1
|
Shkreta L, Delannoy A, Toutant J, Chabot B. Regulatory interplay between SR proteins governs CLK1 kinase splice variants production. RNA (NEW YORK, N.Y.) 2024; 30:1596-1607. [PMID: 39251328 PMCID: PMC11571805 DOI: 10.1261/rna.080107.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
The CLK1 kinase phosphorylates SR proteins to modulate their splicing regulatory activity. Skipping of alternative exon 4 on the CLK1 pre-mRNA produces a CLK1 variant lacking the catalytic site. Here, we aimed to understand how various SR proteins integrate into the regulatory program that controls CLK1 exon 4 splicing. Previously, we observed that the depletion of SRSF10 promoted the inclusion of CLK1 exon 4. Using the expression of tagged proteins and CRISPR/Cas9-mediated knockouts in HCT116 cells, we now identify TRA2β, TRA2α, SRSF4, SRSF5, SRSF7, SRSF8, and SRSF9 as activators of exon 4 inclusion. In contrast, SRSF3, SRSF10, and SRSF12 elicit exon 4 skipping. Using CRISPR/dCas13Rx and RNA immunoprecipitation assays, we map an enhancer in exon 4 interacting with TRA2β. Notably, CLK1 kinase inhibitors antagonized the repressor activity of HA-SRSF10, HA-SRSF12, and HA-SRSF3. Our results suggest that CLK1 exon 4 inclusion is determined primarily by a balance between the activities of TRA2 proteins and CLK-phosphorylated SRSF3. CLK-phosphorylated SRSF10 and SRSF12 would interact with TRA2 proteins to prevent their enhancer activity, allowing SRSF3 to enforce exon 4 skipping more efficiently. Our study provides insight into the complex regulatory network controlling the alternative splicing of CLK1, which uses CLK1-mediated phosphorylation of SR proteins to regulate the inclusion of catalytic exon 4 in CLK1 transcripts.
Collapse
Affiliation(s)
- Lulzim Shkreta
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Aurélie Delannoy
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Johanne Toutant
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Benoit Chabot
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| |
Collapse
|
2
|
Webster NJG, Kumar D, Wu P. Dysregulation of RNA splicing in early non-alcoholic fatty liver disease through hepatocellular carcinoma. Sci Rep 2024; 14:2500. [PMID: 38291075 PMCID: PMC10828381 DOI: 10.1038/s41598-024-52237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
While changes in RNA splicing have been extensively studied in hepatocellular carcinoma (HCC), no studies have systematically investigated changes in RNA splicing during earlier liver disease. Mouse studies have shown that disruption of RNA splicing can trigger liver disease and we have shown that the splicing factor SRSF3 is decreased in the diseased human liver, so we profiled RNA splicing in liver samples from twenty-nine individuals with no-history of liver disease or varying degrees of non-alcoholic fatty liver disease (NAFLD). We compared our results with three publicly available transcriptome datasets that we re-analyzed for splicing events (SEs). We found many changes in SEs occurred during early liver disease, with fewer events occurring with the onset of inflammation and fibrosis. Many of these early SEs were enriched for SRSF3-dependent events and were associated with SRSF3 binding sites. Mapping the early and late changes to gene ontologies and pathways showed that the genes harboring these early SEs were involved in normal liver metabolism, whereas those harboring late SEs were involved in inflammation, fibrosis and proliferation. We compared the SEs with HCC data from the TCGA and observed that many of these early disease SEs are found in HCC samples and, furthermore, are correlated with disease survival. Changes in splicing factor expression are also observed, which may be associated with distinct subsets of the SEs. The maintenance of these SEs through the multi-year oncogenic process suggests that they may be causative. Understanding the role of these splice variants in metabolic liver disease progression may shed light on the triggers of liver disease progression and the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nicholas J G Webster
- Jennifer Moreno VA Medical Center, San Diego, CA, 92161, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California, San Diego, CA, 92093, USA.
| | - Deepak Kumar
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Panyisha Wu
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| |
Collapse
|
3
|
Zhu Z, Huo F, Zhang J, Shan H, Pei D. Crosstalk between m6A modification and alternative splicing during cancer progression. Clin Transl Med 2023; 13:e1460. [PMID: 37850412 PMCID: PMC10583157 DOI: 10.1002/ctm2.1460] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Background N6-methyladenosine (m6A), the most prevalent internal mRNA modification in eukaryotes, is added by m6A methyltransferases, removed by m6A demethylases and recognised by m6A-binding proteins. This modification significantly influences carious facets of RNA metabolism and plays a pivotal role in cellular and physiological processes. Main body Pre-mRNA alternative splicing, a process that generates multiple splice isoforms from multi-exon genes, contributes significantly to the protein diversity in mammals. Moreover, the presence of crosstalk between m6A modification and alternative splicing, with m6A modifications on pre-mRNAs exerting regulatory control, has been established. The m6A modification modulates alternative splicing patterns by recruiting specific RNA-binding proteins (RBPs) that regulate alternative splicing or by directly influencing the interaction between RBPs and their target RNAs. Conversely, alternative splicing can impact the deposition or recognition of m6A modification on mRNAs. The integration of m6A modifications has expanded the scope of therapeutic strategies for cancer treatment, while alternative splicing offers novel insights into the mechanistic role of m6A methylation in cancer initiation and progression. Conclusion This review aims to highlight the biological functions of alternative splicing of m6A modification machinery and its implications in tumourigenesis. Furthermore, we discuss the clinical relevance of understanding m6A-dependent alternative splicing in tumour therapies.
Collapse
Affiliation(s)
- Zhi‐Man Zhu
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Fu‐Chun Huo
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jian Zhang
- Department of Respiratory MedicineSecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Hong‐Jian Shan
- Department of OrthopedicsThe Affiliated Jiangning Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Dong‐Sheng Pei
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
4
|
Chen X, Liu X, Li QH, Lu BF, Xie BM, Ji YM, Zhao Y. A patient-derived organoid-based study identified an ASO targeting SNORD14E for endometrial cancer through reducing aberrant FOXM1 Expression and β-catenin nuclear accumulation. J Exp Clin Cancer Res 2023; 42:230. [PMID: 37667311 PMCID: PMC10478245 DOI: 10.1186/s13046-023-02801-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Most of the endometrial cancer (EC) patients are diagnosis in early stage with a good prognosis while the patients with locally advanced recurrent or metastatic result in a poor prognosis. Adjuvant therapy could benefit the prognosis of patients with high-risk factors. Unfortunately, the molecular classification of great prognostic value has not yet reached an agreement and need to be further refined. The present study aims to identify new targets that have prognostic value in EC based on the method of EC patient-derived organ-like organs (PDOs), and further investigate their efficacy and mechanism. METHODS The Cancer Genome Atlas (TCGA) database was used to determine SNORD14E expression. The effects of SNORD14E were investigated using CCK8, Transwell, wound-healing assays, and a xenograft model experiment; apoptosis was measured by flow cytometry. Antisense oligonucleotide (ASO) targeting SNORD14E was designed and patient-derived organoids (PDO) models in EC patients was established. A xenograft mouse and PDO model were employed to evaluate the effects of ASO targeting SNORD14E. RNA-seq, Nm-seq, and RNA immunoprecipitation (RIP) experiments were employed to confirm the alternative splicing (AS) and modification induced by SNORD14E. A minigene reporter gene assay was conducted to confirm AS and splicing factors on a variable exon. Actinomycin-d (Act-D) and Reverse Transcription at Low deoxy-ribonucleoside triphosphate concentrations followed by PCR (RTL-P) were utilized to confirm the effects of 2'-O methylation modification on FOXM1. RESULTS We found that SNORD14E was overexpressed in EC tissues and patients with high expressed SNORD14E were distributed in the TCGA biomolecular classification subgroups without difference. Further, SNORD14E could reduce disease-free survival (DFS) and recurrence free survival (RFS) of EC patients. SNORD14E promoted proliferation, migration, and invasion and inhibited the apoptosis of EC cells in vitro. ASOs targeting SNORD14E inhibited cell proliferation, migration, invasion while promoted cell apoptosis. ASOs targeting SNORD14E inhibited tumor growth in the xenograft mouse model. TCGA-UCEC database showed that the proportion of patients with high expression of SNORD14E in middle-high risk and high-risk patients recommended by EMSO-ESGO-ESTRO guidelines for adjuvant therapy is more than 50%. Next, we enrolled 8 cases of high-risk and high-risk EC patients according to EMSO-ESGO-ESTRO guidelines and successfully constructed EC-PDOs. ASOs targeting SNORD14E inhibited the EC-PDO growth. Mechanistically, SNORD14E could recognize the mRNA of FOXM1 and recruit SRSF1 to promote the shearing of the variable exon VIIa of FOXM1, resulting in the overexpression of the FOXM1 malignant subtypes FOXM1b and FOXM1c. In addition, SNORD14E modified FOXM1 mRNA with 2`-O-methylation, which prolonged the half-life of FOXM1 mRNA. The nucleus accumulation of β-catenin caused by aberrant FOXM1 expression led to EC progression. CONCLUSIONS ASO targeting SNORD14E can be an effective treatment for EC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Xin Liu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Qian-Hui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Bing-Feng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Bu-Min Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Yu-Meng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China.
