1
|
Interaction of Mycoplasma gallisepticum with Chicken Tracheal Epithelial Cells Contributes to Macrophage Chemotaxis and Activation. Infect Immun 2015; 84:266-74. [PMID: 26527215 DOI: 10.1128/iai.01113-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/24/2015] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma gallisepticum colonizes the chicken respiratory mucosa and mediates a severe inflammatory response hallmarked by subepithelial leukocyte infiltration. We recently reported that the interaction of M. gallisepticum with chicken tracheal epithelial cells (TECs) mediated the upregulation of chemokine and inflammatory cytokine genes in these cells (S. Majumder, F. Zappulla, and L. K. Silbart, PLoS One 9:e112796, http://dx.doi.org/10.1371/journal.pone.0112796). The current study extends these observations and sheds light on how this initial interaction may give rise to subsequent inflammatory events. Conditioned medium from TECs exposed to the virulent Rlow strain induced macrophage chemotaxis to a much higher degree than the nonvirulent Rhigh strain. Coculture of chicken macrophages (HD-11) with TECs exposed to live mycoplasma revealed the upregulation of several proinflammatory genes associated with macrophage activation, including interleukin-1β (IL-1β), IL-6, IL-8, CCL20, macrophage inflammatory protein 1β (MIP-1β), CXCL-13, and RANTES. The upregulation of these genes was similar to that observed upon direct contact of HD-11 cells with live M. gallisepticum. Coculture of macrophages with Rlow-exposed TECs also resulted in prolonged expression of chemokine genes, such as those encoding CXCL-13, MIP-1β, RANTES, and IL-8. Taken together, these studies support the notion that the initial interaction of M. gallisepticum with host respiratory epithelial cells contributes to macrophage chemotaxis and activation by virtue of robust upregulation of inflammatory cytokine and chemokine genes, thereby setting the stage for chronic tissue inflammation.
Collapse
|
2
|
Mycoplasma gallisepticum lipid associated membrane proteins up-regulate inflammatory genes in chicken tracheal epithelial cells via TLR-2 ligation through an NF-κB dependent pathway. PLoS One 2014; 9:e112796. [PMID: 25401327 PMCID: PMC4234737 DOI: 10.1371/journal.pone.0112796] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/20/2014] [Indexed: 01/20/2023] Open
Abstract
Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated upon ligation of mycoplasma lipid associated membrane proteins (LAMP) to TLRs expressed on chicken tracheal epithelial cells (TEC). To test this hypothesis, live bacteria or LAMPs isolated from a virulent (Rlow) or a non-virulent (Rhigh) strain were incubated with primary TECs or chicken tracheae ex vivo. Microarray analysis identified up-regulation of several inflammatory and chemokine genes in TECs as early as 1.5 hours post-exposure. Kinetic analysis using RT-qPCR identified the peak of expression for most genes to be at either 1.5 or 6 hours. Ex-vivo exposure also showed up-regulation of inflammatory genes in epithelial cells by 1.5 hours. Among the commonly up-regulated genes were IL-1β, IL-6, IL-8, IL-12p40, CCL-20, and NOS-2, all of which are important immune-modulators and/or chemo-attractants of leukocytes. While these inflammatory genes were up-regulated in all four treatment groups, Rlow exposed epithelial cells both in vitro and ex vivo showed the most dramatic up-regulation, inducing over 100 unique genes by 5-fold or more in TECs. Upon addition of a TLR-2 inhibitor, LAMP-mediated gene expression of IL-1β and CCL-20 was reduced by almost 5-fold while expression of IL-12p40, IL-6, IL-8 and NOS-2 mRNA was reduced by about 2–3 fold. Conversely, an NF-κB inhibitor abrogated the response entirely for all six genes. miRNA-146a, a negative regulator of TLR-2 signaling, was up-regulated in TECs in response to either Rlow or Rhigh exposure. Taken together we conclude that LAMPs isolated from both Rhigh and Rlow induced rapid, TLR-2 dependent but transient up-regulation of inflammatory genes in primary TECs through an NF-κB dependent pathway.
