1
|
Hayman TJ, Glazer PM. Regulation of the Cell-Intrinsic DNA Damage Response by the Innate Immune Machinery. Int J Mol Sci 2021; 22:12761. [PMID: 34884568 PMCID: PMC8657976 DOI: 10.3390/ijms222312761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Maintenance of genomic integrity is crucial for cell survival. As such, elegant DNA damage response (DDR) systems have evolved to ensure proper repair of DNA double-strand breaks (DSBs) and other lesions that threaten genomic integrity. Towards this end, most therapeutic studies have focused on understanding of the canonical DNA DSB repair pathways to enhance the efficacy of DNA-damaging therapies. While these approaches have been fruitful, there has been relatively limited success to date and potential for significant normal tissue toxicity. With the advent of novel immunotherapies, there has been interest in understanding the interactions of radiation therapy with the innate and adaptive immune responses, with the ultimate goal of enhancing treatment efficacy. While a substantial body of work has demonstrated control of the immune-mediated (extrinsic) responses to DNA-damaging therapies by several innate immune pathways (e.g., cGAS-STING and RIG-I), emerging work demonstrates an underappreciated role of the innate immune machinery in directly regulating tumor cell-intrinsic/cell-autonomous responses to DNA damage.
Collapse
Affiliation(s)
- Thomas J. Hayman
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA;
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Kim CH, Park SM, Lee SJ, Kim YD, Jang SH, Woo SM, Kwon TK, Park ZY, Chung IJ, Kim HR, Jun CD. NSrp70 is a lymphocyte-essential splicing factor that controls thymocyte development. Nucleic Acids Res 2021; 49:5760-5778. [PMID: 34037780 PMCID: PMC8191771 DOI: 10.1093/nar/gkab389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/04/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022] Open
Abstract
Alternative pre-mRNA splicing is a critical step to generate multiple transcripts, thereby dramatically enlarging the proteomic diversity. Thus, a common feature of most alternative splicing factor knockout models is lethality. However, little is known about lineage-specific alternative splicing regulators in a physiological setting. Here, we report that NSrp70 is selectively expressed in developing thymocytes, highest at the double-positive (DP) stage. Global splicing and transcriptional profiling revealed that NSrp70 regulates the cell cycle and survival of thymocytes by controlling the alternative processing of various RNA splicing factors, including the oncogenic splicing factor SRSF1. A conditional-knockout of Nsrp1 (NSrp70-cKO) using CD4Cre developed severe defects in T cell maturation to single-positive thymocytes, due to insufficient T cell receptor (TCR) signaling and uncontrolled cell growth and death. Mice displayed severe peripheral lymphopenia and could not optimally control tumor growth. This study establishes a model to address the function of lymphoid-lineage-specific alternative splicing factor NSrp70 in a thymic T cell developmental pathway.
Collapse
Affiliation(s)
- Chang-Hyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sang-Moo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sun-Jae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Young-Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Se-Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Seon-Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Taeg-Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
3
|
RAG-Mediated DNA Breaks Attenuate PU.1 Activity in Early B Cells through Activation of a SPIC-BCLAF1 Complex. Cell Rep 2020; 29:829-843.e5. [PMID: 31644907 PMCID: PMC6870970 DOI: 10.1016/j.celrep.2019.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/10/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022] Open
Abstract
Early B cell development is regulated by stage-specific transcription
factors. PU.1, an ETS-family transcription factor, is essential for coordination
of early B cell maturation and immunoglobulin gene (Ig)
rearrangement. Here we show that RAG DNA double-strand breaks (DSBs) generated
during Ig light chain gene (Igl) rearrangement
in pre-B cells induce global changes in PU.1 chromatin binding. RAG DSBs
activate a SPIC/BCLAF1 transcription factor complex that displaces PU.1
throughout the genome and regulates broad transcriptional changes. SPIC recruits
BCLAF1 to gene-regulatory elements that control expression of key B cell
developmental genes. The SPIC/BCLAF1 complex suppresses expression of the SYK
tyrosine kinase and enforces the transition from large to small pre-B cells.
These studies reveal that RAG DSBs direct genome-wide changes in ETS
transcription factor activity to promote early B cell development. ETS-family transcription factors are key regulators of early B cell
development. Soodgupta et al. show that RAG-induced DNA breaks generated during
antigen receptor gene recombination activate a SPIC/BCLAF1 transcription factor
complex that counters PU.1 activity and regulates gene expression changes to
promote transition from large to small pre-B cells.
Collapse
|
4
|
Feedforward regulation of Myc coordinates lineage-specific with housekeeping gene expression during B cell progenitor cell differentiation. PLoS Biol 2019; 17:e2006506. [PMID: 30978178 PMCID: PMC6481923 DOI: 10.1371/journal.pbio.2006506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 04/24/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022] Open
Abstract
The differentiation of self-renewing progenitor cells requires not only the regulation of lineage- and developmental stage–specific genes but also the coordinated adaptation of housekeeping functions from a metabolically active, proliferative state toward quiescence. How metabolic and cell-cycle states are coordinated with the regulation of cell type–specific genes is an important question, because dissociation between differentiation, cell cycle, and metabolic states is a hallmark of cancer. Here, we use a model system to systematically identify key transcriptional regulators of Ikaros-dependent B cell–progenitor differentiation. We find that the coordinated regulation of housekeeping functions and tissue-specific gene expression requires a feedforward circuit whereby Ikaros down-regulates the expression of Myc. Our findings show how coordination between differentiation and housekeeping states can be achieved by interconnected regulators. Similar principles likely coordinate differentiation and housekeeping functions during progenitor cell differentiation in other cell lineages. The human body is made from billions of cells comprizing many specialized cell types. All of these cells ultimately come from a single fertilized oocyte in a process that has two key features: proliferation, which expands cell numbers, and differentiation, which diversifies cell types. Here, we have examined the transition from proliferation to differentiation using B lymphocytes as an example. We find that the transition from proliferation to differentiation involves changes in the expression of genes, which can be categorized into cell-type–specific genes and broadly expressed “housekeeping” genes. The expression of many housekeeping genes is controlled by the gene regulatory factor Myc, whereas the expression of many B lymphocyte–specific genes is controlled by the Ikaros family of gene regulatory proteins. Myc is repressed by Ikaros, which means that changes in housekeeping and tissue-specific gene expression are coordinated during the transition from proliferation to differentiation.