| |
Collapse
|
5
|
Gu Q, Wu J, Xu H, Cao H, Zhang J, Jing C, Wang Z, Du M, Ma R, Feng J. CLASRP oncogene as a novel target for colorectal cancer. Funct Integr Genomics 2023; 23:290. [PMID: 37658940 PMCID: PMC10474993 DOI: 10.1007/s10142-023-01208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Clk4-associated serine/arginine-rich protein (CLASRP), an alternative splicing regulator, may be involved in the development and progression of cancer by regulating the activity of the CDC-like kinase (Clk) family. This study explored the biological function of CLASRP in colorectal cancer (CRC). The expression of CLASRP, which is associated with clinicopathological features, was analysed in CRC tissues and paired noncancer tissues by RT-PCR. The roles of CLASRP were investigated in CRC cells transfected with plasmids or shRNA through proliferation, migration and invasion assays in vitro and a xenograft model in vivo. Apoptosis was analysed using CLASRP-overexpressing CRC cells by western blotting. Clk inhibitors were used to perform functional research on CLASRP in CLASRP-overexpressing CRC cells. CLASRP was significantly upregulated in CRC cell lines, while high CLASRP expression was correlated with metastasis in CRC patients. Functionally, overexpression of CLASRP significantly promoted the proliferation, migration and invasion of CRC cells in vitro and tumour growth in vivo. Mechanistically, the proliferation, migration and invasion of CLASRP-overexpressing CRC cells were inhibited by Clk inhibitors, accompanied by low expression of CLASRP at the gene and protein levels. Clk inhibitors induced apoptosis of CLASRP-overexpressing CRC cells, resulting in direct blockade of cell growth. The expression levels of cleaved caspase 3 and cleaved caspase 8 were increased in CLASRP-overexpressing CRC cells treated with Clk inhibitors. CLASRP might serve as a promotional oncogene in CRC cells and be suppressed by Clk inhibitors through activation of caspase pathways.
Collapse
Affiliation(s)
- Quan Gu
- Nanjing Medical University Affiliated Cancer Hospital and Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 BaiZiTing Road, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Jianzhong Wu
- Nanjing Medical University Affiliated Cancer Hospital and Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 BaiZiTing Road, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Heng Xu
- Jiangsu Provincial Institute of Materia Medica, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Haixia Cao
- Nanjing Medical University Affiliated Cancer Hospital and Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 BaiZiTing Road, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Junying Zhang
- Nanjing Medical University Affiliated Cancer Hospital and Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 BaiZiTing Road, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Changwen Jing
- Nanjing Medical University Affiliated Cancer Hospital and Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 BaiZiTing Road, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Zhuo Wang
- Nanjing Medical University Affiliated Cancer Hospital and Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 BaiZiTing Road, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Mengjie Du
- Jiangsu Provincial Institute of Materia Medica, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Rong Ma
- Nanjing Medical University Affiliated Cancer Hospital and Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 BaiZiTing Road, Nanjing, Jiangsu, 210000, People's Republic of China.
| | - Jifeng Feng
- Nanjing Medical University Affiliated Cancer Hospital and Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 BaiZiTing Road, Nanjing, Jiangsu, 210000, People's Republic of China.
| |
Collapse
|
6
|
Landscape of Alternative Splicing Events Related to Prognosis and Immune Infiltration in Glioma: A Data Analysis and Basic Verification. J Immunol Res 2022; 2022:2671891. [PMID: 35832652 PMCID: PMC9273398 DOI: 10.1155/2022/2671891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background Glioma is a prevalent primary brain cancer with high invasiveness and typical local diffuse infiltration. Alternative splicing (AS), as a pervasive transcriptional regulatory mechanism, amplifies the coding capacity of the genome and promotes the progression of malignancies. This study was aimed at identifying AS events and novel biomarkers associated with survival for glioma. Methods RNA splicing patterns were collected from The Cancer Genome Atlas SpliceSeq database, followed by calculating the percentage of splicing index. Expression profiles and related clinical information of glioma were integrated based on the UCSC Xena database. The AS events in glioma were further analyzed, and glioma prognosis-related splicing factors were identified with the use of bioinformatics analysis and laboratory techniques. Further immune infiltration analysis was performed. Results Altogether, 9028 AS events were discovered. Upon univariate Cox analysis, 425 AS events were found to be related to the survival of patients with glioma, and 42 AS events were further screened to construct the final prognostic model (area under the curve = 0.974). Additionally, decreased expression of the splicing factors including Neuro-Oncological Ventral Antigen 1 (NOVA1), heterogeneous nuclear ribonucleoprotein C (HNRNPC), heterogeneous nuclear ribonucleoprotein L-like protein (HNRNPLL), and RNA-Binding Motif Protein 4 (RBM4) contributed to the poor survival in glioma. The immune infiltration analysis demonstrated that AS events were related to the proportion of immune cells infiltrating in glioma. Conclusions It is of great value for comprehensive consideration of AS events, splicing networks, and related molecular subtype clusters in revealing the underlying mechanism and immune microenvironment remodeling for glioma, which provides clues for the further verification of related therapeutic targets.
Collapse
|
7
|
Cao J, Xiao C, Fong CJTH, Gong J, Li D, Li X, Jie Y, Chong Y. Expression and Regulatory Network Analysis of Function of Small Nucleolar RNA Host Gene 4 in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:297-307. [PMID: 35528985 PMCID: PMC9039712 DOI: 10.14218/jcth.2020.00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND AIMS Long non-coding RNA small nucleolar RNA host genes (SNHGs) play a critical role in the occurrence and development of tumors. In this study, we aimed to investigate the role of SNHG4 in hepatocellular carcinoma (HCC) and its underlining mechanism. METHODS Datasets were acquired from The Cancer Genome Atlas (TCGA) database. lncLocator 2.0 was used to identify the distribution of SNHG4 in HCC cells. Gene expression, Kaplan-Meier survival, microRNA and transcription factor target analyses were performed with the University of Alabama Cancer (UALCAN) Database, Kaplan-Meier Plotter, LinkedOmics, WebGestalt and gene set enrichment analysis, respectively. Gene Ontology and pathway enrichment analyses and assessment of RNA binding proteins were performed by R software, circlncRNAnet and Encyclopedia of RNA Interactomes (ENCORI). In addition, CirclncRNAnet and ENCORI were used to find the correlation between SNHG4 and important proteins, while the prognostic value was assessed with the Human Protein Atlas database and Kaplan-Meier Plotter. RESULTS Expression of SNHG4 in HCC is higher in HCC tissue than in normal healthy liver tissues and is mainly distributed in the nucleus. SNHG4 positively correlated with poor prognosis (p<0.01 for overall survival and recurrence-free survival). Functional enrichment analysis revealed SNHG4 involvement with regulation of ribosomal RNA synthesis and the RNA processing and surveillance pathway. SNHG4 is closely associated with miR-154 and miR-206, transcription factor target E2F family and the signaling pathway for MAPK/ERK and mTOR. U2 auxiliary factor 2 (U2AF2) showed strong correlation with SNHG4, while low-expression of U2AF2 showed good prognosis. CONCLUSIONS Based on our findings, we infer SNHG4 may play a role in the formation of HCC via regulation of tumor-related pathways.