Collapse
|
3
|
Lee MN, Cha JH, Ahn HM, Yoo JH, Kim HS, Sohn S, Hong YM. Mycoplasma pneumoniae infection in patients with Kawasaki disease. KOREAN JOURNAL OF PEDIATRICS 2011; 54:123-7. [PMID: 21738542 PMCID: PMC3120998 DOI: 10.3345/kjp.2011.54.3.123] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 10/09/2010] [Accepted: 03/07/2011] [Indexed: 12/19/2022]
Abstract
Purpose Kawasaki disease (KD) is the main cause of acquired heart disease in children. In addition to cardiovascular involvement, many complications have been recognized in KD. However, respiratory complications have been rarely reported. We investigated the differences in clinical characteristics, laboratory findings, radiography findings, and echocardiography findings of Mycoplasma pneumoniae infection and other types of pneumonia in KD patients. Methods Among 358 patients with KD, 54 developed concurrent pneumonia. Among the 54 patients, 12 (22.2%) with high titers of anti-M. pneumoniae antibody (AMA) (>1:640) were grouped in the M. pneumoniae group and 42 were included in the control group. Serum AMA was measured in each patient. Clinical laboratory findings and total duration of fever were analyzed. Results The duration of fever, serum hemoglobin, white blood cell count, platelet count, erythrocyte sedimentation rate, C-reactive protein level, albumin level, and the incidence of coronary arterial lesions showed no statistical difference in the 2 groups. Neutrophil count was significantly higher in the M. pneumoniae group than in the control group. Among various radiography findings observed in pneumonia, consolidation and pleural effusion were more frequent in the M. pneumoniae group than in the control group. On the other hand, parahilar peribronchial opacification, diffuse interstitial lesion, and normal findings prevailed in the control group. Conclusion KD patients can have concurrent infections, especially pulmonary symptoms. The cause of KD is likely to be associated with M. pneumoniae infection. Thus, immediate treatment of M. pneumoniae infection in KD patients is very important.
Collapse
Affiliation(s)
- Mi Na Lee
- Department of Pediatrics, Ewha Womans University, School of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
4
|
Liu L, Li Z, Guo Y, VanVranken SJ, Mourad W, Li H. Crystal structure of the Mycoplasma arthritidis-derived mitogen in apo form reveals a 3D domain-swapped dimer. J Mol Biol 2010; 399:367-76. [PMID: 20417218 DOI: 10.1016/j.jmb.2010.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing particular Vbeta elements of T cell receptor. Here, we report the crystal structure of a MAM mutant K201A in apo form (unliganded) at 2.8-A resolutions. We also partially refined the crystal structures of the MAM wild type and another MAM mutant L50A in apo forms at low resolutions. Unexpectedly, the structures of these apo MAM molecules display a three-dimensional domain-swapped dimer. The entire C-terminal domains of these MAM molecules are involved in the domain swapping. Functional analyses demonstrated that the K201A and L50A mutants do not show altered ability to bind to their host receptors and that they stimulate the activation of T cells as efficiently as does the wild type. Structural comparisons indicated that the "reconstituted" MAM monomer from the domain-swapped dimer displays large differences at the hinge regions from the MAM(wt) molecule in the receptor-bound form. Further comparison indicated that MAM has a flexible N-terminal loop, implying that conformational changes could occur upon receptor binding.