Collapse
|
5
|
Abstract
DNA damage occurs on exposure to genotoxic agents and during physiological DNA transactions. DNA double-strand breaks (DSBs) are particularly dangerous lesions that activate DNA damage response (DDR) kinases, leading to initiation of a canonical DDR (cDDR). This response includes activation of cell cycle checkpoints and engagement of pathways that repair the DNA DSBs to maintain genomic integrity. In adaptive immune cells, programmed DNA DSBs are generated at precise genomic locations during the assembly and diversification of lymphocyte antigen receptor genes. In innate immune cells, the production of genotoxic agents, such as reactive nitrogen molecules, in response to pathogens can also cause genomic DNA DSBs. These DSBs in adaptive and innate immune cells activate the cDDR. However, recent studies have demonstrated that they also activate non-canonical DDRs (ncDDRs) that regulate cell type-specific processes that are important for innate and adaptive immune responses. Here, we review these ncDDRs and discuss how they integrate with other signals during immune system development and function.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Bednarski JJ, Pandey R, Schulte E, White LS, Chen BR, Sandoval GJ, Kohyama M, Haldar M, Nickless A, Trott A, Cheng G, Murphy KM, Bassing CH, Payton JE, Sleckman BP. RAG-mediated DNA double-strand breaks activate a cell type-specific checkpoint to inhibit pre-B cell receptor signals. J Exp Med 2016; 213:209-23. [PMID: 26834154 PMCID: PMC4749927 DOI: 10.1084/jem.20151048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/03/2015] [Indexed: 01/17/2023] Open
Abstract
DNA double-strand breaks (DSBs) activate a canonical DNA damage response, including highly conserved cell cycle checkpoint pathways that prevent cells with DSBs from progressing through the cell cycle. In developing B cells, pre-B cell receptor (pre-BCR) signals initiate immunoglobulin light (Igl) chain gene assembly, leading to RAG-mediated DNA DSBs. The pre-BCR also promotes cell cycle entry, which could cause aberrant DSB repair and genome instability in pre-B cells. Here, we show that RAG DSBs inhibit pre-BCR signals through the ATM- and NF-κB2-dependent induction of SPIC, a hematopoietic-specific transcriptional repressor. SPIC inhibits expression of the SYK tyrosine kinase and BLNK adaptor, resulting in suppression of pre-BCR signaling. This regulatory circuit prevents the pre-BCR from inducing additional Igl chain gene rearrangements and driving pre-B cells with RAG DSBs into cycle. We propose that pre-B cells toggle between pre-BCR signals and a RAG DSB-dependent checkpoint to maintain genome stability while iteratively assembling Igl chain genes.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ruchi Pandey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Emily Schulte
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lynn S White
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Bo-Ruei Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gabriel J Sandoval
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Masako Kohyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Malay Haldar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew Nickless
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Amanda Trott
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Barry P Sleckman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
7
|
Leaky RAG Deficiency in Adult Patients with Impaired Antibody Production against Bacterial Polysaccharide Antigens. PLoS One 2015; 10:e0133220. [PMID: 26186701 PMCID: PMC4506145 DOI: 10.1371/journal.pone.0133220] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/23/2015] [Indexed: 11/22/2022] Open
Abstract
Loss of function mutations in the recombination activating genes RAG1 and RAG2 have been reported to cause a T-B-NK+ type of severe combined immunodeficiency. In addition identification of hypomorphic mutations in RAG1 and RAG2 has led to an expansion of the spectrum of disease to include Omenn syndrome, early onset autoimmunity, granuloma, chronic cytomegalovirus- or EBV-infection with expansion of gamma/delta T-cells, idiophatic CD4 lymphopenia and a phenotype resembling common variable immunodeficiency. Herein we describe a novel presentation of leaky RAG1 and RAG2 deficiency in two unrelated adult patients with impaired antibody production against bacterial polysaccharide antigens. Clinical manifestation included recurrent pneumonia, sinusitis, otitis media and in one patient recurrent cutaneous vasculitis. Both patients harbored a combination of a null mutation on one allele with a novel hypomorphic RAG1/2 mutation on the other allele. One of these novel mutations affected the start codon of RAG1 and resulted in an aberrant gene and protein expression. The second novel RAG2 mutation leads to a truncated RAG2 protein, lacking the C-terminus with intact core RAG2 and reduced VDJ recombination capacity as previously described in a mouse model. Both patients presented with severely decreased numbers of naïve CD4+ T cells and defective T independent IgG responses to bacterial polysaccharide antigens, while T cell-dependent IgG antibody formation e.g. after tetanus or TBEV vaccination was intact. In conclusion, hypomorphic mutations in genes responsible for SCID should be considered in adults with predominantly antibody deficiency.