Collapse
Affiliation(s)
- Jing Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuicui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Christ-Jonathan Tsia Hin Fong
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Danyang Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangyong Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Yusheng Jie and Yutian Chong, Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China. ORCID: https://orcid.org/0000-0003-3756-0653 (YJ), https://orcid.org/0000-0001-8215-4393 (YC). Tel: +86-20-8525-2372, Fax: +86-20-8525-2250, E-mail: (YJ), (YC)
| | - Yutian Chong
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Yusheng Jie and Yutian Chong, Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China. ORCID: https://orcid.org/0000-0003-3756-0653 (YJ), https://orcid.org/0000-0001-8215-4393 (YC). Tel: +86-20-8525-2372, Fax: +86-20-8525-2250, E-mail: (YJ), (YC)
| |
Collapse
|
8
|
Chen M, Zhu R, Zhang F, Zhu L. Screening and Identification of Survival-Associated Splicing Factors in Lung Squamous Cell Carcinoma. Front Genet 2022; 12:803606. [PMID: 35126467 PMCID: PMC8811261 DOI: 10.3389/fgene.2021.803606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a disease with high morbidity and mortality. Many studies have shown that aberrant alternative splicing (AS) can lead to tumorigenesis, and splicing factors (SFs) serve as an important function during AS. In this research, we propose an analysis method based on synergy to screen key factors that regulate the initiation and progression of LUSC. We first screened alternative splicing events (ASEs) associated with survival in LUSC patients by bivariate Cox regression analysis. Then an association network consisting of OS-ASEs, SFs, and their targeting relationship was constructed to identify key SFs. Finally, 10 key SFs were selected in terms of degree centrality. The validation on TCGA and cross-platform GEO datasets showed that some SFs were significantly differentially expressed in cancer and paracancer tissues, and some of them were associated with prognosis, indicating that our method is valid and accurate. It is expected that our method would be applied to a wide range of research fields and provide new insights in the future.
Collapse
Affiliation(s)
- Min Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Rui Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Fangzhou Zhang
- School of Materials Science and Engineering, Institute of Materials, Shanghai University, Shanghai, China
- Shaoxing Institute of Technology, Shanghai University, Shanghai, China
- *Correspondence: Fangzhou Zhang , ; Liucun Zhu ,
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Fangzhou Zhang , ; Liucun Zhu ,
| |
Collapse
|
9
|
Shkreta L, Delannoy A, Salvetti A, Chabot B. SRSF10: an atypical splicing regulator with critical roles in stress response, organ development, and viral replication. RNA (NEW YORK, N.Y.) 2021; 27:1302-1317. [PMID: 34315816 PMCID: PMC8522700 DOI: 10.1261/rna.078879.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Serine/arginine splicing factor 10 (SRSF10) is a member of the family of mammalian splicing regulators known as SR proteins. Like several of its SR siblings, the SRSF10 protein is composed of an RNA binding domain (RRM) and of arginine and serine-rich auxiliary domains (RS) that guide interactions with other proteins. The phosphorylation status of SRSF10 is of paramount importance for its activity and is subjected to changes during mitosis, heat-shock, and DNA damage. SRSF10 overexpression has functional consequences in a growing list of cancers. By controlling the alternative splicing of specific transcripts, SRSF10 has also been implicated in glucose, fat, and cholesterol metabolism, in the development of the embryonic heart, and in neurological processes. SRSF10 is also important for the proper expression and processing of HIV-1 and other viral transcripts. We discuss how SRSF10 could become a potentially appealing therapeutic target to combat cancer and viral infections.
Collapse
Affiliation(s)
- Lulzim Shkreta
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Aurélie Delannoy
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Anna Salvetti
- INSERM, U1111, Centre International de Recherche en Infectiologie de Lyon (CIRI), CNRS UMR 5308, Lyon, France
| | - Benoit Chabot
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| |
Collapse
|
10
|
Markolin P, Davidson N, Hirt CK, Chabbert CD, Zamboni N, Schwank G, Krek W, Rätsch G. Identification of HIF-dependent alternative splicing in gastrointestinal cancers and characterization of a long, coding isoform of SLC35A3. Genomics 2021; 113:515-529. [PMID: 33418078 DOI: 10.1016/j.ygeno.2020.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022]
Abstract
Intra-tumor hypoxia is a common feature in many solid cancers. Although transcriptional targets of hypoxia-inducible factors (HIFs) have been well characterized, alternative splicing or processing of pre-mRNA transcripts which occurs during hypoxia and subsequent HIF stabilization is much less understood. Here, we identify many HIF-dependent alternative splicing events after whole transcriptome sequencing in pancreatic cancer cells exposed to hypoxia with and without downregulation of the aryl hydrocarbon receptor nuclear translocator (ARNT), a protein required for HIFs to form a transcriptionally active dimer. We correlate the discovered hypoxia-driven events with available sequencing data from pan-cancer TCGA patient cohorts to select a narrow set of putative biologically relevant splice events for experimental validation. We validate a small set of candidate HIF-dependent alternative splicing events in multiple human gastrointestinal cancer cell lines as well as patient-derived human pancreatic cancer organoids. Lastly, we report the discovery of a HIF-dependent mechanism to produce a hypoxia-dependent, long and coding isoform of the UDP-N-acetylglucosamine transporter SLC35A3.
Collapse
Affiliation(s)
- Philipp Markolin
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland; Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland
| | - Natalie Davidson
- Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland
| | - Christian K Hirt
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zürich, Switzerland
| | - Gerald Schwank
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland; Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Gunnar Rätsch
- Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland.
| |
Collapse
|
11
|
Kim SH, Yang S, Lim KH, Ko E, Jang HJ, Kang M, Suh PG, Joo JY. Prediction of Alzheimer's disease-specific phospholipase c gamma-1 SNV by deep learning-based approach for high-throughput screening. Proc Natl Acad Sci U S A 2021; 118:e2011250118. [PMID: 33397809 PMCID: PMC7826347 DOI: 10.1073/pnas.2011250118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/05/2020] [Indexed: 12/23/2022] Open
Abstract
Exon splicing triggered by unpredicted genetic mutation can cause translational variations in neurodegenerative disorders. In this study, we discover Alzheimer's disease (AD)-specific single-nucleotide variants (SNVs) and abnormal exon splicing of phospholipase c gamma-1 (PLCγ1) gene, using genome-wide association study (GWAS) and a deep learning-based exon splicing prediction tool. GWAS revealed that the identified single-nucleotide variations were mainly distributed in the H3K27ac-enriched region of PLCγ1 gene body during brain development in an AD mouse model. A deep learning analysis, trained with human genome sequences, predicted 14 splicing sites in human PLCγ1 gene, and one of these completely matched with an SNV in exon 27 of PLCγ1 gene in an AD mouse model. In particular, the SNV in exon 27 of PLCγ1 gene is associated with abnormal splicing during messenger RNA maturation. Taken together, our findings suggest that this approach, which combines in silico and deep learning-based analyses, has potential for identifying the clinical utility of critical SNVs in AD prediction.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Neurodegenerative Disease Research Group, 41062 Daegu, Republic of Korea
- Korea Brain Research Institute, 41062 Daegu, Republic of Korea
| | - Sumin Yang
- Neurodegenerative Disease Research Group, 41062 Daegu, Republic of Korea
- Korea Brain Research Institute, 41062 Daegu, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, 41062 Daegu, Republic of Korea
- Korea Brain Research Institute, 41062 Daegu, Republic of Korea
| | - Euiseng Ko
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, 44919 Ulsan, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154
| | - Pann-Ghill Suh
- Korea Brain Research Institute, 41062 Daegu, Republic of Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, 41062 Daegu, Republic of Korea;
- Korea Brain Research Institute, 41062 Daegu, Republic of Korea
| |
Collapse
|
12
|
Babu N, Pinto SM, Biswas M, Subbannayya T, Rajappa M, Mohan SV, Advani J, Rajagopalan P, Sathe G, Syed N, Radhakrishna VD, Muthusamy O, Navani S, Kumar RV, Gopisetty G, Rajkumar T, Radhakrishnan P, Thiyagarajan S, Pandey A, Gowda H, Majumder P, Chatterjee A. Phosphoproteomic analysis identifies CLK1 as a novel therapeutic target in gastric cancer. Gastric Cancer 2020; 23:796-810. [PMID: 32333232 DOI: 10.1007/s10120-020-01062-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Phosphorylation is an important regulatory mechanism of protein activity in cells. Studies in various cancers have reported perturbations in kinases resulting in aberrant phosphorylation of oncoproteins and tumor suppressor proteins. METHODS In this study, we carried out quantitative phosphoproteomic analysis of gastric cancer tissues and corresponding xenograft samples. Using these data, we employed bioinformatics analysis to identify aberrant signaling pathways. We further performed molecular inhibition and silencing of the upstream regulatory kinase in gastric cancer cell lines and validated its effect on cellular phenotype. Through an ex vivo technology utilizing patient tumor and blood sample, we sought to understand the therapeutic potential of the kinase by recreating the tumor microenvironment. RESULTS Using mass spectrometry-based high-throughput analysis, we identified 1,344 phosphosites and 848 phosphoproteins, including differential phosphorylation of 177 proteins (fold change cut-off ≥ 1.5). Our data showed that a subset of differentially phosphorylated proteins belonged to splicing machinery. Pathway analysis highlighted Cdc2-like kinase (CLK1) as upstream kinase. Inhibition of CLK1 using TG003 and CLK1 siRNA resulted in a decreased cell viability, proliferation, invasion and migration as well as modulation in the phosphorylation of SRSF2. Ex vivo experiments which utilizes patient's own tumor and blood to recreate the tumor microenvironment validated the use of CLK1 as a potential target for gastric cancer treatment. CONCLUSIONS Our data indicates that CLK1 plays a crucial role in the regulation of splicing process in gastric cancer and that CLK1 can act as a novel therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | | | - Tejaswini Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Mitra Biotech, Bangalore, 560100, India
| | | | - Sonali V Mohan
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | - Pavithra Rajagopalan
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | - Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | | | | | | | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, 560029, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600020, India
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600020, India
| | | | | | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, 576104, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, 576104, India.,Cancer Precision Medicine, QIMR Berghofer, Royal Brisbane Hospital, Brisbane, QLD, 4029, Australia
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India. .,Manipal Academy of Higher Education, Manipal, 576104, India. .,Mitra Biotech, Bangalore, 560100, India.