Collapse
Affiliation(s)
- Lihui Liu
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
5
|
Association of Mycoplasma arthritidis mitogen with lethal toxicity but not with arthritis in mice. Infect Immun 2008; 76:4989-98. [PMID: 18779340 DOI: 10.1128/iai.00667-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis induces an acute to chronic arthritis in rodents. Arthritis induced in mice histologically resembles human rheumatoid arthritis and can be associated with lethal toxicity following systemic injection. The M. arthritidis mitogen (MAM) superantigen has long been implicated as having a role in pathogenesis, but its significance with respect to toxicity and arthritogenicity in mycoplasma-induced disease is unclear. To study the pathogenic significance of MAM, M. arthritidis mutants that overproduced or failed to produce MAM were developed. MAM overproduction and knockout mutants were more and less mitogenic, respectively, than the wild-type strain. The degree of mitogenic activity correlated with lethal toxicity in DBA/2J mice. In contrast, histopathological studies detected no correlation between MAM production and the severity of arthritis induced in DBA/2J and CBA/J mice.
Collapse
|
6
|
Li H, Zhao Y, Guo Y, Li Z, Eisele L, Mourad W. Zinc induces dimerization of the class II major histocompatibility complex molecule that leads to cooperative binding to a superantigen. J Biol Chem 2006; 282:5991-6000. [PMID: 17166841 PMCID: PMC3924565 DOI: 10.1074/jbc.m608482200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dimerization of class II major histocompatibility complex (MHC) plays an important role in the MHC biological function. Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing specific T cell receptor Vbeta elements. Here we have used structural, sedimentation, and surface plasmon resonance detection approaches to investigate the molecular interactions between MAM and the class II MHC molecule HLA-DR1 in the context of a hemagglutinin peptide-(306-318) (HA). Our results revealed that zinc ion can efficiently induce the dimerization of the HLA-DR1/HA complex. Because the crystal structure of the MAM/HLA-DR1/hemagglutinin complex in the presence of EDTA is nearly identical to the structure of the complex crystallized in the presence of zinc ion, Zn(2+) is evidently not directly involved in the binding between MAM and HLA-DR1. Sedimentation and surface plasmon resonance studies further revealed that MAM binds the HLA-DR1/HA complex with high affinity in a 1:1 stoichiometry, in the absence of Zn(2+). However, in the presence of Zn(2+), a dimerized MAM/HLA-DR1/HA complex can arise through the Zn(2+)-induced DR1 dimer. In the presence of Zn(2+), cooperative binding of MAM to the DR1 dimer was also observed.
Collapse
Affiliation(s)
- Hongmin Li
- Wadsworth Center, New York State Department of Health, University of Albany, State University of New York, Albany, New York 12208, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Guo Y, Li Z, Van Vranken SJ, Li H. A single point mutation changes the crystallization behavior of Mycoplasma arthritidis-derived mitogen. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:238-41. [PMID: 16511311 PMCID: PMC2197180 DOI: 10.1107/s1744309106003691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/30/2006] [Indexed: 11/10/2022]
Abstract
Mycoplasma arthritidis-derived mitogen (MAM) functions as a conventional superantigen (SAg). Although recombinant MAM has been crystallized by the hanging-drop vapour-diffusion method, the crystals diffracted poorly to only 5.0 A resolution, with large unit-cell parameters a = 163.8, b = 93.0, c = 210.9 A, beta = 93.7 degrees in the monoclinic space group P2(1). Unit-cell content analysis revealed that as many as 24 molecules could be present in the asymmetric unit. Systematic alanine mutagenesis was applied in order to search for mutants that give crystals of better quality. Two mutants, L50A and K201A, were crystallized under the same conditions as wild-type MAM (MAMwt). Crystals of the L50A mutant are isomorphous with those of MAMwt, while a new crystal form was obtained for the K201 mutant, belonging to the cubic space group P4(1)32 with unit-cell parameters a = b = c = 181.9 A. Diffraction data were collected to 3.6 and 2.8 A resolution from crystals of the MAM L50A and K201A mutants, respectively. Molecular-replacement calculations suggest the presence of two molecules in the asymmetric unit for the MAM K201A mutant crystal, resulting in a VM of 5.0 A Da(-1) and a solvent content of 75%. An interpretable electron-density map for the MAM K201A mutant crystal was produced using the molecular-replacement method.