Collapse
|
8
|
KAP-1 promotes resection of broken DNA ends not protected by γ-H2AX and 53BP1 in G₁-phase lymphocytes. Mol Cell Biol 2014; 34:2811-21. [PMID: 24842905 DOI: 10.1128/mcb.00441-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resection of broken DNA ends is required for DNA double-strand break (DSB) repair by homologous recombination (HR) but can inhibit normal repair by nonhomologous end joining (NHEJ), the main DSB repair pathway in G1-phase cells. Antigen receptor gene assembly proceeds through DNA DSB intermediates generated in G1-phase lymphocytes by the RAG endonuclease. These DSBs activate ATM, which phosphorylates H2AX, forming γ-H2AX in flanking chromatin. γ-H2AX prevents CtIP from initiating resection of RAG DSBs. Whether there are additional proteins required to promote resection of these DNA ends is not known. KRAB-associated protein 1 (KAP-1) (TRIM28) is a transcriptional repressor that modulates chromatin structure and has been implicated in the repair of DNA DSBs in heterochromatin. Here, we show that in murine G1-phase lymphocytes, KAP-1 promotes resection of DSBs that are not protected by H2AX and its downstream effector 53BP1. In these murine cells, KAP-1 activity in DNA end resection is attenuated by a single-amino-acid change that reflects a KAP-1 polymorphism between primates and other mammalian species. These findings establish KAP-1 as a component of the machinery that can resect DNA ends in G1-phase cells and suggest that there may be species-specific features to this activity.
Collapse
|
9
|
Bednarski JJ, Sleckman BP. Integrated signaling in developing lymphocytes: the role of DNA damage responses. Cell Cycle 2012; 11:4129-34. [PMID: 23032308 DOI: 10.4161/cc.22021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lymphocyte development occurs in a stepwise progression through distinct developmental stages. This ordered maturation ensures that cells express a single, non-autoreactive antigen receptor, which is the cornerstone of a diverse adaptive immune response. Expression of a mature antigen receptor requires assembly of the antigen receptor genes by the process of V(D)J recombination, a reaction that joins distant gene segments through DNA double-strand break (DSB) intermediates. These physiologic DSBs are generated by the recombinase-activating gene (RAG) -1 and -2 proteins, and their generation is regulated by lymphocyte and developmental stage-specific signals from cytokine receptors and antigen receptor chains. Collectively, these signals ensure that V(D)J recombination of specific antigen receptor genes occurs at discrete developmental stages. Once generated, RAG-induced DSBs activate the ataxia-telangiectasia mutated (ATM) kinase to orchestrate a multifaceted DNA damage response that ensures proper DSB repair. In response to RAG DSBs, ATM also regulates a cell type-specific transcriptional response, and here we discuss how this genetic program integrates with other cellular cues to regulate lymphocyte development.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
10
|
Abstract
Developing lymphocytes must assemble antigen receptor genes encoding the B cell and T cell receptors. This process is executed by the V(D)J recombination reaction, which can be divided into DNA cleavage and DNA joining steps. The former is carried out by a lymphocyte-specific RAG endonuclease, which mediates DNA cleavage at two recombining gene segments and their flanking RAG recognition sequences. RAG cleavage generates four broken DNA ends that are repaired by nonhomologous end joining forming coding and signal joints. On rare occasions, these DNA ends may join aberrantly forming chromosomal lesions such as translocations, deletions and inversions that have the potential to cause cellular transformation and lymphoid tumors. We discuss the activation of DNA damage responses by RAG-induced DSBs focusing on the component pathways that promote their normal repair and guard against their aberrant resolution. Moreover, we discuss how this DNA damage response impacts processes important for lymphocyte development.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
11
|
Bednarski JJ, Sleckman BP. Lymphocyte development: integration of DNA damage response signaling. Adv Immunol 2012; 116:175-204. [PMID: 23063077 DOI: 10.1016/b978-0-12-394300-2.00006-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lymphocytes traverse functionally discrete stages as they develop into mature B and T cells. This development is directed by cues from a variety of different cell surface receptors. To complete development, all lymphocytes must express a functional nonautoreactive heterodimeric antigen receptor. The genes that encode antigen receptor chains are assembled through the process of V(D)J recombination, a reaction that proceeds through DNA double-stranded break (DSB) intermediates. These DSBs are generated by the RAG endonuclease in G1-phase developing lymphocytes and activate ataxia-telangiectasia mutated (ATM), the kinase that orchestrates cellular DSB responses. The canonical DNA damage response includes cell cycle arrest, DNA break repair, and apoptosis of cells when DSBs are not repaired. However, recent studies have demonstrated that ATM activation in response to RAG DSBs also regulates a transcriptional program including many genes with no known function in canonical DNA damage responses. Rather, these genes have activities that would be important for lymphocyte development. Here, these findings and the broader concept that signals initiated by physiologic DNA DSBs provide cues that regulate cell type-specific processes and functions are discussed.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
12
|
