1
|
Milligan C, Cowley DO, Stewart W, Curry AM, Forbes E, Rector B, Hastie A, Liu L, Hawkins GA. Enhanced Interleukin 6 Trans-Signaling Modulates Disease Process in Amyotrophic Lateral Sclerosis Mouse Models. Brain Sci 2025; 15:84. [PMID: 39851451 PMCID: PMC11764401 DOI: 10.3390/brainsci15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Charcot first described ALS in 1869, but the specific mechanisms that mediate the disease pathology are still not clear. Intense research efforts have provided insight into unique neuroanatomical regions, specific neuronal populations and genetic associations for ALS and other neurodegenerative diseases; however, the experimental results also suggest a convergence of these events to common toxic pathways. We propose that common toxic pathways can be therapeutically targeted, and this intervention will be effective in slowing progression and improving patient quality of life. Here, we focus on understanding the role of IL6 trans-signaling in ALS disease processes. Methods: We leveraged unique mouse models of IL6 trans-signaling that we developed that recapitulate the production of active sIL6R in a genotypic and quantitative fashion observed in humans. Given that the SOD1 transgenic mouse is one of the most highly studied and characterized models of ALS, we bred SOD1G93A mice with IL6R trans-signaling mice to determine how enhanced trans-signaling influenced symptom onset and pathological processes, including neuromuscular junction (NMJ) denervation, glial activation and motoneuron (MN) survival. Results: The results indicate that in animals with enhanced trans-signaling, symptom onset and pathological processes were accelerated, suggesting a role in disease modification. Administration of an IL6R functional blocking antibody failed to alter accelerated symptom onset and disease progression. Conclusions: Future work to investigate the site-specific influence of enhanced IL6 trans-signaling and the tissue-specific bioavailability of potential therapeutics will be necessary to identify targets for precise therapeutic interventions that may limit disease progression in the 60% of ALS patients who inherit the common Il6R Asp358Ala variant.
Collapse
Affiliation(s)
- Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dale O. Cowley
- Department of Genetics and Animal Models Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - William Stewart
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Alyson M. Curry
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Elizabeth Forbes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian Rector
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Annette Hastie
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Liang Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory A. Hawkins
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
2
|
Muscle ciliary neurotrophic factor receptor α helps maintain choline acetyltransferase levels in denervated motor neurons following peripheral nerve lesion. Exp Neurol 2019; 317:202-205. [PMID: 30902524 DOI: 10.1016/j.expneurol.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/18/2019] [Accepted: 03/18/2019] [Indexed: 11/23/2022]
Abstract
Systemic ciliary neurotrophic factor (CNTF) administration protects motor neurons from denervating diseases and lesions but produces non-neuromuscular side effects. Therefore, CNTF related therapeutics will need to specifically target motor neuron protective receptor mechanisms. Expression of the essential ligand binding subunit of the CNTF receptor, CNTF receptor α (CNTFRα), is induced in skeletal muscle by denervating lesion and in human denervating diseases. We show here, with muscle-specific in vivo genetic disruption, that muscle CNTFRα makes an essential/non-redundant contribution to maintaining choline acetyltransferase levels in denervated motor neurons following nerve crush, suggesting the muscle CNTFRα induction is an endogenous denervation-induced neuroprotective response that could be enhanced to treat nerve lesion and denervating diseases. Notably, unlike motor neuron gene expression, skeletal muscle gene expression can be specifically targeted with human gene therapy vectors already approved for market.