| |
Collapse
|
13
|
Meldolesi J. Alternative Splicing by NOVA Factors: From Gene Expression to Cell Physiology and Pathology. Int J Mol Sci 2020; 21:ijms21113941. [PMID: 32486302 PMCID: PMC7312376 DOI: 10.3390/ijms21113941] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
NOVA1 and NOVA2, the two members of the NOVA family of alternative splicing factors, bind YCAY clusters of pre-mRNAs and assemble spliceosomes to induce the maintenance/removal of introns and exons, thus governing the development of mRNAs. Members of other splicing families operate analogously. Activity of NOVAs accounts for up to 700 alternative splicing events per cell, taking place both in the nucleus (co-transcription of mRNAs) and in the cytoplasm. Brain neurons express high levels of NOVAs, with NOVA1 predominant in cerebellum and spinal cord, NOVA2 in the cortex. Among brain physiological processes NOVAs play critical roles in axon pathfinding and spreading, structure and function of synapses, as well as the regulation of surface receptors and voltage-gated channels. In pathology, NOVAs contribute to neurodegenerative diseases and epilepsy. In vessel endothelial cells, NOVA2 is essential for angiogenesis, while in adipocytes, NOVA1 contributes to regulation of thermogenesis and obesity. In many cancers NOVA1 and also NOVA2, by interacting with specific miRNAs and by additional mechanisms, activate oncogenic roles promoting cell proliferation, colony formation, migration, and invasion. In conclusion, NOVAs regulate cell functions of physiological and pathological nature. Single cell identification and distinction, and new therapies addressed to NOVA targets might be developed in the near future.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, San Raffaele Institute and San Raffaele University, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
14
|
Yong H, Zhao W, Zhou X, Liu Z, Tang Q, Shi H, Cheng R, Zhang X, Qiu Z, Zhu J, Feng Z. RNA-Binding Motif 4 (RBM4) Suppresses Tumor Growth and Metastasis in Human Gastric Cancer. Med Sci Monit 2019; 25:4025-4034. [PMID: 31145716 PMCID: PMC6559002 DOI: 10.12659/msm.914513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Dysregulation of the splicing activator, RNA-binding motif 4 (RBM4), has recently been reported to be involved in the progression of several cancers. However, the mechanisms that underpin the activity of RBM4 in gastric cancer (GC) remain unknown. The purpose of our study was to explore how RBM4 affects the biological behavior of GC through in vivo and in vitro experiments. MATERIAL AND METHODS Western blot and flow cytometry analyses were used to investigate the RBM4 protein levels in normal gastric epithelial cells and 5 types of GC cells. Cell Counting Kit-8 assay, flow cytometry analysis, wound-healing, and migration and invasion assays were evaluated in vitro in BGC823 and MGC803 GC cells. A xenograft tumor model was used to assess whether RBM4 inhibits GC growth in vivo. Mitogen-activated protein kinase (MAPK) protein levels were determined using western blot analyses. RESULTS Our study revealed that RBM4 protein was downregulated in GC cells. Re-expression of RBM4 inhibited the proliferation, migration, and invasion of GC cells, while promoting apoptosis. Thus, the overexpression of RBM4 can inhibit tumor growth in GC mouse models. We also report that RBM4 was involved in the activation of MAPK-dependent signaling pathways in human GC. CONCLUSIONS It is hoped that these findings will improve our understanding of GC pathogenesis while also helping us to explore the feasibility of RBM4-targeted therapy for GC treatment.
Collapse
Affiliation(s)
- Hongmei Yong
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xueyi Zhou
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Zhenyun Liu
- Sinobioway Cell Therapy Co., Ltd., Wuhu, Anhui, China (mainland)
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Huichang Shi
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Ronghui Cheng
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Xiao Zhang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhenning Qiu
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jin Zhu
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu, China (mainland)
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
15
|
Jayaram S, Balakrishnan L, Singh M, Zabihi A, Ganesh RA, Mangalaparthi KK, Sonpatki P, Gupta MK, Amaresha CB, Prasad K, Mariswamappa K, Pillai S, Lakshmikantha A, Shah N, Sirdeshmukh R. Identification of a Novel Splice Variant of Neural Cell Adhesion Molecule in Glioblastoma Through Proteogenomics Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:437-448. [PMID: 29927716 DOI: 10.1089/omi.2017.0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Splice variants are known to be important in the pathophysiology of tumors, including the brain cancers. We applied a proteogenomics pipeline to identify splice variants in glioblastoma (GBM, grade IV glioma), a highly malignant brain tumor, using in-house generated mass spectrometric proteomic data and public domain RNASeq dataset. Our analysis led to the identification of a novel exon that maps to the long isoform of Neural cell adhesion molecule 1 (NCAM1), expressed on the surface of glial cells and neurons, important for cell adhesion and cell signaling. The presence of the novel exon is supported with the identification of five peptides spanning it. Additional peptides were also detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel separated proteins from GBM patient tissue, underscoring the presence of the novel peptides in the intact brain protein. The novel exon was detected in the RNASeq dataset in 18 of 25 GBM samples and separately validated in additional 10 GBM tumor tissues using quantitative real-time-polymerase chain reaction (qRT-PCR). Both transcriptomic and proteomic data indicate downregulation of NCAM1, including the novel variant, in GBM. Domain analysis of the novel NCAM1 sequence indicates that the insertion of the novel exon contributes extra low-complexity region in the protein that may be important for protein-protein interactions and hence for cell signaling associated with tumor development. Taken together, the novel NCAM1 variant reported in this study exemplifies the importance of future multiomics research and systems biology applications in GBM.
Collapse
Affiliation(s)
- Savita Jayaram
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,2 Manipal Academy of Higher Education , Manipal, India
| | - Lavanya Balakrishnan
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Manika Singh
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,4 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Azin Zabihi
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Raksha A Ganesh
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Kiran K Mangalaparthi
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,4 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Pranali Sonpatki
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Manoj Kumar Gupta
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,2 Manipal Academy of Higher Education , Manipal, India
| | - Chaitra B Amaresha
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Komal Prasad
- 5 Mazumdar Shaw Medical Center , Narayana Health City, Bangalore, India
| | | | - Shibu Pillai
- 5 Mazumdar Shaw Medical Center , Narayana Health City, Bangalore, India
| | | | - Nameeta Shah
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Ravi Sirdeshmukh
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,2 Manipal Academy of Higher Education , Manipal, India .,3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| |
Collapse
|
16
|
Sheng J, Zhao Q, Zhao J, Zhang W, Sun Y, Qin P, Lv Y, Bai L, Yang Q, Chen L, Qi Y, Zhang G, Zhang L, Gu C, Deng X, Liu H, Meng S, Gu H, Liu Q, Coulson JM, Li X, Sun B, Wang Y. SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance. EBioMedicine 2018; 38:113-126. [PMID: 30429088 PMCID: PMC6306353 DOI: 10.1016/j.ebiom.2018.11.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Radioresistance is the major cause of cancer treatment failure. Additionally, splicing dysregulation plays critical roles in tumorigenesis. However, the involvement of alternative splicing in resistance of cancer cells to radiotherapy remains elusive. We sought to investigate the key role of the splicing factor SRSF1 in the radioresistance in lung cancer. METHODS Lung cancer cell lines, xenograft mice models, and RNA-seq were employed to study the detailed mechanisms of SRSF1 in lung cancer radioresistance. Clinical tumor tissues and TCGA dataset were utilized to determine the expression levels of distinct SRSF1-regulated splicing isoforms. KM-plotter was applied to analyze the survival of cancer patients with various levels of SRSF1-regulated splicing isoforms. FINDINGS Splicing factors were screened to identify their roles in radioresistance, and SRSF1 was found to be involved in radioresistance in cancer cells. The level of SRSF1 is elevated in irradiation treated lung cancer cells, whereas knockdown of SRSF1 sensitizes cancer cells to irradiation. Mechanistically, SRSF1 modulates various cancer-related splicing events, particularly the splicing of PTPMT1, a PTEN-like mitochondrial phosphatase. Reduced SRSF1 favors the production of short isoforms of PTPMT1 upon irradiation, which in turn promotes phosphorylation of AMPK, thereby inducing DNA double-strand break to sensitize cancer cells to irradiation. Additionally, the level of the short isoform of PTPMT1 is decreased in cancer samples, which is correlated to cancer patients' survival. CONCLUSIONS Our study provides mechanistic analyses of aberrant splicing in radioresistance in lung cancer cells, and establishes SRSF1 as a potential therapeutic target for sensitization of patients to radiotherapy.