Bednarski JJ, Nickless A, Bhattacharya D, Amin RH, Schlissel MS, Sleckman BP. RAG-induced DNA double-strand breaks signal through Pim2 to promote pre-B cell survival and limit proliferation. ACTA ACUST UNITED AC 2011; 209:11-7. [PMID: 22201128 PMCID: PMC3260864 DOI: 10.1084/jem.20112078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Interleukin 7 (IL-7) promotes pre-B cell survival and proliferation by activating the Pim1 and Akt kinases. These signals must be attenuated to induce G1 cell cycle arrest and expression of the RAG endonuclease, which are both required for IgL chain gene rearrangement. As lost IL-7 signals would limit pre-B cell survival, how cells survive during IgL chain gene rearrangement remains unclear. We show that RAG-induced DNA double-strand breaks (DSBs) generated during IgL chain gene assembly paradoxically promote pre-B cell survival. This occurs through the ATM-dependent induction of Pim2 kinase expression. Similar to Pim1, Pim2 phosphorylates BAD, which antagonizes the pro-apoptotic function of BAX. However, unlike IL-7 induction of Pim1, RAG DSB-mediated induction of Pim2 does not drive proliferation. Rather, Pim2 has antiproliferative functions that prevent the transit of pre-B cells harboring RAG DSBs from G1 into S phase, where these DNA breaks could be aberrantly repaired. Thus, signals from IL-7 and RAG DSBs activate distinct Pim kinase family members that have context-dependent activities in regulating pre-B cell proliferation and survival.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
13
|
Seitan VC, Hao B, Tachibana-Konwalski K, Lavagnolli T, Mira-Bontenbal H, Brown KE, Teng G, Carroll T, Terry A, Horan K, Marks H, Adams DJ, Schatz DG, Aragon L, Fisher AG, Krangel MS, Nasmyth K, Merkenschlager M. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 2011; 476:467-71. [PMID: 21832993 PMCID: PMC3179485 DOI: 10.1038/nature10312] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/20/2011] [Indexed: 12/14/2022]
Abstract
Cohesin enables post-replicative DNA repair and chromosome segregation by holding sister chromatids together from the time of DNA replication in S phase until mitosis. There is growing evidence that cohesin also forms long-range chromosomal cis-interactions and may regulate gene expression in association with CTCF, mediator or tissue-specific transcription factors. Human cohesinopathies such as Cornelia de Lange syndrome are thought to result from impaired non-canonical cohesin functions, but a clear distinction between the cell-division-related and cell-division-independent functions of cohesion--as exemplified in Drosophila--has not been demonstrated in vertebrate systems. To address this, here we deleted the cohesin locus Rad21 in mouse thymocytes at a time in development when these cells stop cycling and rearrange their T-cell receptor (TCR) α locus (Tcra). Rad21-deficient thymocytes had a normal lifespan and retained the ability to differentiate, albeit with reduced efficiency. Loss of Rad21 led to defective chromatin architecture at the Tcra locus, where cohesion-binding sites flank the TEA promoter and the Eα enhancer, and demarcate Tcra from interspersed Tcrd elements and neighbouring housekeeping genes. Cohesin was required for long-range promoter-enhancer interactions, Tcra transcription, H3K4me3 histone modifications that recruit the recombination machinery and Tcra rearrangement. Provision of pre-rearranged TCR transgenes largely rescued thymocyte differentiation, demonstrating that among thousands of potential target genes across the genome, defective Tcra rearrangement was limiting for the differentiation of cohesin-deficient thymocytes. These findings firmly establish a cell-division-independent role for cohesin in Tcra locus rearrangement and provide a comprehensive account of the mechanisms by which cohesin enables cellular differentiation in a well-characterized mammalian system.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Chromosomal Proteins, Non-Histone/deficiency
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins
- Gene Expression Regulation
- Gene Rearrangement, T-Lymphocyte/genetics
- Genes, RAG-1/genetics
- Mice
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinases/metabolism
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription, Genetic
- Cohesins
Collapse
Affiliation(s)
- Vlad C. Seitan
- Lymphocyte Development Group, Imperial College London, Du Cane Road, London W12 0NN, UK
- Cell Cycle Group, Imperial College London, Du Cane Road, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Bingtao Hao
- Department of Immunology, Duke University Medical Center, Durham NC, USA
| | | | - Thais Lavagnolli
- Lymphocyte Development Group, Imperial College London, Du Cane Road, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Hegias Mira-Bontenbal
- Lymphocyte Development Group, Imperial College London, Du Cane Road, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Karen E Brown
- Lymphocyte Development Group, Imperial College London, Du Cane Road, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Grace Teng
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Tom Carroll
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Anna Terry
- Lymphocyte Development Group, Imperial College London, Du Cane Road, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Katie Horan
- Central Biological Services, Imperial College London, Du Cane Road, London, UK
| | - Hendrik Marks
- Department of Molecular Biology. Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Luis Aragon
- Cell Cycle Group, Imperial College London, Du Cane Road, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, Imperial College London, Du Cane Road, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham NC, USA
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, Imperial College London, Du Cane Road, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
14
|
Zhang L, Reynolds TL, Shan X, Desiderio S. Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis. Immunity 2011; 34:163-74. [PMID: 21349429 DOI: 10.1016/j.immuni.2011.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/06/2010] [Accepted: 12/01/2010] [Indexed: 11/30/2022]
Abstract
V(D)J gene segment recombination is linked to the cell cycle by the periodic phosphorylation and destruction of the RAG-2 protein at the G1-to-S cell cycle transition. To examine the function of this coupling, we constructed mice in which the phosphorylation site at threonine 490 of RAG-2 was mutated to alanine. The RAG-2(T490A) mutation uncoupled DNA cleavage from cell cycle and promoted aberrant recombination. Similar aberrant recombination products were observed in mice deficient in the Skp2 ubiquitin ligase subunit, which is required for periodic destruction of RAG-2. On a p53-deficient background, the RAG-2(T490A) mutation induced lymphoid malignancies characterized by clonal chromosomal translocations involving antigen receptor genes. Taken together, these observations provide a direct link between the periodic destruction of RAG-2 and lymphoid tumorigenesis. We infer that cell cycle control of the V(D)J recombinase limits the potential genomic damage that could otherwise result from RAG-mediated DNA cleavage.
