1
|
Seredin P, Goloshchapov D, Peshkov Y, Potapov A, Gribanova Y, Shikhaliev K, Ippolitov Y, Freitas RO, Mahdy IA, Mahdy MA, Chae B. Biomimetic organomineral layers with antibacterial properties based on di/tetrahydroquinolinediol and nanocrystalline hydroxyapatite deposited on enamel surface. Biomater Sci 2025; 13:2444-2461. [PMID: 40145368 DOI: 10.1039/d5bm00070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The paper proposes a strategy for the accelerated deposition of biomimetic organomineral layers on the surface of dental enamel, utilizing di/tetrahydroquinolinediol (hydroxyquinoline) polymerized in the presence of nanocrystalline hydroxyapatite (nano-cHAp). The mechanisms underlying the formation of dental coatings were elucidated through a combination of structural, microstructural, and spectroscopic analytical methods, including synchrotron infrared nanoimaging. Additionally, the antimicrobial effects of these coatings were investigated. It has been demonstrated that the deposition of an organomineral layer, based on polymerized dihydroxyquinoline, on the surface of natural enamel leads to the agglomeration and orientation of hydroxyapatite nanocrystals within the coating. This process enables the layer to replicate the mechanical properties of natural enamel, resulting in a microhardness value that closely resembles that of natural enamel. Using synchrotron s-SNOM, it has been established that the biomimetic organomineral layer possesses the morphological structure of a poly(2,2,4-trimethyl-1,2-dihydroquinoline-6,7-diol (TMDHQ))/nano-cHAp composite film, which is homogeneously distributed and tightly packed on the enamel surface. Furthermore, it has been demonstrated that the dental coating formed from polydihydroxyquinoline and nanocrystalline hydroxyapatite exhibits inhibitory activity against colonies of Streptococcus spp. The developed technology for the formation of dental biomimetic layers, which exhibit simultaneous antibacterial and mineralizing effects, holds significant potential for future clinical applications.
Collapse
Affiliation(s)
- Pavel Seredin
- Voronezh State University, University sq.1, Voronezh, 394018, Russia.
| | | | - Yaroslav Peshkov
- Voronezh State University, University sq.1, Voronezh, 394018, Russia.
| | - Andrey Potapov
- Voronezh State University, University sq.1, Voronezh, 394018, Russia.
| | - Yana Gribanova
- Voronezh State University, University sq.1, Voronezh, 394018, Russia.
| | | | - Yury Ippolitov
- Voronezh State Medical University, Studentcheskaya st. 11, Voronezh, 394006, Russia
| | - Raul O Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil
| | - Iman A Mahdy
- Physics Department, Faculty of Science (Girls), Al-Azhar University, 11754 Nasr City, Cairo, Egypt
| | - Manal A Mahdy
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Boknam Chae
- Pohang Accelerator Laboratory, Beamline Research Division, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Golubchikov DO, Fadeeva IV, Knot’ko AV, Kostykov IA, Slonskaya TK, Barbaro K, Zepparoni A, Fosca M, Antoniac IV, Rau JV. Mechanochemically-Activated Solid-State Synthesis of Borate-Substituted Tricalcium Phosphate: Evaluation of Biocompatibility and Antimicrobial Performance. Molecules 2025; 30:1575. [PMID: 40286149 PMCID: PMC11990300 DOI: 10.3390/molecules30071575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Current research in bone tissue engineering is focused not only on basic parameters of the materials, such as biocompatibility and degradation rate but also on intrinsic osteogenic and antimicrobial properties, essential to provide a rapid tissue regeneration without negative effects due to periprosthetic infections, that may result in revision surgeries. One of the major strategies to enhance the osteogenic and antimicrobial performance of calcium phosphates is the ionic substitution, in particular, with magnesium and borates. In this study, we focused on the synthesis of boron-substituted tricalcium phosphate (B-TCP) with a target of 5 mol.% substitution via the solid-state synthesis with mechano-activation. Synthesis from raw precursors, without the preliminary brushite wet precipitation, led to the primary phase of β-TCP, which was proved by the XRD analysis. According to the IR-spectroscopy and 31P NMR analysis, boron substitution occurred in the synthesized sample. The developed material showed a modest antibacterial performance against E. coli, with 13.5 ± 5.0% growth inhibition, and E. faecalis, with 16.7 ± 5.5% inhibition. The biocompatibility of β-TCP and B-TCP was tested through the MTT assay and osteogenic differentiation of the mesenchymal stromal cells. The proposed synthesis approach can be useful for the fabrication of B-TCP ceramics for bone tissue engineering.
Collapse
Affiliation(s)
- Daniil O. Golubchikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.K.); (I.A.K.)
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky 49, 119334 Moscow, Russia;
| | - Alexander V. Knot’ko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.K.); (I.A.K.)
| | - Iliya A. Kostykov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.K.); (I.A.K.)
| | - Tatiana K. Slonskaya
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, build. 2, 119048 Moscow, Russia; (T.K.S.); (J.V.R.)
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana “M. Aleandri”, Via Appia Nuova 14111, 00178 Rome, Italy; (K.B.); (A.Z.)
| | - Alessia Zepparoni
- Istituto Zooprofilattico Sperimentale Lazio e Toscana “M. Aleandri”, Via Appia Nuova 14111, 00178 Rome, Italy; (K.B.); (A.Z.)
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, ISM-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Iulian V. Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Julietta V. Rau
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, build. 2, 119048 Moscow, Russia; (T.K.S.); (J.V.R.)