Collapse
Affiliation(s)
- Junxiu Sheng
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Qingzhi Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China.
| | - Yu Sun
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Pan Qin
- Faculty of electronic information and electrical engineering, Dalian university of Technology, Dalian 116001, China
| | - Yuesheng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Lu Bai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Quan Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Lei Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Ge Zhang
- Department of Immunology, Dalian Medical University, Dalian 116044, China
| | - Lin Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Chundong Gu
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiaoqin Deng
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Hong Gu
- Faculty of electronic information and electrical engineering, Dalian university of Technology, Dalian 116001, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Judy M Coulson
- Cellular & Molecular Physiology Department, University of Liverpool, UKL69 3BX, UK
| | - Xiaoling Li
- Signal Transduction Laboratory, NIEHS, RTP, NC 27709, USA
| | - Bing Sun
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
17
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
18
|
JUM is a computational method for comprehensive annotation-free analysis of alternative pre-mRNA splicing patterns. Proc Natl Acad Sci U S A 2018; 115:E8181-E8190. [PMID: 30104386 DOI: 10.1073/pnas.1806018115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alternative pre-mRNA splicing (AS) greatly diversifies metazoan transcriptomes and proteomes and is crucial for gene regulation. Current computational analysis methods of AS from Illumina RNA-sequencing data rely on preannotated libraries of known spliced transcripts, which hinders AS analysis with poorly annotated genomes and can further mask unknown AS patterns. To address this critical bioinformatics problem, we developed a method called the junction usage model (JUM) that uses a bottom-up approach to identify, analyze, and quantitate global AS profiles without any prior transcriptome annotations. JUM accurately reports global AS changes in terms of the five conventional AS patterns and an additional "composite" category composed of inseparable combinations of conventional patterns. JUM stringently classifies the difficult and disease-relevant pattern of intron retention (IR), reducing the false positive rate of IR detection commonly seen in other annotation-based methods to near-negligible rates. When analyzing AS in RNA samples derived from Drosophila heads, human tumors, and human cell lines bearing cancer-associated splicing factor mutations, JUM consistently identified approximately twice the number of novel AS events missed by other methods. Computational simulations showed JUM exhibits a 1.2 to 4.8 times higher true positive rate at a fixed cutoff of 5% false discovery rate. In summary, JUM provides a framework and improved method that removes the necessity for transcriptome annotations and enables the detection, analysis, and quantification of AS patterns in complex metazoan transcriptomes with superior accuracy.
Collapse
|
19
|
Bejar R. Splicing Factor Mutations in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 907:215-28. [PMID: 27256388 DOI: 10.1007/978-3-319-29073-7_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many cancers demonstrate aberrant splicing patterns that contribute to their development and progression. Recently, recurrent somatic mutations of genes encoding core subunits of the spliceosome have been identified in several different cancer types. These mutations are most common in hematologic malignancies like the myelodysplastic syndromes (MDS), acute myeloid leukemia, and chronic lymphocytic leukemia, but also in occur in several solid tumors at lower frequency. The most frequent mutations occur in SF3B1, U2AF1, SRSF2, and ZRSR2 and are largely exclusive of each other. Mutations in SF3B1, U2AF1, and SRSF2 acquire heterozygous missense mutations in specific codons, resembling oncogenes. ZRSR2 mutations include clear loss-of-function variants, a pattern more common to tumor suppressor genes. These splicing factors are associated with distinct clinical phenotypes and patterns of mutation in different malignancies. Mutations have both diagnostic and prognostic relevance. Splicing factor mutations appear to affect only a minority of transcripts which show little overlap by mutation type. How differences in splicing caused by somatic mutations of spliceosome subunits lead to oncogenesis is not clear and may involve different targets in each disease type. However, cells with mutated splicing machinery may be particularly vulnerable to further disruption of the spliceosome suggesting a novel strategy for the targeted therapy of cancers.
Collapse
Affiliation(s)
- Rafael Bejar
- Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, CA, USA.
| |
Collapse
|
20
|
Quantitative profiling of the UGT transcriptome in human drug-metabolizing tissues. THE PHARMACOGENOMICS JOURNAL 2017; 18:251-261. [PMID: 28440341 DOI: 10.1038/tpj.2017.5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Alternative splicing as a mean to control gene expression and diversify function is suspected to considerably influence drug response and clearance. We report the quantitative expression profiles of the human UGT genes including alternatively spliced variants not previously annotated established by deep RNA-sequencing in tissues of pharmacological importance. We reveal a comprehensive quantification of the alternative UGT transcriptome that differ across tissues and among individuals. Alternative transcripts that comprise novel in-frame sequences associated or not with truncations of the 5'- and/or 3'- termini, significantly contribute to the total expression levels of each UGT1 and UGT2 gene averaging 21% in normal tissues, with expression of UGT2 variants surpassing those of UGT1. Quantitative data expose preferential tissue expression patterns and remodeling in favor of alternative variants upon tumorigenesis. These complex alternative splicing programs have the strong potential to contribute to interindividual variability in drug metabolism in addition to diversify the UGT proteome.
Collapse
|
21
|
Kędzierska H, Piekiełko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett 2017; 396:53-65. [PMID: 28315432 DOI: 10.1016/j.canlet.2017.03.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
SR and hnRNP proteins were initially discovered as regulators of alternative splicing: the process of controlled removal of introns and selective joining of exons through which multiple transcripts and, subsequently, proteins can be expressed from a single gene. Alternative splicing affects genes involved in all crucial cellular processes, including apoptosis. During cancerogenesis impaired apoptotic control facilitates survival of cells bearing molecular aberrations, contributing to their unrestricted proliferation and chemoresistance. Apparently, SR and hnRNP proteins regulate all levels of expression of apoptotic genes, including transcription initiation and elongation, alternative splicing, mRNA stability, translation, and protein degradation. The frequently disturbed expressions of SR/hnRNP proteins in cancers lead to impaired functioning of target apoptotic genes, including regulators of the extrinsic (Fas, caspase-8, caspase-2, c-FLIP) and the intrinsic pathway (Apaf-1, caspase-9, ICAD), genes encoding Bcl-2 proteins, IAPs, and p53 tumor suppressor. Prototypical members of SR/hnRNP families, SRSF1 and hnRNP A1, promote synthesis of anti-apoptotic splice variants of Bcl-x and Mcl-1, which results in attenuation of programmed cell death in breast cancer and chronic myeloid leukemia. SR/hnRNP proteins significantly affect responses to chemotherapy, acting as mediators or modulators of drug-induced apoptosis. Aberrant expression of SRSF1 and hnRNP K can interfere with tumor responses to chemotherapy in pancreatic and liver cancers. Currently, a number of splicing factor inhibitors is being tested in pre-clinical and clinical trials. In this review we discuss recent findings on the role of SR and hnRNP proteins in apoptotic control in cancer cells as well as their significance in anticancer treatments.