Collapse
Affiliation(s)
- Li Zhang
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
15
|
The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol 2010; 106:93-133. [PMID: 20728025 DOI: 10.1016/s0065-2776(10)06004-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recurrent chromosomal abnormalities, especially chromosomal translocations, are strongly associated with certain subtypes of leukemia, lymphoma and solid tumors. The appearance of particular translocations or associated genomic alterations can be important indicators of disease prognosis, and in some cases, certain translocations may indicate appropriate therapy protocols. To date, most of our knowledge about chromosomal translocations has derived from characterization of the highly selected recurrent translocations found in certain cancers. Until recently, mechanisms that promote or suppress chromosomal translocations, in particular, those responsible for their initiation, have not been addressed. For translocations to occur, two distinct chromosomal loci must be broken, brought together (synapsed) and joined. Here, we discuss recent findings on processes and pathways that influence the initiation of chromosomal translocations, including the generation fo DNA double strand breaks (DSBs) by general factors or in the context of the Lymphocyte-specific V(D)J and IgH class-switch recombination processes. We also discuss the role of spatial proximity of DSBs in the interphase nucleus with respect to how DSBs on different chromosomes are justaposed for joining. In addition, we discuss the DNA DSB response and its role in recognizing and tethering chromosomal DSBs to prevent translocations, as well as potential roles of the classical and alternative DSB end-joining pathways in suppressing or promoting translocations. Finally, we discuss the potential roles of long range regulatory elements, such as the 3'IgH enhancer complex, in promoting the expression of certain translocations that are frequent in lymphomas and, thereby, contributing to their frequent appearance in tumors.
Collapse
|
16
|
Bhattacharyya A, Jones JM. Requirement for ubiquitin conjugation and 26S proteasome activity at an early stage in V(D)J recombination. Mol Immunol 2010; 47:1173-80. [PMID: 20116856 DOI: 10.1016/j.molimm.2010.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
V(D)J recombination, the process that rearranges gene segments to assemble mature antigen receptor genes, relies on a recombinase comprising the RAG1 and RAG2 proteins. RAG1 is a multi-functional enzyme including DNA binding and cleavage as well as ubiquitin ligase activities, all of which appear to contribute to its role in recombination. Here we demonstrate that components of the ubiquitin conjugation machinery and the 26S proteasome are required for an early step in V(D)J recombination. Inhibitors of the 26S proteasome and ubiquitin activating enzyme (E1) blocked both chromosomal and extra-chromosomal recombination when added 1h following transfection/induction, but they had no effect when added 16 h later. There was no effect on expression of RAG1, and recombination did not require transit through the cell cycle, confirming that inhibition was not due to an indirect effect on cell cycle arrest or protein expression. Experiments in which RAG1 translation was blocked with cyclohexamide after 16 h of expression indicated that many active recombination complexes were formed within this window, although recombination products continued to accumulate for 48 h. These data suggest that ubiquitin-dependent degradation is an early step in complex assembly or activation, and are consistent with our previous hypothesis that degradation of a negative regulator is required to trigger recombination.
Collapse
Affiliation(s)
- Anamika Bhattacharyya
- Department of Biochemistry and Molecular and Cellular Sciences, Georgetown University, Washington, DC 20057, USA
| | | |
Collapse
|
17
|
Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in cis. Proc Natl Acad Sci U S A 2009; 106:18339-44. [PMID: 19820166 DOI: 10.1073/pnas.0902545106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Canonical chromosomal translocations juxtaposing antigen receptor genes and oncogenes are a hallmark of many lymphoid malignancies. These translocations frequently form through the joining of DNA ends from double-strand breaks (DSBs) generated by the recombinase activating gene (RAG)-1 and -2 proteins at lymphocyte antigen receptor loci and breakpoint targets near oncogenes. Our understanding of chromosomal breakpoint target selection comes primarily from the analyses of these lesions, which are selected based on their transforming properties. RAG DSBs are rarely resolved aberrantly in wild-type developing lymphocytes. However, in ataxia telangiectasia mutated (ATM)-deficient lymphocytes, RAG breaks are frequently joined aberrantly, forming chromosomal lesions such as translocations that predispose (ATM)-deficient mice and humans to the development of lymphoid malignancies. Here, an approach that minimizes selection biases is used to isolate a large cohort of breakpoint targets of aberrantly resolved RAG DSBs in Atm-deficient lymphocytes. Analyses of this cohort revealed that frequently, the breakpoint targets for aberrantly resolved RAG breaks are other DSBs. Moreover, these nonselected lesions exhibit a bias for using breakpoints in cis, forming small chromosomal deletions, rather than breakpoints in trans, forming chromosomal translocations.