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, ISM-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
3
|
Cano-Plá SM, Oltolina F, Acebedo-Martínez FJ, Fernández-Penas R, Verdugo-Escamilla C, Triunfo C, Di Simone PE, Borsotti C, Follenzi A, Maoloni G, Falini G, Gómez-Morales J. Sustainable production of osteoinductive Co 2+, Mg 2+ and Mn 2+ -substituted apatites particles by one-pot conversion of biogenic calcium carbonate. Sci Rep 2025; 15:10893. [PMID: 40158005 PMCID: PMC11954947 DOI: 10.1038/s41598-025-94792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Biogenic CaCO3 microparticles obtained from oyster shells Crassostrea gigas were used as starting material for synthesizing Co2+, Mg2+ and Mn2+-doped apatite nano-submicroparticles, through a one-step hydrothermal conversion. The conversion was completed at 200 °C for 7 days, yielding metal-doped apatite and whitlockite in percentages of 5.3 wt% when adding Co2+, 28.7 wt% for Mg2+, and 0 wt% for Mn2+. Samples were cytocompatible with murine pancreatic endothelial cells (MS1), murine mesenchymal stem cells (m17.ASC), and murine osteoblast's progenitors (mOBPs) cells. The analysis by flow cytometry and TEM-EDX revealed strong particle-cell interactions, sustained internalization across m17.ASC and mOBPs cells, and potential progressive apatite dissolution in the cellular environment. Additionally, incubating these cells with the metal-doped samples promoted their osteogenic differentiation without needing an osteogenic differentiation medium. Indeed, the evaluation of gene expression by quantitative real-time PCR, the detection of alkaline phosphatase activity, and the ability to induce the mineralization in the cellular matrix analyzed by alizarin red staining revealed that all particles (and particularly the carbonated apatite and the Mg-doped sample) encouraged the osteogenic commitment. This approach represents a sustainable way to valorize and transform aquaculture and canning industries' mineral waste (shells) in highly demanded osteoinductive materials.
Collapse
Affiliation(s)
- Sandra María Cano-Plá
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Francesca Oltolina
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy
| | - Francisco Javier Acebedo-Martínez
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Raquel Fernández-Penas
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Cristóbal Verdugo-Escamilla
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Carla Triunfo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Paolo Emanuele Di Simone
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy
| | - Chiara Borsotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy.
| | - Gabriele Maoloni
- Plant Ascoli Piceno, Finproject S.p.A., 3100, Ascoli Piceno, Italy
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Jaime Gómez-Morales
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain.
| |
Collapse
|
4
|
Costantino C, Monico L, Rosi F, Vivani R, Romani A, Colocho Hurtarte LC, Villalobos-Portillo E, Sahle CJ, Huthwelker T, Dejoie C, Burghammer M, Cotte M. Non-Destructive and Non-Invasive Approaches for the Identification of Hydroxy Lead-Calcium Phosphate Solid Solutions ((Pb xCa 1-x) 5(PO 4) 3OH) in Cultural Heritage Materials. APPLIED SPECTROSCOPY 2024; 78:1231-1244. [PMID: 38567433 DOI: 10.1177/00037028241243375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Lead-calcium phosphates are unusual compounds sometimes found in different kinds of cultural heritage objects. Structural and physicochemical properties of this family of materials, which fall into the hydroxypyromorphite-hydroxyapatite solid solution, or (PbxCa1-x)5(PO4)3OH, have received considerable attention during the last few decades for promising applications in different fields of environmental and material sciences, but their diagnostic implications in the cultural heritage context have been poorly explored. This paper aims to provide a clearer understanding of the relationship between compositional and structural properties of the peculiar series of (PbxCa1-x)5(PO4)3OH solid solutions and to determine key markers for their proper non-destructive and non-invasive identification in cultural heritage samples and objects. For this purpose, a systematic study of powders and paint mock-ups made up of commercial and in-house synthesized (PbxCa1-x)5(PO4)3OH compounds with a different Pb2+/Ca2+ ratio was carried out via a multi-technique approach based on scanning electron microscopy, synchrotron radiation-based X-ray techniques, i.e., X-ray powder diffraction and X-ray absorption near edge structure spectroscopy at the Ca K- and P K-edges, and vibrational spectroscopy methods, i.e., micro-Raman and Fourier transform infrared spectroscopy. The spectral modifications observed in the hydroxypyromorphite-hydroxyapatite solid solution series are discussed, by assessing the advantages and disadvantages of the proposed techniques and by providing reference data and optimized approaches for future non-destructive and non-invasive applications to study cultural heritage objects and samples.