Collapse
Affiliation(s)
- Yi Guo
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Sandra J. Van Vranken
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| |
Collapse
|
8
|
Clapper B, Tu AHT, Simmons WL, Dybvig K. Bacteriophage MAV1 is not associated with virulence of Mycoplasma arthritidis. Infect Immun 2004; 72:7322-5. [PMID: 15557660 PMCID: PMC529157 DOI: 10.1128/iai.72.12.7322-7325.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies demonstrated that Mycoplasma arthritidis strain 158 acquired a high degree of virulence upon lysogenization with bacteriophage MAV1. In the present study, the association between MAV1 and virulence was reexamined by creating new lysogens of 158 and of a relatively avirulent mutant, strain 158-1. In the absence of lysogenization, 158 was more virulent than expected. The virulence of 158 and 158-1 did not increase upon lysogenization. A major antigenic difference between 158 and 158-1 was identified that is unrelated to MAV1 and could account for the difference in virulence.
Collapse
Affiliation(s)
- Brenda Clapper
- Department of Genetics, KAUL, Room 720, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | | | | | | |
Collapse
|
9
|
Zhao Y, Li Z, Drozd SJ, Guo Y, Mourad W, Li H. Crystal structure of Mycoplasma arthritidis mitogen complexed with HLA-DR1 reveals a novel superantigen fold and a dimerized superantigen-MHC complex. Structure 2004; 12:277-88. [PMID: 14962388 PMCID: PMC3923524 DOI: 10.1016/j.str.2004.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 10/15/2003] [Accepted: 10/16/2003] [Indexed: 01/24/2023]
Abstract
Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing particular TCR Vbeta elements. Here we report the crystal structure of MAM complexed with a major histocompatibility complex (MHC) antigen, HLA-DR1, loaded with haemagglutinin peptide 306-318 (HA). The structure reveals that MAM has a novel fold composed of two alpha-helical domains. This fold is entirely different from that of the pyrogenic superantigens, consisting of a beta-grasped motif and a beta barrel. In the complex, the N-terminal domain of MAM binds orthogonally to the MHC alpha1 domain and the bound HA peptide, and to a lesser extent to the MHC beta1 domain. Two MAM molecules form an asymmetric dimer and cross-link two MHC antigens to form a plausible, dimerized MAM-MHC complex. These data provide the first crystallographic evidence that superantigens can dimerize MHC molecules. Based on our structure, a model of the TCR2MAM2MHC2 complex is proposed.
Collapse
Affiliation(s)
- Yiwei Zhao
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
| | - Sandra J. Drozd
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
| | - Yi Guo
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
| | - Walid Mourad
- Centre de Recherche en Immunologie, et Rhumatologie, CHUQ, Pavillon CHUL, Université Laval, Québec, Québec G1V-4G2, Canada
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201
- Correspondence:
| |
Collapse
|
10
|
Clapper B, Tu AHT, Elgavish A, Dybvig K. The vir gene of bacteriophage MAV1 confers resistance to phage infection on Mycoplasma arthritidis. J Bacteriol 2004; 186:5715-20. [PMID: 15317776 PMCID: PMC516842 DOI: 10.1128/jb.186.17.5715-5720.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 05/28/2004] [Indexed: 11/20/2022] Open
Abstract
Lysogenization of Mycoplasma arthritidis with the MAV1 bacteriophage increases the virulence of the mycoplasma in rats. The MAV1 vir gene is one of only two constitutively transcribed phage genes in the lysogen. We show here that Vir is a lipoprotein and is located on the outer surface of the cell membrane. To investigate whether Vir is a virulence factor, the vir gene was cloned into the transposon vector Tn4001T and inserted in the genome of the nonlysogen strain 158. The virulence of the resulting transformants was no different from that of the parent strain. Interestingly, all vir-containing transformants were resistant to infection by MAV1. Vir had no effect on MAV1 adsorption. We conclude that Vir is not a virulence factor but functions to exclude superinfecting phage, possibly by blocking the injection of phage DNA into the bacterial cytoplasm.