Collapse
|
3
|
Ringer C, Tune S, Bertoune MA, Schwarzbach H, Tsujikawa K, Weihe E, Schütz B. Disruption of calcitonin gene-related peptide signaling accelerates muscle denervation and dampens cytotoxic neuroinflammation in SOD1 mutant mice. Cell Mol Life Sci 2017; 74:339-358. [PMID: 27554772 PMCID: PMC11107523 DOI: 10.1007/s00018-016-2337-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Neuronal vacuolization and glial activation are pathologic hallmarks in the superoxide dismutase 1 (SOD1) mouse model of ALS. Previously, we found the neuropeptide calcitonin gene-related peptide (CGRP) associated with vacuolization and astrogliosis in the spinal cord of these mice. We now show that CGRP abundance positively correlated with the severity of astrogliosis, but not vacuolization, in several motor and non-motor areas throughout the brain. SOD1 mice harboring a genetic depletion of the βCGRP isoform showed reduced CGRP immunoreactivity associated with vacuolization, while motor functions, body weight, survival, and astrogliosis were not altered. When CGRP signaling was completely disrupted through genetic depletion of the CGRP receptor component, receptor activity-modifying protein 1 (RAMP1), hind limb muscle denervation, and loss of muscle performance were accelerated, while body weight and survival were not affected. Dampened neuroinflammation, i.e., reduced levels of astrogliosis in the brain stem already in the pre-symptomatic disease stage, and reduced microgliosis and lymphocyte infiltrations during the late disease phase were additional neuropathology features in these mice. On the molecular level, mRNA expression levels of brain-derived neurotrophic factor (BDNF) and those of the anti-inflammatory cytokine interleukin 6 (IL-6) were elevated, while those of several pro-inflammatory cytokines found reduced in the brain stem of RAMP1-deficient SOD1 mice at disease end stage. Our results thus identify an important, possibly dual role of CGRP in ALS pathogenesis.
Collapse
Affiliation(s)
- Cornelia Ringer
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Sarah Tune
- Department of Physiology, University of Lübeck, Lübeck, Germany
| | - Mirjam A Bertoune
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Eberhard Weihe
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| | - Burkhard Schütz
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| |
Collapse
|
4
|
Li J, Lu Y, Liang H, Tang C, Zhu L, Zhang J, Xu R. Changes in the Expression of FUS/TLS in Spinal Cords of SOD1 G93A Transgenic Mice and Correlation with Motor-Neuron Degeneration. Int J Biol Sci 2016; 12:1181-1190. [PMID: 27766033 PMCID: PMC5069440 DOI: 10.7150/ijbs.16158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
In order to searching the possible pathogenesis of amyotrophic lateral sclerosis (ALS), we examined the expression and distribution of FUS/TLS protein in the different anatomic regions, segments and neural cells of adult spinal cord at the different stages of the SOD1 wild-type and G93A transgenic mice using the fluorescent immunohistochemistry. Result revealed that, in the SOD1 wild-type mice, the FUS/TLS expression almost wasn't detected. However, in the SOD1 G93A mice, the FUS/TLS expression in the white matter was significantly more than that in the gray matter. In the white matter, the FUS/TLS expression in the anterior funiculus was more than that in the lateral funiculus more than that in the posterior funiculus. In the gray matter, the FUS/TLS expression in the ventral horn was more than that surrounding the central canal more than that in the dorsal horn. The FUS/TLS expression in the thoracic segment was more than that in the cervical segment more than that in the lumbar segment. Almost all FUS/TLS expressed in the nuclear of the GFAP positive cell at the onset stage, but it expressed in both the nuclear and the cytoplasm of the GFAP positive cell at the progression stage, almost didn't detected FUS/TLS expression in the NeuN and Oligo positive cells. The FUS/TLS expression was positively correlated with the neuron death. Our data suggested that the expressive increase and mislocalization of FUS/TLS in the astrocyte cell might cause the motor neuron degenerative death in the SOD1 G93A transgenic mice.
Collapse
Affiliation(s)
- Jiao Li
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yi Lu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Huiting Liang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chunyan Tang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lei Zhu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jie Zhang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.; Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
5
|
Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling. Acta Neuropathol 2016; 132:93-110. [PMID: 27021905 PMCID: PMC4911381 DOI: 10.1007/s00401-016-1564-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Abstract
In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3–stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features.