Collapse
Affiliation(s)
- Claudio Costantino
- Centre of Excellence SMAArt and Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- CNR-SCITEC, c/o Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Letizia Monico
- Centre of Excellence SMAArt and Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- CNR-SCITEC, c/o Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- AXIS Research Group, NANOlab Centre of Excellence, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Francesca Rosi
- CNR-SCITEC, c/o Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Riccardo Vivani
- Pharmaceutical Science Department, University of Perugia, Perugia, Italy
| | - Aldo Romani
- Centre of Excellence SMAArt and Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- CNR-SCITEC, c/o Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | | | | | - Thomas Huthwelker
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | | | | - Marine Cotte
- European Synchrotron Radiation Facility, Grenoble, France
- Sorbonne Université, CNRS, Laboratoire d'archéologie moléculaire et structurale, LAMS, UMR 8220, Paris, France
| |
Collapse
|
5
|
Pupilli F, Tavoni M, Marsan O, Drouet C, Tampieri A, Sprio S. Tuning Mg Doping and Features of Bone-like Apatite Nanoparticles Obtained via Hydrothermal Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16557-16570. [PMID: 39056438 DOI: 10.1021/acs.langmuir.4c02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Nanocrystalline apatites have been intensively studied for decades, not only for their well-known mimesis of bone apatite but also for applicative purposes, whether as biomaterials for skeletal repair or more recently for a variety of nanomedical applications enabled by their peculiar surface characteristics. Particularly, ion-doped apatites are of great interest because the incorporation of foreign ions in the composition of apatite (nano)crystals alters the bulk and surface properties, modifying their ability to interact with the external environment. This is clearly seen in the physiology of bone tissue, whose mineral phase, a low crystallinity apatitic phase, can dynamically exchange ions with cells, thus driving bone metabolism. Taking bone mineral as a model, the present work describes the development of Mg-doped hydroxyapatite nanoparticles, exploiting hydrothermal synthesis to achieve extents of Mg2+ doping hardly achieved before and using citrate to develop stable apatite colloidal dispersions. Morphological and physicochemical analyses, associated with in-depth investigation of ions populating the apatitic lattice and the nonapatitic surface layer, concurred to demonstrate the cooperative presence of Mg2+ and citrate ions, affecting the dynamic ion retention/release mechanisms. Achieving high Mg2+ doping rates and understanding how Mg doping translates into surface activation of apatite-based nanoparticles is expected to foster the design of novel smart and tunable devices, to adsorb and release ionic species and cargo molecules, with potential innovations in the biomedical field or even beyond, as in catalysis or for environmental remediation.
Collapse
Affiliation(s)
- Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Olivier Marsan
- CIRIMAT, CNRS, Université de Toulouse, Ensiacet, 4 Allee Emile Monso, Toulouse Cedex 4 31030, France
| | - Christophe Drouet
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
- CIRIMAT, CNRS, Université de Toulouse, Ensiacet, 4 Allee Emile Monso, Toulouse Cedex 4 31030, France
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
6
|
Yildizbakan L, Iqbal N, Giannoudis PV, Jha A. Synthesis of Chitosan and Ferric-Ion (Fe 3+)-Doped Brushite Mineral Cancellous Bone Scaffolds. Biomimetics (Basel) 2024; 9:308. [PMID: 38921188 PMCID: PMC11202294 DOI: 10.3390/biomimetics9060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Biodegradable scaffolds are needed to repair bone defects. To promote the resorption of scaffolds, a large surface area is required to encourage neo-osteogenesis. Herein, we describe the synthesis and freeze-drying methodologies of ferric-ion (Fe3+) doped Dicalcium Phosphate Dihydrate mineral (DCPD), also known as brushite, which has been known to favour the in situ condition for osteogenesis. In this investigation, the role of chitosan during the synthesis of DCPD was explored to enhance the antimicrobial, scaffold pore distribution, and mechanical properties post freeze-drying. During the synthesis of DCPD, the calcium nitrate solution was hydrolysed with a predetermined stoichiometric concentration of ammonium phosphate. During the hydrolysis reaction, 10 (mol)% iron (Fe3+) nitrate (Fe(NO3)3) was incorporated, and the DCPD minerals were precipitated (Fe3+-DCPD). Chitosan stir-mixed with Fe3+-DCPD minerals was freeze-dried to create scaffolds. The structural, microstructural, and mechanical properties of freeze-dried materials were characterized.
Collapse
Affiliation(s)
- Lemiha Yildizbakan
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Peter V. Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
7
|
Nascimben M, Kovrlija I, Locs J, Loca D, Rimondini L. Fusion and classification algorithm of octacalcium phosphate production based on XRD and FTIR data. Sci Rep 2024; 14:1489. [PMID: 38233557 PMCID: PMC10794451 DOI: 10.1038/s41598-024-51795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The present manuscript tested an automated analysis sequence to provide a decision support system to track the OCP synthesis from [Formula: see text]-TCP over time. Initially, the XRD and FTIR signals from a hundredfold scaled-up hydrolysis of OCP from [Formula: see text]-TCP were fused and modeled by the curve fitting based on the significantly established maxima from the literature and nine features extracted from the fitted shapes. Afterward, the analysis sequence enclosed the machine learning techniques for feature ranking, spatial filtering, and dimensionality reduction to support the automatic recognition of the synthesis stages. The proposed analysis pipeline for OCP identification might be the foundation for a decision support system explicitly targeting OCP synthesis. Future projects will exploit the suggested methodology for pinpointing the OCP production over time (including the intermediary phases present in the OCP formation) and for evaluating whether biological variables might be merged with biomaterial properties to build a unified model of tissue response to the implant.
Collapse
Affiliation(s)
- Mauro Nascimben
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Department of Health Sciences, Università del Piemonte Orientale UPO, 28100, Novara, Italy.