Collapse
|
18
|
Helmink BA, Bredemeyer AL, Lee BS, Huang CY, Sharma GG, Walker LM, Bednarski JJ, Lee WL, Pandita TK, Bassing CH, Sleckman BP. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. ACTA ACUST UNITED AC 2009; 206:669-79. [PMID: 19221393 PMCID: PMC2699138 DOI: 10.1084/jem.20081326] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Mre11–Rad50–Nbs1 (MRN) complex functions in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) at postreplicative stages of the cell cycle. During HR, the MRN complex functions directly in the repair of DNA DSBs and in the initiation of DSB responses through activation of the ataxia telangiectasia-mutated (ATM) serine-threonine kinase. Whether MRN functions in DNA damage responses before DNA replication in G0/G1 phase cells has been less clear. In developing G1-phase lymphocytes, DNA DSBs are generated by the Rag endonuclease and repaired during the assembly of antigen receptor genes by the process of V(D)J recombination. Mice and humans deficient in MRN function exhibit lymphoid phenotypes that are suggestive of defects in V(D)J recombination. We show that during V(D)J recombination, MRN deficiency leads to the aberrant joining of Rag DSBs and to the accumulation of unrepaired coding ends, thus establishing a functional role for MRN in the repair of Rag-mediated DNA DSBs. Moreover, these defects in V(D)J recombination are remarkably similar to those observed in ATM-deficient lymphocytes, suggesting that ATM and MRN function in the same DNA DSB response pathways during lymphocyte antigen receptor gene assembly.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Temporal and spatial regulation of V(D)J recombination: interactions of extrinsic factors with the RAG complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:157-65. [PMID: 19731809 DOI: 10.1007/978-1-4419-0296-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the course of lymphoid development, V(D)J recombination is subject to stringent locus-specific and temporal regulation. These constraints are ultimately responsible for several features peculiar to lymphoid development, including the lineage specificity of antigen receptor assembly, allelic exclusion and receptor editing. In addition, cell cycle phase-dependent regulation of V(D)J recombinase activity ensures that DNA rearrangement is completed by the appropriate mechanism of DNA repair. Regulation of V(D)J recombination involves interactions between the V(D)J recombinase--a heteromeric complex consisting of RAG-1 and RAG-2 subunits--and macromolecular assemblies extrinsic to the recombinase. This chapter will focus on those features of the recombinase itself--and in particular the RAG-2 subunit--that interact with extrinsic factors to establish patterns of temporal control and locus specificity in developing lymphocytes.
Collapse
|
20
|
Karyopherin alpha 1 is a putative substrate of the RAG1 ubiquitin ligase. Mol Immunol 2008; 46:1319-25. [PMID: 19118899 DOI: 10.1016/j.molimm.2008.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/23/2008] [Indexed: 11/22/2022]
Abstract
The RAG1 recombinase, which participates in DNA manipulation during rearrangement of antigen receptor genes in developing immune cells, possesses ubiquitin ligase activity. The nuclear transport protein karyopherin alpha 1 (KPNA1) binds to RAG1 upstream of its ubiquitin ligase domain, but this interaction is not required for nuclear localization of RAG1. We found that the isolated ubiquitin ligase domain of RAG1 (amino acids 218-389) promoted ubiquitylation of purified KPNA1. While RAG1 auto-ubiquitylation is dependent on the ubiquitin conjugating enzyme CDC34, ubiquitylation of KPNA1 was best supported by UbcH2/Rad6 and UbcH5a. Ubiquitylation of KPNA1 required the lysine/arginine-rich region spanning RAG1 amino acids 218-263 upstream of the RAG1 ubiquitin ligase domain, but RAG1 was still able to undergo auto-ubiquitylation in this region even in the presence of KPNA1. This is the first putative substrate identified for the RAG1 ubiquitin ligase, and to our knowledge it is the first reported case of ubiquitylation of KPNA1.
Collapse
|
21
|
Abstract
Receptor editing is the primary means through which B cells revise antigen receptors and maintain central tolerance. Previous studies have demonstrated that interferon regulatory factor 4 (IRF-4) and IRF-8 promote immunoglobulin light-chain rearrangement and transcription at the pre-B stage. Here, the roles of IRF-4 and -8 in receptor editing were analyzed. Our results show that secondary rearrangement was impaired in IRF-4 but not IRF-8 mutant mice, suggesting that receptor editing is defective in the absence of IRF-4. The role of IRF-4 in receptor editing was further examined in B-cell-receptor (BCR) transgenic mice. Our results show that secondary rearrangement triggered by membrane-bound antigen was defective in the IRF-4-deficient mice. Our results further reveal that the defect in secondary rearrangement is more severe at the immunoglobulin lambda locus than at the kappa locus, indicating that IRF-4 is more critical for the lambda rearrangement. We provide evidence demonstrating that the expression of IRF-4 in immature B cells is rapidly induced by self-antigen and that the reconstitution of IRF-4 expression in the IRF-4 mutant immature B cells promotes secondary rearrangement. Thus, our studies identify IRF-4 as a nuclear effector of a BCR signaling pathway that promotes secondary rearrangement at the immature B-cell stage.
Collapse
|
22
|
Huang CY, Sharma GG, Walker LM, Bassing CH, Pandita TK, Sleckman BP. Defects in coding joint formation in vivo in developing ATM-deficient B and T lymphocytes. ACTA ACUST UNITED AC 2007; 204:1371-81. [PMID: 17502661 PMCID: PMC2118620 DOI: 10.1084/jem.20061460] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ataxia-telangiectasia mutated (ATM)–deficient lymphocytes exhibit defects in coding joint formation during V(D)J recombination in vitro. Similar defects in vivo should affect both T and B cell development, yet the lymphoid phenotypes of ATM deficiency are more pronounced in the T cell compartment. In this regard, ATM-deficient mice exhibit a preferential T lymphopenia and have an increased incidence of nontransformed and transformed T cells with T cell receptor α/δ locus translocations. We demonstrate that there is an increase in the accumulation of unrepaired coding ends during different steps of antigen receptor gene assembly at both the immunoglobulin and T cell receptor loci in developing ATM-deficient B and T lymphocytes. Furthermore, we show that the frequency of ATM-deficient αβ T cells with translocations involving the T cell receptor α/δ locus is directly related to the number of T cell receptor α rearrangements that these cells can make during development. Collectively, these findings demonstrate that ATM deficiency leads to broad defects in coding joint formation in developing B and T lymphocytes in vivo, and they provide a potential molecular explanation as to why the developmental impact of these defects could be more pronounced in the T cell compartment.