Collapse
Affiliation(s)
- Brenda Clapper
- Department of Microbiology, KAUL, Rm 720, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | | | | | | |
Collapse
|
11
|
Zhao Y, Li Z, Drozd S, Guo Y, Stack R, Hauer C, Li H. Crystallization and preliminary crystallographic analysis of Mycoplasma arthritidis-derived mitogen complexed with peptide/MHC class II antigen. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2004; 60:353-6. [PMID: 14747723 PMCID: PMC3924564 DOI: 10.1107/s090744490302763x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 12/02/2003] [Indexed: 11/11/2022]
Abstract
Mycoplasma arthritidis-derived mitogen (MAM), a bacterial superantigen, has been crystallized in complex with its human receptor, major histocompatibility complex (MHC) class II antigen, by the hanging-drop vapor-diffusion method. Crystals were obtained under three conditions, with ammonium sulfate, phosphate salt and PEG 8000 as the precipitant. The crystals grown under these conditions all belong to space group I222, with the same unit-cell parameters: a = 137.4, b = 178.2, c = 179.6 A. Diffraction data were collected to 3.3 and 3.4 A resolution from crystals of native and selenomethionylated MAM-MHC complexes, respectively. Self- and cross-rotation function calculations suggest the presence of two complex molecules in the asymmetric unit, resulting in a V(M) of 4.0 and a solvent content of 69%. An interpretable electron-density map was produced using a combination of molecular replacement and SAD phasing.
Collapse
Affiliation(s)
- Yiwei Zhao
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Sandra Drozd
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Yi Guo
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Robert Stack
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Charles Hauer
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Empire State Plaza, PO Box 509, Albany, New York 12201-0509, USA
| |
Collapse
|
12
|
Markham PF, Kanci A, Czifra G, Sundquist B, Hains P, Browning GF. Homologue of macrophage-activating lipoprotein in Mycoplasma gallisepticum is not essential for growth and pathogenicity in tracheal organ cultures. J Bacteriol 2003; 185:2538-47. [PMID: 12670978 PMCID: PMC152605 DOI: 10.1128/jb.185.8.2538-2547.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 01/08/2003] [Indexed: 11/20/2022] Open
Abstract
While the genomes of a number of Mycoplasma species have been fully determined, there has been limited characterization of which genes are essential. The surface protein (p47) identified by monoclonal antibody B3 is the basis for an enzyme-linked immunosorbent assay for serological detection of Mycoplasma gallisepticum infection and appears to be constitutively expressed. Its gene was cloned, and the DNA sequence was determined. Subsequent analysis of the p47 amino acid sequence and searches of DNA databases found homologous gene sequences in the genomes of M. pneumoniae and M. genitalium and identity with a gene family in Ureaplasma urealyticum and genes in M. agalactiae and M. fermentans. The proteins encoded by these genes were found to belong to a family of basic membrane proteins (BMP) that are found in a wide range of bacteria, including a number of pathogens. Several of the BMP family members, including p47, contain selective lipoprotein-associated motifs that are found in macrophage-activating lipoprotein 404 of M. fermentans and lipoprotein P48 of M. agalactiae. The p47 gene was predicted to encode a 59-kDa peptide, but affinity-purified p47 had a molecular mass of approximately 47 kDa, as determined by polyacrylamide gel analysis. Analysis of native and recombinant p47 by mass peptide fingerprinting revealed the absence of the carboxyl end of the protein encoded by the p47 gene in native p47, which would account for the difference seen in the predicted and measured molecular weights and indicated posttranslational cleavage of the lipoprotein at its carboxyl end. A DNA construct containing the p47 gene interrupted by the gene encoding tetracycline resistance was used to transform M. gallisepticum cells. A tetracycline-resistant mycoplasma clone, P2, contained the construct inserted within the genomic p47 gene, with crossovers occurring between 73 bp upstream and 304 bp downstream of the inserted tetracycline resistance gene. The absence of p47 protein in clone P2 was determined by the lack of reactivity with rabbit anti-p47 sera or monoclonal antibody B3 in Western blots of whole-cell proteins. There was no difference between the p47(-) mutant and wild-type M. gallisepticum in pathogenicity in chicken tracheal organ cultures. Thus, p47, although homologous to genes that occur in many prokaryotes, is not essential for growth in vitro or for attachment and the initial stages of pathogenesis in chickens.