- Enginsoft SpA, 35129, Padua, Italy.
| | - Ilijana Kovrlija
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Pulka 3, LV-1007, Latvia
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Pulka 3, LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Pulka 3, LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Department of Health Sciences, Università del Piemonte Orientale UPO, 28100, Novara, Italy
| |
Collapse
|
8
|
Yildizbakan L, Iqbal N, Ganguly P, Kumi-Barimah E, Do T, Jones E, Giannoudis PV, Jha A. Fabrication and Characterisation of the Cytotoxic and Antibacterial Properties of Chitosan-Cerium Oxide Porous Scaffolds. Antibiotics (Basel) 2023; 12:1004. [PMID: 37370323 DOI: 10.3390/antibiotics12061004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Bone damage arising from fractures or trauma frequently results in infection, impeding the healing process and leading to complications. To overcome this challenge, we engineered highly porous chitosan scaffolds (S1, S2, and S3) by incorporating 30 (wt)% iron-doped dicalcium phosphate dihydrate (Fe-DCPD) minerals and different concentrations of cerium oxide nanoparticles (CeO2) (10 (wt)%, 20 (wt)%, and 30 (wt)%) using the lyophilisation technique. The scaffolds were specifically designed for the controlled release of antibacterial agents and were systematically characterised by utilising Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy methodologies. Alterations in the physicochemical properties, encompassing pore size, swelling behaviour, degradation kinetics, and antibacterial characteristics, were observed with the escalating CeO2 concentrations. Scaffold cytotoxicity and its impact on human bone marrow mesenchymal stem cell (BM-MSCs) proliferation were assessed employing the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. The synthesised scaffolds represent a promising approach for addressing complications associated with bone damage by fostering tissue regeneration and mitigating infection risks. All scaffold variants exhibited inhibitory effects on bacterial growth against Staphylococcus aureus and Escherichia coli strains. The scaffolds manifested negligible cytotoxic effects while enhancing antibacterial properties, indicating their potential for reducing infection risks in the context of bone injuries.
Collapse
Affiliation(s)
- Lemiha Yildizbakan
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| | - Eric Kumi-Barimah
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds LS9 7TF, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Exploring the Formation Kinetics of Octacalcium Phosphate from Alpha-Tricalcium Phosphate: Synthesis Scale-Up, Determination of Transient Phases, Their Morphology and Biocompatibility. Biomolecules 2023; 13:biom13030462. [PMID: 36979398 PMCID: PMC10046208 DOI: 10.3390/biom13030462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Even with decades of research studies behind octacalcium phosphate (OCP), determination of OCP phase formation has proved to be a cumbersome challenge. Even though obtaining a large quantity of OCP is important for potential clinical uses, it still remains a hindrance to obtain high yields of pure OCP. Taking that into consideration, the purpose of this study was to scale-up OCP synthesis for the first time and to use a multi-technique approach to follow the phase transformation pathway at multiple time points. In the present study, OCP has been synthesized from α-tricalcium phosphate (α-TCP), and subsequently scaled-up tenfold and hundredfold (100 mg → 10 g). The hydrolysis mechanism has been followed and described by using XRD and FTIR spectroscopy, as well as Raman and SEM. Gradual transformation into the OCP phase transpired through dicalcium phosphate dihydrate (brushite, DCPD, up to ~36%) as an intermediary phase. Furthermore, the obtained transitional phases and final OCP phases (across all scale-up levels) were tested with human bone marrow-derived mesenchymal stem cells (hBMSCs), in order to see how different phase mixtures affect the cell viability, and also to corroborate the safety of the scaled-up product. Twelve out of seventeen specimens showed satisfactory percentages of cell viability and confirmed the prospective use of scaled-up OCP in further in vitro studies. The present study, therefore, provides the first scale-up process of OCP synthesis, an in depth understanding of the formation pathway, and investigation of the parameters able to contribute in the OCP phase formation.
Collapse
|
10
|
Palander A, Fauch L, Turunen MJ, Dekker H, Schulten EAJM, Koistinen A, Bravenboer N, Kullaa A. Molecular Quantity Variations in Human-Mandibular-Bone Osteoid. Calcif Tissue Int 2022; 111:547-558. [PMID: 35978052 PMCID: PMC9613710 DOI: 10.1007/s00223-022-01017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Osteoid is a layer of new-formed bone that is deposited on the bone border during the process of new bone formation. This deposition process is crucial for bone tissue, and flaws in it can lead to bone diseases. Certain bone diseases, i.e. medication related osteonecrosis, are overexpressed in mandibular bone. Because mandibular bone presents different properties than other bone types, the data concerning osteoid formation in other bones are inapplicable for human-mandibular bone. Previously, the molecular distribution of other bone types has been presented using Fourier-transform infrared (FTIR) spectroscopy. However, the spatial distribution of molecular components of healthy-human-mandibular-bone osteoid in relation to histologic landmarks has not been previously presented and needs to be studied in order to understand diseases that occur human-mandibular bone. This study presents for the first time the variation in molecular distribution inside healthy-human-mandibular-bone osteoid by juxtaposing FTIR data with its corresponding histologic image obtained by autofluorescence imaging of its same bone section. During new bone formation, bone-forming cells produce an osteoid constituted primarily of type I collagen. It was observed that in mandibular bone, the collagen type I increases from the osteoblast line with the distance from the osteoblasts, indicating progressive accumulation of collagen during osteoid formation. Only later inside the collagen matrix, the osteoid starts to mineralize. When the mineralization starts, the collagen accumulation diminishes whereas the collagen maturation still continues. This chemical-apposition process in healthy mandibular bone will be used in future as a reference to understand different pathologic conditions that occur in human-mandibular bone.