Collapse
Affiliation(s)
- Ching-Yu Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 2006; 24:541-70. [PMID: 16551259 DOI: 10.1146/annurev.immunol.23.021704.115830] [Citation(s) in RCA: 408] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
V(D)J recombination assembles antigen receptor variable region genes from component germline variable (V), diversity (D), and joining (J) gene segments. For B cells, such rearrangements lead to the production of immunoglobulin (Ig) proteins composed of heavy and light chains. V(D)J is tightly controlled at the Ig heavy chain locus (IgH) at several different levels, including cell-type specificity, intra- and interlocus ordering, and allelic exclusion. Such controls are mediated at the level of gene segment accessibility to V(D)J recombinase activity. Although much has been learned, many long-standing questions regarding the regulation of IgH locus rearrangements remain to be elucidated. In this review, we summarize advances that have been made in understanding how V(D)J recombination at the IgH locus is controlled and discuss important areas for future investigation.
Collapse
Affiliation(s)
- David Jung
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
24
|
Larijani M, Zaheen A, Frieder D, Wang Y, Wu GE, Edelmann W, Martin A. Lack of MSH2 involvement differentiates V(D)J recombination from other non-homologous end joining events. Nucleic Acids Res 2005; 33:6733-42. [PMID: 16314305 PMCID: PMC1297709 DOI: 10.1093/nar/gki983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
V(D)J recombination and class switch recombination are the two DNA rearrangement events used to diversify the mouse and human antibody repertoires. While their double strand breaks (DSBs) are initiated by different mechanisms, both processes use non-homologous end joining (NHEJ) in the repair phase. DNA mismatch repair elements (MSH2/MSH6) have been implicated in the repair of class switch junctions as well as other DNA DSBs that proceed through NHEJ. MSH2 has also been implicated in the regulation of factors such as ATM and the MRN (Mre11, Rad50, Nbs1) complex, which are involved in V(D)J recombination. These findings led us to examine the role of MSH2 in V(D)J repair. Using MSH2−/− and MSH2+/+ mice and cell lines, we show here that all pathways involving MSH2 are dispensable for the generation of an intact pre-immune repertoire by V(D)J recombination. In contrast to switch junctions and other DSBs, the usage of terminal homology in V(D)J junctions is not influenced by MSH2. Thus, whether the repair complex for V(D)J recombination is of a canonical NHEJ type or a separate microhomology-mediated-end joining (MMEJ) type, it does not involve MSH2. This highlights a distinction between the repair of V(D)J recombination and other NHEJ reactions.
Collapse
Affiliation(s)
- Mani Larijani
- Department of Immunology, University of Toronto, Medical Sciences Building 5265, Toronto, Canada, M5S 1A8.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Breaking apart chromosomes is not a matter to be taken lightly. The possible negative outcomes are obvious: loss of information, unstable chromosomes, chromosomal translocations, tumorigenesis, or cell death. Utilizing DNA rearrangement to generate the desired diversity in the antigen receptor loci is a risky business, and it must be carefully controlled. In general, the regulation is so precise that the negative consequences are minimal or not apparent. They are visible only when the process of V(D)J recombination goes awry, as for example in some chromosomal translocations associated with lymphoid tumors. Regulation is imposed not only to prevent the generation of random breaks in the DNA, but also to direct rearrangement to the appropriate locus or subregion of a locus in the appropriate cell at the appropriate time. Antigen receptor rearrangement is regulated essentially at four different levels: expression of the RAG1/2 recombinase, intrinsic biochemical properties of the recombinase and the cleavage reaction, the post-cleavage /DNA repair stage of the process, and accessibility of the substrate to the recombinase. Within each of these broad categories, multiple mechanisms are used to achieve the desired aims. The major focus of this review is on accessibility control and the role of chromatin and nuclear architecture in achieving this regulation, although other issues are touched upon.
Collapse
MESH Headings
- Alleles
- Chromatin/chemistry
- DNA Repair
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Rearrangement, B-Lymphocyte
- Gene Rearrangement, T-Lymphocyte
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Histones/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunoglobulin Heavy Chains/immunology
- Nuclear Proteins
- Nucleosomes/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Marjorie A Oettinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
26
|
Abstract
The genes that encode immunoglobulins and T-cell receptors must be assembled from the multiple variable (V), joining (J), and sometimes diversity (D) gene segments present in the germline loci. This process of V(D)J recombination is the major source of the immense diversity of the immune repertoire of jawed vertebrates. The recombinase that initiates the process, recombination-activating genes 1 (RAG1) and RAG2, belongs to a large family that includes transposases and retroviral integrases. RAG1/2 cleaves the DNA adjacent to the gene segments to be recombined, and the segments are then joined together by DNA repair factors. A decade of biochemical research on RAG1/2 has revealed many similarities to transposition, culminating with the observation that RAG1/2 can carry out transpositional strand transfer. Here, we discuss the parallels between V(D)J recombination and transposition, focusing specifically on the assembly of the recombination nucleoprotein complex, the mechanism of cleavage, the disassembly of post-cleavage complexes, and aberrant reactions carried out by the recombinase that do not result in successful locus rearrangement and may be deleterious to the organism. This work highlights the considerable diversity of transposition systems and their relation to V(D)J recombination.