Collapse
Affiliation(s)
- Philip F Markham
- Veterinary Preclinical Centre, Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Kaufmann A, Mühlradt PF, Gemsa D, Sprenger H. Induction of cytokines and chemokines in human monocytes by Mycoplasma fermentans-derived lipoprotein MALP-2. Infect Immun 1999; 67:6303-8. [PMID: 10569741 PMCID: PMC97033 DOI: 10.1128/iai.67.12.6303-6308.1999] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial infections are characterized by strong inflammatory reactions. The responsible mediators are often bacterially derived cell wall molecules, such as lipopolysaccharide or lipoteichoic acids, which typically stimulate monocytes and macrophages to release a wide variety of inflammatory cytokines and chemokines. Mycoplasmas, which lack a cell wall, may also stimulate monocytes very efficiently. This study was performed to identify mycoplasma-induced mediators. We investigated the induction of cytokines and chemokines in human monocytes exposed to the Mycoplasma fermentans-derived membrane component MALP-2 (macrophage-activating lipopeptide 2) by dose response and kinetic analysis. We found a rapid and strong MALP-2-inducible chemokine and cytokine gene expression which was followed by the release of chemokines and cytokines with peak levels after 12 to 20 h. MALP-2 induced the neutrophil-attracting CXC chemokines interleukin-8 (IL-8) and GRO-alpha as well as the mononuclear leukocyte-attracting CC chemokines MCP-1, MIP-1alpha, and MIP-1beta. Production of the proinflammatory cytokines tumor necrosis factor alpha and IL-6 started at the same time as chemokine release but required 10- to 100-fold-higher MALP-2 doses. The data show that the mycoplasma-derived lipopeptide MALP-2 represents a potent inducer of chemokines and cytokines which may, by the attraction and activation of neutrophils and mononuclear leukocytes, significantly contribute to the inflammatory response during mycoplasma infection.
Collapse
Affiliation(s)
- A Kaufmann
- Institute of Immunology, Philipps University, Marburg, Germany.
| | | | | | | |
Collapse
|
14
|
Abstract
The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
Collapse
Affiliation(s)
- S Razin
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
15
|
Alvarez-Ossorio L, Johannsen M, Alvarez-Ossorio R, Nicklas W, Kirchner H, Rink L. Cytokine induction by Mycoplasma arthritidis-derived superantigen (MAS), but not by TSST-1 or SEC-3, is correlated to certain HLA-DR types. Scand J Immunol 1998; 47:43-7. [PMID: 9467657 DOI: 10.1046/j.1365-3083.1998.00252.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Superantigens bind to major histocompatibility complex (MHC) class II molecules on antigen presenting cells and T cells in a V beta-restricted manner. Both cell types are activated resulting in cytokine production. Although the MHC-II binding site for superantigens has been well described, little is known as to whether this binding complex has an influence on cytokine induction. In order to assess superantigen induced cytokine production and its correlation to HLA-DR types, the authors stimulated peripheral blood from 40 subjects with superantigens toxic shock syndrome toxin-1 (TSST-1), staphylococcal enterotoxin C-3 (SEC-3) and Mycoplasma arthritidis-derived superantigen (MAS), and measured cytokine levels thereafter. The HLA-DR type was determined in each subject. A statistical evaluation was carried out between the highest superantigen cytokine induction and the presence of certain HLA-DR types. Whereas MAS presented a statistical association between the highest cytokine production with HLA-DR4, DR7 and DR12, no such associations were observed for TSST-1 and SEC-3. These results demonstrate that T cell stimulation, and consequently its cytokine production by MAS but not by TSST-1 and SEC-3, depends on the presenting HLA-DR type. Because the diverse HLA-DR specificities are given according to the variability of the beta chain of the HLA-DR molecule, the data suggest the participation of the human MHC-II beta chain in the MAS/MHC-II binding.