Collapse
Affiliation(s)
- Anni Palander
- Institute of Dentistry, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland.
| | - Laure Fauch
- SIB Labs, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Hannah Dekker
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, 1117, The Netherlands
| | - Engelbert A J M Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, 1117, The Netherlands
| | - Arto Koistinen
- SIB Labs, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, 1117, The Netherlands
- Division of Endocrinology and Center for Bone Quality, Department of Internal Medicine, Leiden University Medical Center, PO Box 9500, Leiden, The Netherlands
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
- SIB Labs, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| |
Collapse
|
11
|
Aubry C, Drouet C, Azaïs T, Kim HJ, Oh JM, Karacan I, Chou J, Ben-Nissan B, Camy S, Cazalbou S. Bio-Activation of HA/β-TCP Porous Scaffolds by High-Pressure CO 2 Surface Remodeling: A Novel "Coating-from" Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7306. [PMID: 36295371 PMCID: PMC9610974 DOI: 10.3390/ma15207306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biphasic macroporous Hydroxyapatite/β-Tricalcium Phosphate (HA/β-TCP) scaffolds (BCPs) are widely used for bone repair. However, the high-temperature HA and β-TCP phases exhibit limited bioactivity (low solubility of HA, restricted surface area, low ion release). Strategies were developed to coat such BCPs with biomimetic apatite to enhance bioactivity. However, this can be associated with poor adhesion, and metastable solutions may prove difficult to handle at the industrial scale. Alternative strategies are thus desirable to generate a highly bioactive surface on commercial BCPs. In this work, we developed an innovative "coating from" approach for BCP surface remodeling via hydrothermal treatment under supercritical CO2, used as a reversible pH modifier and with industrial scalability. Based on a set of complementary tools including FEG-SEM, solid state NMR and ion exchange tests, we demonstrate the remodeling of macroporous BCP surface with the occurrence of dissolution-reprecipitation phenomena involving biomimetic CaP phases. The newly precipitated compounds are identified as bone-like nanocrystalline apatite and octacalcium phosphate (OCP), both known for their high bioactivity character, favoring bone healing. We also explored the effects of key process parameters, and showed the possibility to dope the remodeled BCPs with antibacterial Cu2+ ions to convey additional functionality to the scaffolds, which was confirmed by in vitro tests. This new process could enhance the bioactivity of commercial BCP scaffolds via a simple and biocompatible approach.
Collapse
Affiliation(s)
- Clémentine Aubry
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
- Laboratoire de Génie Chimique, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
- ARN: Régulation Naturelle et Artificielle, INSERM U1212, CNRS, Université de Bordeaux, 33076 Bordeaux, France
| | - Christophe Drouet
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
| | - Thierry Azaïs
- Laboratoire de Chimie de la Matière Condensée de Paris-UMR 7574, CNRS, Sorbonne Université, 75005 Paris, France
| | - Hyoung-Jun Kim
- Department Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jae-Min Oh
- Department Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
| | - Ipek Karacan
- University of Technology Sydney, Ultimo 2007, Australia
| | - Joshua Chou
- University of Technology Sydney, Ultimo 2007, Australia
| | | | - Séverine Camy
- Laboratoire de Génie Chimique, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
| | - Sophie Cazalbou
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
| |
Collapse
|
12
|
Chamansara A, Behnamghader A, Zamanian A. Preparation and characterization of injectable gelatin/alginate/chondroitin sulfate/α-calcium sulfate hemihydrate composite paste for bone repair application. J Biomater Appl 2022; 36:1758-1774. [PMID: 35199572 DOI: 10.1177/08853282211073231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a group of injectable composite pastes with a novel formulation consisting of two inorganic components: α-calcium sulfate hemihydrate (α-CSH, P/L = 1.8-2.1 g/ml) and calcium-deficient hydroxyapatite (CDHA, P/L = 0.1 g/ml) nanoparticles; and three biopolymers: gelatin (2, 4 wt. %), alginate (1, 1.5 wt. %), and chondroitin sulfate (0.5 wt. %) were carefully prepared and thoroughly characterized with commensurate characterizations. The composite sample composed of gelatin (2 wt. %), alginate (1.5 wt. %), chondroitin sulfate (0.5 wt. %), and also CDHA nanoparticles and α-CSH with P/L ratios of 0.1 and 2.1 g/ml, respectively, exhibited optimal properties in terms of injectability, anti-washout performance, and rheological characteristics. After 14 days of immersion of the chosen sample in the simulated body fluid medium, a dense layer of apatite was formed on the surface of the composite paste. The cellular in vitro tests, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT), alkaline phosphatase assay, 4',6-diamidino-2-phenylindole staining, and cellular attachment, revealed the desirable response of MG-63 cells to the composite paste. The chondroitin sulfate significantly improved the injectability, anti-washout performance, and cellular response of the samples. Considering the promising features of the composite paste prepared in this research work, it could be considered as an alternative injectable bioactive material for bone repair applications.[Formula: see text].