Collapse
Affiliation(s)
- Jessica M Jones
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington DC, USA
| | | |
Collapse
|
27
|
Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA, Eckhaus M, Ried T, Bonner WM, Nussenzweig A. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003; 114:371-383. [PMID: 12914701 PMCID: PMC4737479 DOI: 10.1016/s0092-8674(03)00567-1] [Citation(s) in RCA: 490] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Histone H2AX becomes phosphorylated in chromatin domains flanking sites of DNA double-strand breakage associated with gamma-irradiation, meiotic recombination, DNA replication, and antigen receptor rearrangements. Here, we show that loss of a single H2AX allele compromises genomic integrity and enhances the susceptibility to cancer in the absence of p53. In comparison with heterozygotes, tumors arise earlier in the H2AX homozygous null background, and H2AX(-/-) p53(-/-) lymphomas harbor an increased frequency of clonal nonreciprocal translocations and amplifications. These include complex rearrangements that juxtapose the c-myc oncogene to antigen receptor loci. Restoration of the H2AX null allele with wild-type H2AX restores genomic stability and radiation resistance, but this effect is abolished by substitution of the conserved serine phosphorylation sites in H2AX with alanine or glutamic acid residues. Our results establish H2AX as genomic caretaker that requires the function of both gene alleles for optimal protection against tumorigenesis.
Collapse
Affiliation(s)
- Arkady Celeste
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Simone Difilippantonio
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Oscar Fernandez-Capetillo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Duane R Pilch
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Olga A Sedelnikova
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Eckhaus
- Veterinary Resources Program, Office of Research Services, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - William M Bonner
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - André Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
28
|
Lu R, Medina KL, Lancki DW, Singh H. IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev 2003; 17:1703-8. [PMID: 12832394 PMCID: PMC196178 DOI: 10.1101/gad.1104803] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
B-lymphocyte development involves sequential DNA rearrangements of immunoglobulin (Ig) heavy (mu) and light (kappa, lambda) chain loci and is dependent on transient expression of mu containing pre-antigen receptor complexes (pre-BCR). To date, genetic analysis has not identified transcription factors that coordinate the pre-B-to-B transition. We demonstrate that the related interferon regulatory factors IRF-4 (Pip) and IRF-8 (ICSBP) are required for Ig light but not heavy-chain gene rearrangement. In the absence of these transcription factors, B-cell development is arrested at the cycling pre-B-cell stage and the mutant cells fail to down-regulate the pre-BCR. On the basis of molecular analysis, we propose that IRF-4,8 function as a genetic switch to down-regulate surrogate light-chain gene expression and induce conventional light-chain gene transcription and rearrangement.
Collapse
Affiliation(s)
- Runqing Lu
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
29
|
|
30
|
Villa A, Santagata S, Bozzi F, Imberti L, Notarangelo LD. Omenn syndrome: a disorder of Rag1 and Rag2 genes. J Clin Immunol 1999; 19:87-97. [PMID: 10226883 DOI: 10.1023/a:1020550432126] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vertebrates, generation of the T- and B-cell repertoire relies on genomic rearrangement of T-cell receptor and immunoglobulin gene coding segments. This process, known as V(D)J recombination, is initiated by the lymphoid specific proteins Rag1 and Rag2. Both in humans and in animal models, mutations that abrogate expression of either the Rag1 or Rag2 proteins result in severe combined immune deficiency with a complete lack of circulating T and B cells due to an early block in lymphoid development. We have recently shown that mutations that impair, but do not completely abolish the function of Rag1 and Rag2 in humans result in Omenn syndrome, an enigmatic form of combined immune deficiency characterized by oligoclonal, activated T lymphocytes with a skewed Th2 profile.
Collapse
Affiliation(s)
- A Villa
- Istituto di Tecnologie Biomediche Avanzate, C.N.R., Segrate (MI) Italy
| | | | | | | | | |
Collapse
|
31
|
Chang Y, Brown ML. Formation of coding joints in V(D)J recombination-inducible severe combined immune deficient pre-B cell lines. Proc Natl Acad Sci U S A 1999; 96:191-6. [PMID: 9874794 PMCID: PMC15115 DOI: 10.1073/pnas.96.1.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Characterization of the severe combined immune deficient (scid) defect in the recombination process has provided many insights into the underlying mechanisms of variable (diversity) joining recombination. By using recombination-inducible scid pre-B cell lines transformed with the temperature-sensitive Abelson-murine leukemia virus, we show that large quantities of recombination intermediates can be generated, and their resolution can be followed during further cell culture. In this study, we demonstrate that the ability of these scid pre-B cell lines to resolve coding ends depends on the cell culture temperature. At the nonpermissive temperature of 39 degreesC, scid pre-B cell lines fail to form coding joints and contain mostly unresolved hairpin-coding ends. Once the cell culture is returned to the permissive temperature of 33 degreesC, these same cells make a significant amount of coding joints concomitant with the disappearance of hairpin-coding ends. Thus, the scid cells are capable of resolving coding ends under certain culture conditions. However, the majority of the recovered coding joints contains extensive deletions, indicating that the temperature-dependent resolution of coding ends is still scid-like. Our results suggest that the inability of scid cells to promptly nick hairpin-coding ends may lead to aberrant joining in these cells.
Collapse
Affiliation(s)
- Y Chang
- Department of Microbiology, Molecular and Cellular Biology Program, Arizona State University, Tempe, AZ 85287-2701, USA.
| | | |
Collapse
|