positive cells. Wnt/β-catenin signaling was assessed immunohistochemically and phosphorylation of β-catenin was assessed by immunofluorescence. RESULTS Compared with the non-DM or control group, the proliferative index and expression of lactate dehydrogenase A and Wnt/β-catenin signaling were significantly higher in the DM group (all p<0.01). The proliferative index correlated positively with β-catenin expression (Spearman correlation coefficient=0.55; p<0.01). Reduced phosphorylation at serine 33/37 and increased phosphorylation at serine 675 of β-catenin were detected in the DM group (all p<0.01). CONCLUSIONS Enhanced proliferation, accompanied by increased aerobic glycolysis, was detected in colorectal epithelium of patients with diabetes. β-Catenin accumulation with altered phosphorylation correlated with the proliferative changes.
Collapse
Affiliation(s)
- Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Zhong-Sheng Xia
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Guang-Cheng Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yu-Hong Yuan
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Li-Na Zhao
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, People's Republic of China.
| |
Collapse
|
18
|
Xu H, Tsang KS, Wang Y, Chan JC, Xu G, Gao WQ. Unfolded protein response is required for the definitive endodermal specification of mouse embryonic stem cells via Smad2 and β-catenin signaling. J Biol Chem 2014; 289:26290-26301. [PMID: 25092289 DOI: 10.1074/jbc.m114.572560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tremendous efforts have been made to elucidate the molecular mechanisms that control the specification of definitive endoderm cell fate in gene knockout mouse models and ES cell (ESC) differentiation models. However, the impact of the unfolded protein response (UPR), because of the stress of the endoplasmic reticulum on endodermal specification, is not well addressed. We employed UPR-inducing agents, thapsigargin and tunicamycin, in vitro to induce endodermal differentiation of mouse ESCs. Apart from the endodermal specification of ESCs, Western blotting demonstrated the enhanced phosphorylation of Smad2 and nuclear translocation of β-catenin in ESC-derived cells. The inclusion of the endoplasmic reticulum stress inhibitor tauroursodeoxycholic acid to the induction cultures prevented the differentiation of ESCs into definitive endodermal cells even when Activin A was supplemented. Also, the addition of the TGF-β inhibitor SB431542 and the Wnt/β-catenin antagonist IWP-2 negated the endodermal differentiation of ESCs mediated by thapsigargin and tunicamycin. These data suggest that the activation of the UPR appears to orchestrate the induction of the definitive endodermal cell fate of ESCs via both the Smad2 and β-catenin signaling pathways. The prospective regulatory machinery may be helpful for directing ESCs to differentiate into definitive endodermal cells for cellular therapy in the future.
Collapse
Affiliation(s)
- Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and
| | - Kam Sze Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Yonghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences and The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences and The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and.
| |
Collapse
|
19
|
Postma AV, Alders M, Sylva M, Bilardo CM, Pajkrt E, van Rijn RR, Schulte-Merker S, Bulk S, Stefanovic S, Ilgun A, Barnett P, Mannens MMAM, Moorman AFM, Oostra RJ, van Maarle MC. Mutations in the T (brachyury) gene cause a novel syndrome consisting of sacral agenesis, abnormal ossification of the vertebral bodies and a persistent notochordal canal. J Med Genet 2013; 51:90-7. [PMID: 24253444 DOI: 10.1136/jmedgenet-2013-102001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The T gene (brachyury gene) is the founding member of the T-box family of transcription factors and is vital for the formation and differentiation of the mesoderm and the axial development of all vertebrates. RESULTS We report here on four patients from three consanguineous families exhibiting sacral agenesis, a persistent notochordal canal and abnormal ossification of the vertebral bodies, and the identification and characterisation of their underlying genetic defect. Given the consanguineous nature and the similarity of the phenotypes between the three families, we performed homozygosity mapping and identified a common 4.1 Mb homozygous region on chromosome 6q27, containing T, brachyury homologue (mouse) or T. Sequencing of T in the affected individuals led to the identification of a homozygous missense mutation, p.H171R, in the highly conserved T-box. The homozygous mutation results in diminished DNA binding, increased cell growth, and interferes with the normal expression of genes involved in ossification, notochord maintenance and axial mesoderm development. CONCLUSIONS We have identified a shared homozygous mutation in three families in T and linked it to a novel syndrome consisting of sacral agenesis, a persistent notochordal canal and abnormal ossification of the vertebral bodies. We suggest that screening for the ossification of the vertebrae is warranted in patients with sacral agenesis to evaluate the possible causal involvement of T.
Collapse
Affiliation(s)
- A V Postma
- Department of Anatomy, Embryology & Physiology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|