Collapse
Affiliation(s)
- Alireza Chamansara
- Nanotechnology and Advanced Materials Department, 48472Materials and Energy Research Center, Karaj, Iran
| | - Aliasghar Behnamghader
- Nanotechnology and Advanced Materials Department, 48472Materials and Energy Research Center, Karaj, Iran
| | - Ali Zamanian
- Nanotechnology and Advanced Materials Department, 48472Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
13
|
Bonany M, del-Mazo-Barbara L, Espanol M, Ginebra MP. Microsphere incorporation as a strategy to tune the biological performance of bioinks. J Tissue Eng 2022; 13:20417314221119895. [PMID: 36199978 PMCID: PMC9527984 DOI: 10.1177/20417314221119895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Although alginate is widely used as a matrix in the formulation of cell-laden inks, this polymer often requires laborious processing strategies due to its lack of cell adhesion moieties. The main objective of the present work was to explore the incorporation of microspheres into alginate-based bioinks as a simple and tuneable way to solve the cell adhesion problems, while adding extra biological functionality and improving their mechanical properties. To this end, three types of microspheres with different mineral contents (i.e. gelatine with 0% of hydroxyapatite, gelatine with 25 wt% of hydroxyapatite nanoparticles and 100 wt% of calcium -deficient hydroxyapatite) were synthesised and incorporated into the formulation of cell-laden inks. The results showed that the addition of microspheres generally improved the rheological properties of the ink, favoured cell proliferation and positively affected osteogenic cell differentiation. Furthermore, this differentiation was found to be influenced by the type of microsphere and the ability of the cells to migrate towards them, which was highly dependent on the stiffness of the bioink. In this regard, Ca2+ supplementation in the cell culture medium had a pronounced effect on the relaxation of the stiffness of these cell-loaded inks, influencing the overall cell performance. In conclusion, we have developed a powerful and tuneable strategy for the fabrication of alginate-based bioinks with enhanced biological characteristics by incorporating microspheres into the initial ink formulation.
Collapse
Affiliation(s)
- Mar Bonany
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
| | - Laura del-Mazo-Barbara
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
14
|
Martinez T, Sarda S, Dupret-Bories A, Charvillat C, Projetti F, Drouet C. Toward a doxorubicin-loaded bioinspired bone cement for the localized treatment of osteosarcoma. Future Oncol 2021; 17:3511-3528. [PMID: 34213375 DOI: 10.2217/fon-2021-0128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aims: Osteosarcoma represents the second most common cause of death in children and young adults. No biomaterial allowing local drug delivery has been specifically developed. However, a biocompatible bioactive implantable material could prevent some amputations, and the local release of an antitumor agent could limit risks of relapse and metastasis. Methods: We propose a proof of concept of a self-setting paste combining amorphous calcium phosphate and doxorubicin-loaded particles of bone-like carbonated nanocrystalline apatite, as a means of local release. Results: The cement formulation and doping, first with folic acid and then with doxorubicin, was successful. Its physicochemistry was scrutinized. Preliminary in vivo data on an invasive osteosarcoma rat model suggest a limiting effect on metastatic events in the lungs without signs of toxicity.
Collapse
Affiliation(s)
- Thomas Martinez
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier, ENSIACET, Toulouse, 31030, France
| | - Stéphanie Sarda
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier, ENSIACET, Toulouse, 31030, France
| | | | - Cédric Charvillat
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier, ENSIACET, Toulouse, 31030, France
| | | | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier, ENSIACET, Toulouse, 31030, France
| |
Collapse
|
15
|
Bouzy P, O'Grady S, Madupalli H, Tecklenburg M, Rogers K, Palombo F, Morgan MP, Stone N. A time-course Raman spectroscopic analysis of spontaneous in vitro microcalcifications in a breast cancer cell line. J Transl Med 2021; 101:1267-1280. [PMID: 34117364 PMCID: PMC8367820 DOI: 10.1038/s41374-021-00619-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
Microcalcifications are early markers of breast cancer and can provide valuable prognostic information to support clinical decision-making. Current detection of calcifications in breast tissue is based on X-ray mammography, which involves the use of ionizing radiation with potentially detrimental effects, or MRI scans, which have limited spatial resolution. Additionally, these techniques are not capable of discriminating between microcalcifications from benign and malignant lesions. Several studies show that vibrational spectroscopic techniques are capable of discriminating and classifying breast lesions, with a pathology grade based on the chemical composition of the microcalcifications. However, the occurrence of microcalcifications in the breast and the underlying mineralization process are still not fully understood. Using a previously established model of in vitro mineralization, the MDA-MB-231 human breast cancer cell line was induced using two osteogenic agents, inorganic phosphate (Pi) and β-glycerophosphate (βG), and direct monitoring of the mineralization process was conducted using Raman micro-spectroscopy. MDA-MB-231 cells cultured in a medium supplemented with Pi presented more rapid mineralization (by day 3) than cells exposed to βG (by day 11). A redshift of the phosphate stretching peak for cells supplemented with βG revealed the presence of different precursor phases (octacalcium phosphate) during apatite crystal formation. These results demonstrate that Raman micro-spectroscopy is a powerful tool for nondestructive analysis of mineral species and can provide valuable information for evaluating mineralization dynamics and any associated breast cancer progression, if utilized in pathological samples.
Collapse
Affiliation(s)
- Pascaline Bouzy
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Shane O'Grady
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
| | - Honey Madupalli
- Department of Chemistry and Biochemistry and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, MI, USA
| | - Mary Tecklenburg
- Department of Chemistry and Biochemistry and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, MI, USA
| | - Keith Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| | | | - Maria P Morgan
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK.