Collapse
Affiliation(s)
- L Alvarez-Ossorio
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Knudtson KL, Manohar M, Joyner DE, Ahmed EA, Cole BC. Expression of the superantigen Mycoplasma arthritidis mitogen in Escherichia coli and characterization of the recombinant protein. Infect Immun 1997; 65:4965-71. [PMID: 9393783 PMCID: PMC175716 DOI: 10.1128/iai.65.12.4965-4971.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mycoplasma arthritidis mitogen (MAM), is a soluble protein with classical superantigenic properties and is produced by an organism that causes an acute and chronic proliferative arthritis. Unfortunately, the process of obtaining purified MAM from M. arthritidis culture supernatants is extremely time-consuming and costly, and very little material is recovered. Thus, our laboratory has expressed MAM in Escherichia coli by using a protein fusion expression system. The construction and expression of recombinant MAM (rMAM), as well as a comparison of the biological properties of rMAM to those of native MAM, are discussed. Briefly, conversion of the three UGA codons to UGG codons was required to obtain full-length expression and mitogenic activity of rMAM. Antisera to native MAM recognized both rMAM and the fusion protein. The T-cell receptor Vbeta and major histocompatibility complex class II receptor usages by rMAM and the fusion protein were identical to that of native MAM. In addition, the ability to induce suppression and form the superantigen bridge could also be demonstrated with rMAM. Importantly, dose-response experiments indicated that homogeneous native MAM and rMAM were of equal potency. Thus, MAM has been successfully expressed in E. coli, thereby creating a viable alternative to native MAM.
Collapse
Affiliation(s)
- K L Knudtson
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Sasaki Y, Blanchard A, Watson HL, Garcia S, Dulioust A, Montagnier L, Gougeon ML. In vitro influence of Mycoplasma penetrans on activation of peripheral T lymphocytes from healthy donors or human immunodeficiency virus-infected individuals. Infect Immun 1995; 63:4277-83. [PMID: 7591058 PMCID: PMC173607 DOI: 10.1128/iai.63.11.4277-4283.1995] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mycoplasma penetrans is a mycoplasma species newly isolated from the urine of human immunodeficiency virus (HIV)-infected individuals and presents the only case in which an association has been found between antibodies against a mycoplasma and HIV infection. To further explore the effects of M. penetrans on the immune system, we studied the influence of this mycoplasma on peripheral blood mononuclear cells (PBMCs) from healthy donors and HIV-infected individuals. M. penetrans induced, in addition to blastogenesis of PBMCs, a significant proliferative response associated with the expression of some activation markers such as CD69, HLA-DR, and CD25. This M. penetrans-dependent lymphocyte activation was observed not only in healthy donors but also in HIV-infected persons at different stages of the disease. In addition, our study revealed that both CD4+ and CD8+ T lymphocytes were responsive to M. penetrans. Interestingly, the mitogenic activity of M. penetrans was associated with mycoplasma cells but not with the supernatants of mycoplasma culture. The potent stimulating activity of M. penetrans on T lymphocytes from HIV-infected individuals is of particular interest in view of the supposed contribution of immune activation to HIV replication and disease progression.