Collapse
Affiliation(s)
- Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
22
|
Liu R, Liu T, Wei W, Guo K, Yang N, Tian S, Zhu J, Liu Y, Zhou W, Yang H. Novel interacting proteins identified by tandem affinity purification coupled to nano LC-MS/MS interact with ribosomal S6 protein kinase 4 (RSK4) and its variant protein (RSK4m). Int J Biol Macromol 2017; 96:421-428. [PMID: 27986634 DOI: 10.1016/j.ijbiomac.2016.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Ribosomal S6 protein kinase 4 (RSK4) is an important novel tumor suppressor that inhibits breast cancer cell growth and induces senescence. However, RSK4m, which is a variant of RSK4 resulting from alternative splicing, may play distinct roles in some aspects. Knowledge about the mechanisms of RSK4 or RSK4m activity has been lacking. Analysis of the RSK4 and RSK4m interactome could provide insight into their specific functions and integrative mechanisms. Using tandem affinity purification, we obtained protein complexes that interacted with RSK4 or RSK4m. Mass spectrum analysis was performed to identify the obtained protein complexes, and bioinformatics analysis was performed. In this study, we isolated and identified 82 RSK4-associated proteins and 137 RSK4m-associated proteins using two STREP II and a single Flag tag-based tandem affinity purification (SF-TAP) coupled with nano LC-MS/MS in MDA-MB-231 cells. Gene Ontology and Ingenuity Pathway Analysis analyses provided functional annotations and protein-protein interaction networks of the protein interactome of RSK4 and RSK4m. Functional annotations of these proteins by bioinformatics analyses highlight the essential role of RSK4 and RSK4m in coordination with their interacting partners to mediate multiple biological processes, especially cell senescence. Moreover, after comparing the interactome of RSK4 and RSK4m, we found that RSK4m is involved in more molecular functions than RSK4.
Collapse
Affiliation(s)
- Riqiang Liu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Tianhua Liu
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| | - Wei Wei
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Kun Guo
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Ning Yang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Siqi Tian
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jia Zhu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yinkun Liu
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Wenting Zhou
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huawei Yang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
23
|
Webster NJG. Alternative RNA Splicing in the Pathogenesis of Liver Disease. Front Endocrinol (Lausanne) 2017; 8:133. [PMID: 28680417 PMCID: PMC5478874 DOI: 10.3389/fendo.2017.00133] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent due to the worldwide obesity epidemic and currently affects one-third of adults or about one billion people worldwide. NAFLD is predicted to affect over 50% of the world's population by the end of the next decade. It is the most common form of liver disease and is associated with increased risk for progression to a more severe form non-alcoholic steatohepatitis, as well as insulin resistance, type 2 diabetes mellitus, cirrhosis, and eventually hepatocellular carcinoma. This review article will focus on the role of alternative splicing in normal liver physiology and dysregulation in liver disease.
Collapse
Affiliation(s)
- Nicholas J. G. Webster
- Medical Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, School of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Nicholas J. G. Webster,
| |
Collapse
|
24
|
Matos ML, Lapyckyj L, Rosso M, Besso MJ, Mencucci MV, Briggiler CIM, Giustina S, Furlong LI, Vazquez-Levin MH. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol 2016; 232:1368-1386. [PMID: 27682981 DOI: 10.1002/jcp.25622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
Epithelial Cadherin (E-cadherin) is involved in calcium-dependent cell-cell adhesion and signal transduction. The E-cadherin decrease/loss is a hallmark of Epithelial to Mesenchymal Transition (EMT), a key event in tumor progression. The underlying molecular mechanisms that trigger E-cadherin loss and consequent EMT have not been completely elucidated. This study reports the identification of a novel human E-cadherin variant mRNA produced by alternative splicing. A bioinformatics evaluation of the novel mRNA sequence and biochemical verifications suggest its regulation by Nonsense-Mediated mRNA Decay (NMD). The novel E-cadherin variant was detected in 29/42 (69%) human tumor cell lines, expressed at variable levels (E-cadherin variant expression relative to the wild type mRNA = 0.05-11.6%). Stable transfection of the novel E-cadherin variant in MCF-7 cells (MCF7Ecadvar) resulted in downregulation of wild type E-cadherin expression (transcript/protein) and EMT-related changes, among them acquisition of a fibroblastic-like cell phenotype, increased expression of Twist, Snail, Zeb1, and Slug transcriptional repressors and decreased expression of ESRP1 and ESRP2 RNA binding proteins. Moreover, loss of cytokeratins and gain of vimentin, N-cadherin and Dysadherin/FXYD5 proteins was observed. Dramatic changes in cell behavior were found in MCF7Ecadvar, as judged by the decreased cell-cell adhesion (Hanging-drop assay), increased cell motility (Wound Healing) and increased cell migration (Transwell) and invasion (Transwell w/Matrigel). Some changes were found in MCF-7 cells incubated with culture medium supplemented with conditioned medium from HEK-293 cells transfected with the E-cadherin variant mRNA. Further characterization of the novel E-cadherin variant will help understanding the molecular basis of tumor progression and improve cancer diagnosis. J. Cell. Physiol. 232: 1368-1386, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- María Laura Matos
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Lara Lapyckyj
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Marina Rosso
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - María José Besso
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - María Victoria Mencucci
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Clara Isabel Marín Briggiler
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Silvina Giustina
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Laura Inés Furlong
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| |
Collapse
|
25
|
Azim S, Zubair H, Srivastava SK, Bhardwaj A, Zubair A, Ahmad A, Singh S, Khushman M, Singh AP. Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer. Sci Rep 2016; 6:28446. [PMID: 27354262 PMCID: PMC4926062 DOI: 10.1038/srep28446] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/02/2016] [Indexed: 02/05/2023] Open
Abstract
We have recently demonstrated that the transcription factor MYB can modulate several cancer-associated phenotypes in pancreatic cancer. In order to understand the molecular basis of these MYB-associated changes, we conducted deep-sequencing of transcriptome of MYB-overexpressing and -silenced pancreatic cancer cells, followed by in silico pathway analysis. We identified significant modulation of 774 genes upon MYB-silencing (p < 0.05) that were assigned to 25 gene networks by in silico analysis. Further analyses placed genes in our RNA sequencing-generated dataset to several canonical signalling pathways, such as cell-cycle control, DNA-damage and -repair responses, p53 and HIF1α. Importantly, we observed downregulation of the pancreatic adenocarcinoma signaling pathway in MYB-silenced pancreatic cancer cells exhibiting suppression of EGFR and NF-κB. Decreased expression of EGFR and RELA was validated by both qPCR and immunoblotting and they were both shown to be under direct transcriptional control of MYB. These observations were further confirmed in a converse approach wherein MYB was overexpressed ectopically in a MYB-null pancreatic cancer cell line. Our findings thus suggest that MYB potentially regulates growth and genomic stability of pancreatic cancer cells via targeting complex gene networks and signaling pathways. Further in-depth functional studies are warranted to fully understand MYB signaling in pancreatic cancer.
Collapse
Affiliation(s)
- Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Asif Zubair
- Molecular and Computational Biology, School of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Moh'd Khushman
- Department of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
26
|
A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation. Nat Commun 2016; 7:ncomms11840. [PMID: 27291620 PMCID: PMC4909989 DOI: 10.1038/ncomms11840] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Aberrant splicing is frequently found in cancer, yet the biological consequences of such alterations are mostly undefined. Here we report that the Hippo–YAP signalling, a key pathway that regulates cell proliferation and organ size, is under control of a splicing switch. We show that TEAD4, the transcription factor that mediates Hippo–YAP signalling, undergoes alternative splicing facilitated by the tumour suppressor RBM4, producing a truncated isoform, TEAD4-S, which lacks an N-terminal DNA-binding domain, but maintains YAP interaction domain. TEAD4-S is located in both the nucleus and cytoplasm, acting as a dominant negative isoform to YAP activity. Consistently, TEAD4-S is reduced in cancer cells, and its re-expression suppresses cancer cell proliferation and migration, inhibiting tumour growth in xenograft mouse models. Furthermore, TEAD4-S is reduced in human cancers, and patients with elevated TEAD4-S levels have improved survival. Altogether, these data reveal a splicing switch that serves to fine tune the Hippo–YAP pathway. The Hippo/Yap signalling pathway is found deregulated in several cancers. Here, the authors uncover an additional mechanism of YAP regulation that occurs via alternately spliced isoform of TEAD4, which acts as a dominant negative regulator of YAP-TEAD signalling.