| |
Collapse
|
16
|
Querido W, Shanas N, Bookbinder S, Oliveira-Nunes MC, Krynska B, Pleshko N. Fourier transform infrared spectroscopy of developing bone mineral: from amorphous precursor to mature crystal. Analyst 2020; 145:764-776. [PMID: 31755889 DOI: 10.1039/c9an01588d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone mineral development has been described to proceed through an amorphous precursor prior to apatite crystallization. However, further analytical approaches are necessary to identify specific markers of amorphous mineral components in bone. Here, we establish an original Fourier transform infrared (FTIR) spectroscopy approach to allow the specific identification of the amorphous and/or crystalline nature of bone mineral. Using a series of standards, our results demonstrate that obtaining the second derivative of the FTIR spectra could reveal a peak specifically corresponding to amorphous calcium phosphate (ACP) at ∼992 cm-1. The intensity of this peak was strongly correlated to ACP content in standard mixtures. The analysis of a variety of bones showed that a clear ACP peak could be identified as a specific marker of the existence of an amorphous mineral component in developing bones. In contrast, the ACP peak was not detected in the mature bones. Moreover, subjecting developing bones to ex vivo crystallization conditions led to a clear reduction of the ACP peak, further substantiating the conversion of amorphous mineral precursor into mature apatite crystals. Analysis of mineralization in osteogenic cell cultures corroborated our observations, showing the presence of ACP as a major transient component in early mineralization, but not in the mature matrix. Additionally, FTIR imaging revealed that ACP was present in areas of matrix development, distributed around the edges of mineralizing nodules. Using an original analytical approach, this work provides strong evidence to support that bone mineral development is initiated by an amorphous precursor prior to apatite crystallization.
Collapse
Affiliation(s)
- William Querido
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Cruz MAE, Ferreira CR, Tovani CB, de Oliveira FA, Bolean M, Caseli L, Mebarek S, Millán JL, Buchet R, Bottini M, Ciancaglini P, Paula Ramos A. Phosphatidylserine controls calcium phosphate nucleation and growth on lipid monolayers: A physicochemical understanding of matrix vesicle-driven biomineralization. J Struct Biol 2020; 212:107607. [PMID: 32858148 DOI: 10.1016/j.jsb.2020.107607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.
Collapse
Affiliation(s)
- Marcos A E Cruz
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | - Claudio R Ferreira
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | - Camila B Tovani
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | | | - Maytê Bolean
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences - Federal University of Sao Paulo, Brazil
| | - Saida Mebarek
- Universite de Lyon, ICBMS UMR 5246 CNRS, Villeurbanne, France
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rene Buchet
- Universite de Lyon, ICBMS UMR 5246 CNRS, Villeurbanne, France
| | - Massimo Bottini
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pietro Ciancaglini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil.
| | - Ana Paula Ramos
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil.
| |
Collapse
|
18
|
Novel slow drug release bioceramic composite materials for wound dressing applications: potential of natural materials. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-1977-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Querido W, Ailavajhala R, Padalkar M, Pleshko N. Validated Approaches for Quantification of Bone Mineral Crystallinity Using Transmission Fourier Transform Infrared (FT-IR), Attenuated Total Reflection (ATR) FT-IR, and Raman Spectroscopy. APPLIED SPECTROSCOPY 2018; 72:1581-1593. [PMID: 29972319 DOI: 10.1177/0003702818789165] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bone mineral crystallinity is an important factor determining bone quality and strength. The gold standard method to quantify crystallinity is X-ray diffraction (XRD), but vibrational spectroscopic methods present powerful alternatives to evaluate a greater variety of sample types. We describe original approaches by which transmission Fourier transform infrared (FT-IR), attenuated total reflection (ATR) FT-IR, and Raman spectroscopy can be confidently used to quantify bone mineral crystallinity. We analyzed a range of biological and synthetic apatite nanocrystals (10-25 nm) and found strong correlations between different spectral factors and the XRD determination of crystallinity. We highlight striking differences between FT-IR spectra obtained by transmission and ATR. In particular, we show for the first time the absence of the 1030 cm-1 crystalline apatite peak in ATR FT-IR spectra, which excludes its use for analyzing crystallinity using the traditional 1030/1020 cm-1 ratio. The ν4PO4 splitting ratio was also not adequate to evaluate crystallinity using ATR FT-IR. However, we established original approaches by which ATR FT-IR can be used to determine apatite crystallinity, such as the 1095/1115 and 960/1115 cm-1 peak ratios in the second derivative spectra. Moreover, we found a simple unified approach that can be applied for all three vibrational spectroscopy modalities: evaluation of the ν1PO4 peak position. Our results allow the recommendation of the most reliable analytical methods to estimate bone mineral crystallinity by vibrational spectroscopy, which can be readily implemented in many biomineralization, archeological and orthopedic studies. In particular, we present a step forward in advancing the use of the increasingly utilized ATR FT-IR modality for mineral research.
Collapse
Affiliation(s)
- William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | | - Mugdha Padalkar
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Sarda S, Iafisco M, Pascaud-Mathieu P, Adamiano A, Montesi M, Panseri S, Marsan O, Thouron C, Dupret-Bories A, Tampieri A, Drouet C. Interaction of Folic Acid with Nanocrystalline Apatites and Extension to Methotrexate (Antifolate) in View of Anticancer Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12036-12048. [PMID: 30204449 DOI: 10.1021/acs.langmuir.8b02602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocrystalline apatites mimicking bone mineral represent a versatile platform for biomedical applications thanks to their similarity to bone apatite and the possibility to (multi)functionalize them so as to provide "à la carte" properties. One relevant domain is in particular oncology, where drug-loaded biomaterials and engineered nanosystems may be used for diagnosis, therapy, or both. In a previous contribution, we investigated the adsorption of doxorubicin onto two nanocrystalline apatite substrates, denoted HA and FeHA (superparamagnetic apatite doped with iron ions), and explored these drug-loaded systems against tumor cells. To widen their applicability in the oncology field, here we examine the interaction between the same two substrates and two other molecules: folic acid (FA), often used as cell targeting agent, and the anticancer drug methotrexate (MTX), an antifolate analogue. In a first stage, we investigated the adsorptive behavior of FA (or MTX) on both substrates, evidencing their specificities. At low concentration, typically under 100 mmol/L, adsorption onto HA was best described using the Sips isotherm model, while the formation of a calcium folate secondary salt was evidenced at high concentration by Raman spectroscopy. Adsorption onto FeHA was instead fitted to the Langmuir model. A larger adsorptive affinity was found for the FeHA substrate compared to HA; accordingly, a faster release was noticed from HA. In vitro tests carried out on human osteosarcoma cell line (SAOS-2) allowed us to evaluate the potential of these compounds in oncology. Finally, in vivo (subcutaneous) implantations in the mouse were run to ascertain the biocompatibility of the two substrates. These results should allow a better understanding of the interactions between FA/MTX and bioinspired nanocrystalline apatites in view of applications in the field of cancer.