Collapse
|
6
|
Duzel E, van Praag H, Sendtner M. Can physical exercise in old age improve memory and hippocampal function? Brain 2016; 139:662-73. [PMID: 26912638 PMCID: PMC4766381 DOI: 10.1093/brain/awv407] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 01/19/2023] Open
Abstract
Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer's disease. While the long-term health-promoting and protective effects of exercise are encouraging, it's potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry-brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer's disease pathology, vascular and metabolic risk factors and genetic variability.
Collapse
Affiliation(s)
- Emrah Duzel
- 1 Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany 2 German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany 3 Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
| | - Henriette van Praag
- 4 Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael Sendtner
- 5 Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| |
Collapse
|
7
|
Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease. Neural Plast 2015; 2016:3423267. [PMID: 26843990 PMCID: PMC4710938 DOI: 10.1155/2016/3423267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023] Open
Abstract
Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions.
Collapse
|
8
|
Steinbeck JA, Jaiswal MK, Calder EL, Kishinevsky S, Weishaupt A, Toyka KV, Goldstein PA, Studer L. Functional Connectivity under Optogenetic Control Allows Modeling of Human Neuromuscular Disease. Cell Stem Cell 2015; 18:134-43. [PMID: 26549107 DOI: 10.1016/j.stem.2015.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
Abstract
Capturing the full potential of human pluripotent stem cell (PSC)-derived neurons in disease modeling and regenerative medicine requires analysis in complex functional systems. Here we establish optogenetic control in human PSC-derived spinal motorneurons and show that co-culture of these cells with human myoblast-derived skeletal muscle builds a functional all-human neuromuscular junction that can be triggered to twitch upon light stimulation. To model neuromuscular disease we incubated these co-cultures with IgG from myasthenia gravis patients and active complement. Myasthenia gravis is an autoimmune disorder that selectively targets neuromuscular junctions. We saw a reversible reduction in the amplitude of muscle contractions, representing a surrogate marker for the characteristic loss of muscle strength seen in this disease. The ability to recapitulate key aspects of disease pathology and its symptomatic treatment suggests that this neuromuscular junction assay has significant potential for modeling of neuromuscular disease and regeneration.
Collapse
Affiliation(s)
- Julius A Steinbeck
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA.
| | - Manoj K Jaiswal
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Sarah Kishinevsky
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Andreas Weishaupt
- Department of Neurology, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Klaus V Toyka
- Department of Neurology, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA.
| |
Collapse
|
9
|
Holland A, Murphy S, Dowling P, Ohlendieck K. Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics 2015; 16:345-66. [PMID: 26256116 DOI: 10.1002/pmic.201500158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
The gradual accumulation of collagen and associated proteins of the extracellular matrix is a crucial myopathological parameter of many neuromuscular disorders. Progressive tissue damage and fibrosis play a key pathobiochemical role in the dysregulation of contractile functions and often correlates with poor motor outcome in muscular dystrophies. Following a brief introduction into the role of the extracellular matrix in skeletal muscles, we review here the proteomic profiling of myofibrosis and its intrinsic role in X-linked muscular dystrophy. Although Duchenne muscular dystrophy is primarily a disease of the membrane cytoskeleton, one of its most striking histopathological features is a hyperactive connective tissue and tissue scarring. We outline the identification of novel factors involved in the modulation of the extracellular matrix in muscular dystrophy, such as matricellular proteins. The establishment of novel proteomic markers will be helpful in improving the diagnosis, prognosis, and therapy monitoring in relation to fibrotic substitution of contractile tissue. In the future, the prevention of fibrosis will be crucial for providing optimum conditions to apply novel pharmacological treatments, as well as establish cell-based approaches or gene therapeutic interventions. The elimination of secondary abnormalities in the matrisome promises to reduce tissue scarring and the loss of skeletal muscle elasticity.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|