Collapse
|
27
|
Adamopoulos PG, Kontos CK, Tsiakanikas P, Scorilas A. Identification of novel alternative splice variants of the BCL2L12 gene in human cancer cells using next-generation sequencing methodology. Cancer Lett 2016; 373:119-129. [PMID: 26797417 DOI: 10.1016/j.canlet.2016.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
The next-generation sequencing (NGS) technology has enabled genome-wide studies, providing massively parallel DNA sequencing. NGS applications constitute a revolution in molecular biology and genetics and have already paved new ways in cancer research. BCL2L12 is an apoptosis-related gene, previously cloned from members of our research group. Like most members of the BCL2 gene family, it is highly implicated in various types of cancer and hematological malignancies. In the present study, we used NGS to discover novel alternatively spliced variants of the apoptosis-related BCL2L12 gene in many human cancer cell lines, after 3'-RACE nested PCR. Extensive computational analysis uncovered new alternative splicing events and patterns, resulting in novel alternative transcripts of the BCL2L12 gene. PCR was then performed to validate NGS data and identify the derived novel transcripts of the BCL2L12 gene. Therefore, 50 novel BCL2L12 splice variants were discovered. Since BCL2L12 is involved in the apoptotic machinery, the quantification of distinct BCL2L12 transcripts in human samples may have clinical applications in different types of cancer.
Collapse
Affiliation(s)
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece
| | | | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece.
| |
Collapse
|
28
|
(Intrinsically disordered) splice variants in the proteome: implications for novel drug discovery. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Transformer2 proteins protect breast cancer cells from accumulating replication stress by ensuring productive splicing of checkpoint kinase 1. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1540-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Shkreta L, Chabot B. The RNA Splicing Response to DNA Damage. Biomolecules 2015; 5:2935-77. [PMID: 26529031 PMCID: PMC4693264 DOI: 10.3390/biom5042935] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Benoit Chabot
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
31
|
Prindull G. Potential Gene Interactions in the Cell Cycles of Gametes, Zygotes, Embryonic Stem Cells and the Development of Cancer. Front Oncol 2015; 5:200. [PMID: 26442212 PMCID: PMC4585297 DOI: 10.3389/fonc.2015.00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES This review is to explore whether potential gene interactions in the cell cycles of gametes, zygotes, and embryonic stem (ES) cells are associated with the development of cancer. METHODS MEDPILOT at the Central Library of the University of Cologne, Germany (Zentralbibliothek Köln) that covers 5,800 international medical journals and 4,300 E-journals was used to collect data. The initial searches were done in December 2012 and additional searches in October 2013-May 2015. The search terms included "cancer development," "gene interaction," and "ES cells," and the time period was between 1998 and 2015. A total of 147 articles in English language only were included in this review. RESULTS Transgenerational gene translation is implemented in the zygote through interactions of epigenetic isoforms of transcription factors (TFs) from parental gametes, predominantly during the first two zygote cleavages. Pluripotent transcription factors may provide interacting links with mutated genes during zygote-to-ES cell switches. Translation of post-transcriptional carcinogenic genes is implemented by abnormally spliced, tumor-specific isoforms of gene-encoded mRNA/non-coding RNA variants of TFs employing de novo gene synthesis and neofunctionalization. Post-translationally, mutated genes are preserved in pre-neoplastic ES cell subpopulations that can give rise to overt cancer stem cells. Thus, TFs operate as cell/disease-specific epigenetic messengers triggering clinical expression of neoplasms. CONCLUSION Potential gene interactions in the cell cycle of gametes, zygotes, and ES cells may play some roles in the development of cancer.
Collapse
Affiliation(s)
- Gregor Prindull
- Medical Faculty, University of Göttingen , Göttingen , Germany
| |
Collapse
|
32
|
Nishida A, Minegishi M, Takeuchi A, Awano H, Niba ETE, Matsuo M. Neuronal SH-SY5Y cells use the C-dystrophin promoter coupled with exon 78 skipping and display multiple patterns of alternative splicing including two intronic insertion events. Hum Genet 2015; 134:993-1001. [PMID: 26152642 DOI: 10.1007/s00439-015-1581-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/27/2015] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by mutations in the dystrophin gene. One-third of DMD cases are complicated by mental retardation. Here, we used reverse transcription PCR to analyze the pattern of dystrophin transcripts in neuronal SH-SY5Y cells. Among the three alternative promoters/first exons at the 5'-end, only transcripts containing the brain cortex-specific C1 exon could be amplified. The C-transcript appeared as two products: a major product of the expected size and a minor larger product that contained the cryptic exon 1a between exons C1 and 2. At the 3'-end there was complete exon 78 skipping. Together, these findings indicate that SH-SY5Y cells have neuron-specific characteristics with regard to both promoter activation and alternative splicing. We also revealed partial skipping of exons 9 and 71. Four amplified products were obtained from a fragment covering exons 36-41: a strong expected product, two weak products lacking either exon 37 or exon 38, and a second strong larger product with a 568-bp insertion between exons 40 and 41. The inserted sequence matched the 3'-end of intron 40 perfectly. We concluded that a cryptic splice site was activated in SH-SY5Y cells to create the novel, unusually large, exon 41e (751 bp). In total, we identified seven alternative splicing events in neuronal SH-SY5Y cells, and calculated that 32 dystrophin transcripts could be produced. Our results may provide clues in the analysis of transcriptype-phenotype correlations as regards mental retardation in DMD.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 651-2180, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Adamia S, Kriangkum J, Belch AR, Pilarski LM. Aberrant posttranscriptional processing of hyaluronan synthase 1 in malignant transformation and tumor progression. Adv Cancer Res 2015; 123:67-94. [PMID: 25081526 DOI: 10.1016/b978-0-12-800092-2.00003-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is becoming increasingly apparent that splicing defects play a key role in cancer, and that alterations in genomic splicing elements promote aberrant splicing. Alternative splicing increases the diversity of the human transcriptome and increases the numbers of functional gene products. However, dysregulation that leads to aberrant pre-mRNA splicing can contribute to cancer. Hyaluronan (HA), known to be an important component of cancer progression, is synthesized by hyaluronan synthases (HASs). In cancer cells, hyaluronan synthase 1 (HAS1) pre-mRNA is abnormally spliced to generate a family of aberrant splice variants (HAS1Vs) that synthesize extracellular and intracellular HA. HAS1Vs are clinically relevant, being found almost exclusively in malignant cells. Expression of aberrant HAS1Vs predicts poor survival in multiple myeloma. In this review, we summarize the unusual properties of HAS1Vs and their relationship to cancer. HAS1Vs form heterogeneous multimers with normally spliced HAS1 as well as with each other and with HAS3. Aberrant variants of HAS1 synthesize HA. Extracellular HA synthesized by HAS1Vs is likely to promote malignant spread. We speculate that synthesis of intracellular HA plays a fundamental and early role in oncogenesis by promoting genetic instability and the emergence of viable cancer variants that lead to aggressive disease.
Collapse
Affiliation(s)
- Sophia Adamia
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
| | - Jitra Kriangkum
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Andrew R Belch
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Linda M Pilarski
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Gabriel M, Delforge Y, Deward A, Habraken Y, Hennuy B, Piette J, Klinck R, Chabot B, Colige A, Lambert C. Role of the splicing factor SRSF4 in cisplatin-induced modifications of pre-mRNA splicing and apoptosis. BMC Cancer 2015; 15:227. [PMID: 25884497 PMCID: PMC4399393 DOI: 10.1186/s12885-015-1259-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/25/2015] [Indexed: 12/17/2022] Open
Abstract
Background Modification of splicing by chemotherapeutic drugs has usually been evaluated on a limited number of pre-mRNAs selected for their recognized or potential importance in cell proliferation or apoptosis. However, the pathways linking splicing alterations to the efficiency of cancer therapy remain unclear. Methods Next-generation sequencing was used to analyse the transcriptome of breast carcinoma cells treated by cisplatin. Pharmacological inhibitors, RNA interference, cells deficient in specific signalling pathways, RT-PCR and FACS analysis were used to investigate how the anti-cancer drug cisplatin affected alternative splicing and the cell death pathway. Results We identified 717 splicing events affected by cisplatin, including 245 events involving cassette exons. Gene ontology analysis indicates that cell cycle, mRNA processing and pre-mRNA splicing were the main pathways affected. Importantly, the cisplatin–induced splicing alterations required class I PI3Ks P110β but not components such as ATM, ATR and p53 that are involved in the DNA damage response. The siRNA-mediated depletion of the splicing regulator SRSF4, but not SRSF6, expression abrogated many of the splicing alterations as well as cell death induced by cisplatin. Conclusion Many of the splicing alterations induced by cisplatin are caused by SRSF4 and they contribute to apoptosis in a process requires class I PI3K. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1259-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maude Gabriel
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Yves Delforge
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Adeline Deward
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, GIGA B34, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Yvette Habraken
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, GIGA B34, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Benoit Hennuy
- GIGA Genomics Platform, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, GIGA B34, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Roscoe Klinck
- Laboratory of Functional Genomics and Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Benoit Chabot
- Laboratory of Functional Genomics and Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Charles Lambert
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, avenue de l'Hôpital 1, 4000, Liège, Belgium.