Collapse
Affiliation(s)
- Y Sasaki
- Département du SIDA et des Rétrovirus, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The recent discovery of the mode of interaction between a group of microbial proteins known as superantigens and the immune system has opened a wide area of investigation into the possible role of these molecules in human diseases. Superantigens produced by certain viruses and bacteria, including Mycoplasma species, are either secreted or membrane-bound proteins. A unique feature of these proteins is that they can interact simultaneously with distinct receptors on different types of cells, resulting in enhanced cell-cell interaction and triggering a series of biochemical reactions that can lead to excessive cell proliferation and the release of inflammatory cytokines. However, although superantigens share many features, they can have very different biological effects that are potentiated by host genetic and environmental factors. This review focuses on a group of secreted pyrogenic toxins that belong to the superantigen family and highlights some of their structural-functional features and their roles in diseases such as toxic shock and autoimmunity. Deciphering the biological activities of the various superantigens and understanding their role in the pathogenesis of microbial infections and their sequelae will enable us to devise means by which we can intervene with their activity and/or manipulate them to our advantage.
Collapse
Affiliation(s)
- M Kotb
- Department of Surgery, University of Tennessee, Memphis, USA
| |
Collapse
|
20
|
Orsini DL, Kooy YM, Struyk L, Ossendorp F, Van den Elsen P, Koning F. Identification of two distinct function gamma delta TCR complexes on the surface of a human T cell clone. Scand J Immunol 1995; 41:499-503. [PMID: 7725069 DOI: 10.1111/j.1365-3083.1995.tb03598.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study we describe the expression of two T cell receptor (TCR) gamma chains on the surface of a human T cell clone isolated from the peripheral blood. Each gamma chain was part of an independent and functional TCR. The dual receptor T cell clone (and all subclones derived from this clone) had stable expression of this phenotype. Immunoprecipitation studies revealed the expression of non-disulfide linked TCRs by this V gamma 4+V gamma 9+V delta 1+ T cell clone, which was in agreement with the finding that both V gamma gene transcripts were rearranged to C gamma 2-associated joining elements. Both gamma chains were derived from productive rearrangements of different (allelic) genes coding for a V gamma 4+ and a V gamma 9+ gamma-chain, and both were coupled to a V delta 1+ delta chain. Incubation of this V gamma 4+V gamma 9+V delta 1+ T cell clone with TCR gamma-chain-specific MoAbs rapidly induced an increase in intracellular Ca++, indicating that both gamma-chains are functional. Furthermore, this clone responded to stimulation with S. aureus derived superantigens. We suggest therefore that exogenous (super)antigens can trigger dual receptor T cells resulting in activation of these T cells.
Collapse
Affiliation(s)
- D L Orsini
- Department of Immunohaematology, University Hospital Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Cole BC, Griffiths MM. Triggering and exacerbation of autoimmune arthritis by the Mycoplasma arthritidis superantigen MAM. ARTHRITIS AND RHEUMATISM 1993; 36:994-1002. [PMID: 8318046 DOI: 10.1002/art.1780360717] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE It has been postulated that superantigens might play a role in the human rheumatic diseases, by activation of self-reactive T cells or by induction of autoantibodies. The Mycoplasma arthritidis superantigen MAM, which is derived from a naturally occurring murine arthitogenic mycoplasma, uses certain V beta chains of the murine T cell receptor (TCR) that have been proposed to be involved in murine collagen-induced arthritis (CIA). The present study was designed to determine whether MAM influences the course of arthritis mediated by immunization with porcine type II collagen (PII). METHODS MAM or phosphate buffered saline (PBS) was injected locally or systemically into mice convalescing from CIA or mice suboptimally immunized with collagen. RESULTS In contrast to PBS, MAM caused an exacerbation of arthritis in mice that were recovering from CIA. MAM also triggered arthritis onset in mice that had been suboptimally immunized with PII up to 160 days previously. Injection of MAM during the onset phase of CIA also triggered and enhanced the severity of arthritis in mice given low doses of PII. CONCLUSION MAM can both trigger and exacerbate murine autoimmune arthritis induced by immunization with type II collagen. Since T cells bearing the same V beta TCRs as are used by MAM have been found to comprise a major portion of the activated cells in the synovial tissue of patients with rheumatoid arthritis, it is possible that superantigens similar to MAM may play a role in this human disease.
Collapse
Affiliation(s)
- B C Cole
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City 84132
| | | |
Collapse
|