| |
Collapse
|
35
|
Phosphoproteomic analysis of the highly-metastatic hepatocellular carcinoma cell line, MHCC97-H. Int J Mol Sci 2015; 16:4209-25. [PMID: 25690035 PMCID: PMC4346953 DOI: 10.3390/ijms16024209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 11/29/2022] Open
Abstract
Invasion and metastasis of hepatocellular carcinoma (HCC) is a major cause for lethal liver cancer. Signaling pathways associated with cancer progression are frequently reconfigured by aberrant phosphorylation of key proteins. To capture the key phosphorylation events in HCC metastasis, we established a methodology by an off-line high-pH HPLC separation strategy combined with multi-step IMAC and LC–MS/MS to study the phosphoproteome of a metastatic HCC cell line, MHCC97-H (high metastasis). In total, 6593 phosphopeptides with 6420 phosphorylation sites (p-sites) of 2930 phosphoproteins were identified. Statistical analysis of gene ontology (GO) categories for the identified phosphoproteins showed that several of the biological processes, such as transcriptional regulation, mRNA processing and RNA splicing, were over-represented. Further analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations demonstrated that phosphoproteins in multiple pathways, such as spliceosome, the insulin signaling pathway and the cell cycle, were significantly enriched. In particular, we compared our dataset with a previously published phosphoproteome in a normal liver sample, and the results revealed that a number of proteins in the spliceosome pathway, such as U2 small nuclear RNA Auxiliary Factor 2 (U2AF2), Eukaryotic Initiation Factor 4A-III (EIF4A3), Cell Division Cycle 5-Like (CDC5L) and Survival Motor Neuron Domain Containing 1 (SMNDC1), were exclusively identified as phosphoproteins only in the MHCC97-H cell line. These results indicated that the phosphorylation of spliceosome proteins may participate in the metastasis of HCC by regulating mRNA processing and RNA splicing.
Collapse
|
36
|
Sohail M, Cao W, Mahmood N, Myschyshyn M, Hong SP, Xie J. Evolutionarily emerged G tracts between the polypyrimidine tract and 3' AG are splicing silencers enriched in genes involved in cancer. BMC Genomics 2014; 15:1143. [PMID: 25523808 PMCID: PMC4320613 DOI: 10.1186/1471-2164-15-1143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022] Open
Abstract
Background The 3′ splice site (SS) at the end of pre-mRNA introns has a consensus sequence (Y)nNYAG for constitutive splicing of mammalian genes. Deviation from this consensus could change or interrupt the usage of the splice site leading to alternative or aberrant splicing, which could affect normal cell function or even the development of diseases. We have shown that the position “N” can be replaced by a CA-rich RNA element called CaRRE1 to regulate the alternative splicing of a group of genes. Results Taking it a step further, we searched the human genome for purine-rich elements between the -3 and -10 positions of the 3′ splice sites of annotated introns. This identified several thousand such 3′SS; more than a thousand of them contain at least one copy of G tract. These sites deviate significantly from the consensus of constitutive splice sites and are highly associated with alterative splicing events, particularly alternative 3′ splice and intron retention. We show by mutagenesis analysis and RNA interference that the G tracts are splicing silencers and a group of the associated exons are controlled by the G tract binding proteins hnRNP H/F. Species comparison of a group of the 3′SS among vertebrates suggests that most (~87%) of the G tracts emerged in ancestors of mammals during evolution. Moreover, the host genes are most significantly associated with cancer. Conclusion We call these elements together with CaRRE1 regulatory RNA elements between the Py and 3′AG (REPA). The emergence of REPA in this highly constrained region indicates that this location has been remarkably permissive for the emergence of de novo regulatory RNA elements, even purine-rich motifs, in a large group of mammalian genes during evolution. This evolutionary change controls alternative splicing, likely to diversify proteomes for particular cellular functions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1143) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiuyong Xie
- Department of Physiology, University of Manitoba, 440 BMSB, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
37
|
Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM, Wang XZ. Mechanism of alternative splicing and its regulation. Biomed Rep 2014; 3:152-158. [PMID: 25798239 DOI: 10.3892/br.2014.407] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of precursor mRNA is an essential mechanism to increase the complexity of gene expression, and it plays an important role in cellular differentiation and organism development. Regulation of alternative splicing is a complicated process in which numerous interacting components are at work, including cis-acting elements and trans-acting factors, and is further guided by the functional coupling between transcription and splicing. Additional molecular features, such as chromatin structure, RNA structure and alternative transcription initiation or alternative transcription termination, collaborate with these basic components to generate the protein diversity due to alternative splicing. All these factors contributing to this one fundamental biological process add up to a mechanism that is critical to the proper functioning of cells. Any corruption of the process may lead to disruption of normal cellular function and the eventuality of disease. Cancer is one of those diseases, where alternative splicing may be the basis for the identification of novel diagnostic and prognostic biomarkers, as well as new strategies for therapy. Thus, an in-depth understanding of alternative splicing regulation has the potential not only to elucidate fundamental biological principles, but to provide solutions for various diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Liu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - B O Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Yan-Mei Xu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Lin-Feng Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jin Lin
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Zhang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Qing-Hua Min
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Wei-Ming Yang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| |
Collapse
|
38
|
Ghosh AK, Veitschegger AM, Sheri VR, Effenberger KA, Prichard BE, Jurica MS. Enantioselective synthesis of spliceostatin E and evaluation of biological activity. Org Lett 2014; 16:6200-3. [PMID: 25423085 PMCID: PMC4260646 DOI: 10.1021/ol503127r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
An
enantioselective total synthesis of spliceostatin E has been
accomplished. The δ-lactone unit A was constructed from readily
available (R)-glycidyl alcohol using a ring-closing
olefin metathesis as the key reaction. A cross-metathesis of ring
A containing δ-lactone and the functionalized tetrahydropyran B-ring provided spliceostatin E. Our biological evaluation
of synthetic spliceostatin E revealed that it does not inhibit splicing
in vitro and does not impact speckle morphology in cells. Spliceostatin
E was reported to possess potent antitumor activity.
Collapse
Affiliation(s)
- Arun K Ghosh
- †Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Anne M Veitschegger
- †Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Venkata Reddy Sheri
- †Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kerstin A Effenberger
- ‡Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, United States
| | - Beth E Prichard
- ‡Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, United States
| | - Melissa S Jurica
- ‡Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
39
|
Wang Y, Chen D, Qian H, Tsai YS, Shao S, Liu Q, Dominguez D, Wang Z. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell 2014; 26:374-389. [PMID: 25203323 PMCID: PMC4159621 DOI: 10.1016/j.ccr.2014.07.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/29/2014] [Accepted: 07/15/2014] [Indexed: 11/26/2022]
Abstract
Splicing dysregulation is one of the molecular hallmarks of cancer. However, the underlying molecular mechanisms remain poorly defined. Here we report that the splicing factor RBM4 suppresses proliferation and migration of various cancer cells by specifically controlling cancer-related splicing. Particularly, RBM4 regulates Bcl-x splicing to induce apoptosis, and coexpression of Bcl-xL partially reverses the RBM4-mediated tumor suppression. Moreover, RBM4 antagonizes an oncogenic splicing factor, SRSF1, to inhibit mTOR activation. Strikingly, RBM4 expression is decreased dramatically in cancer patients, and the RBM4 level correlates positively with improved survival. In addition to providing mechanistic insights of cancer-related splicing dysregulation, this study establishes RBM4 as a tumor suppressor with therapeutic potential and clinical values as a prognostic factor.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Cancer Center, Dalian Medical University, Dalian 116044, China; Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital. Dalian Medical University, Dalian 116001, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yihsuan S Tsai
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shujuan Shao
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Cancer Center, Dalian Medical University, Dalian 116044, China
| | - Daniel Dominguez
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zefeng Wang
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
40
|
Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6. [PMID: 25988147 PMCID: PMC4428494 DOI: 10.3389/fmolb.2014.00006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/06/2014] [Indexed: 12/14/2022] Open
Abstract
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida Tampa, FL, USA ; Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia ; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
41
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|