Collapse
Affiliation(s)
- Stéphanie Sarda
- CIRIMAT, Université de Toulouse, CNRS, 31030 Toulouse , France
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64 , 48018 Faenza , Italy
| | | | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64 , 48018 Faenza , Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64 , 48018 Faenza , Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64 , 48018 Faenza , Italy
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS, 31030 Toulouse , France
| | - Carole Thouron
- CIRIMAT, Université de Toulouse, CNRS, 31030 Toulouse , France
| | - Agnès Dupret-Bories
- CIRIMAT, Université de Toulouse, CNRS, 31030 Toulouse , France
- Chirurgie ORL et cervico-faciale, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole (IUCT-O), Toulouse 31052 , France
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64 , 48018 Faenza , Italy
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS, 31030 Toulouse , France
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64 , 48018 Faenza , Italy
| |
Collapse
|
21
|
Zou Y, Qazvini NT, Zane K, Sadati M, Wei Q, Liao J, Fan J, Song D, Liu J, Ma C, Qu X, Chen L, Yu X, Zhang Z, Zhao C, Zeng Z, Zhang R, Yan S, Wu T, Wu X, Shu Y, Li Y, Zhang W, Reid RR, Lee MJ, Wolf JM, Tirrell M, He TC, de Pablo JJ, Deng ZL. Gelatin-Derived Graphene-Silicate Hybrid Materials Are Biocompatible and Synergistically Promote BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15922-15932. [PMID: 28406027 DOI: 10.1021/acsami.7b00272] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Graphene-based materials are used in many fields but have found only limited applications in biomedicine, including bone tissue engineering. Here, we demonstrate that novel hybrid materials consisting of gelatin-derived graphene and silicate nanosheets of Laponite (GL) are biocompatible and promote osteogenic differentiation of mesenchymal stem cells (MSCs). Homogeneous cell attachment, long-term proliferation, and osteogenic differentiation of MSCs on a GL-scaffold were confirmed using optical microscopy and scanning electron microscopy. GL-powders made by pulverizing the GL-scaffold were shown to promote bone morphogenetic protein (BMP9)-induced osteogenic differentiation. GL-powders increased the alkaline phosphatase (ALP) activity in immortalized mouse embryonic fibroblasts but decreased the ALP activity in more-differentiated immortalized mouse adipose-derived cells. Note, however, that GL-powders promoted BMP9-induced calcium mineral deposits in both MSC lines, as assessed using qualitative and quantitative alizarin red assays. Furthermore, the expression of chondro-osteogenic regulator markers such as Runx2, Sox9, osteopontin, and osteocalcin was upregulated by the GL-powder, independent of BMP9 stimulation; although the powder synergistically upregulated the BMP9-induced Osterix expression, the adipogenic marker PPARγ was unaffected. Furthermore, in vivo stem cell implantation experiments demonstrated that GL-powder could significantly enhance the BMP9-induced ectopic bone formation from MSCs. Collectively, our results strongly suggest that the GL hybrid materials promote BMP9-induced osteogenic differentiation of MSCs and hold promise for the development of bone tissue engineering platforms.
Collapse
Affiliation(s)
- Yulong Zou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
| | - Nader Taheri Qazvini
- Institute for Molecular Engineering, The University of Chicago , Chicago, Illinois 60637, United States
- Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Kylie Zane
- Institute for Molecular Engineering, The University of Chicago , Chicago, Illinois 60637, United States
| | - Monirosadat Sadati
- Institute for Molecular Engineering, The University of Chicago , Chicago, Illinois 60637, United States
- Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Department of Conservative Dentistry and Endodontics, West China School of Stomatology, Sichuan University , Chengdu 610041, China
| | - Jianxiang Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & Technology , Wuhan 430022, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Departments of Neurosurgery and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University , Wuhan 430071, China
| | - Xiangyang Qu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Liqun Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Zhicai Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & Technology , Wuhan 430022, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Tingting Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Departments of Neurosurgery and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University , Wuhan 430071, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Department of Laboratory Medicine and Clinical Diagnostics, the Affiliated Yantai Hospital, Binzhou Medical University , Yantai 264100, China
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
| | - Jennifer Moritis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
| | - Matthew Tirrell
- Institute for Molecular Engineering, The University of Chicago , Chicago, Illinois 60637, United States
- Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center , Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing 400016, China
| | - Juan J de Pablo
- Institute for Molecular Engineering, The University of Chicago , Chicago, Illinois 60637, United States
- Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Zhong-Liang Deng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010, China
| |
Collapse
|
22
|
Cazalbou S, Bertrand G, Drouet C. Tetracycline-Loaded Biomimetic Apatite: An Adsorption Study. J Phys Chem B 2015; 119:3014-24. [DOI: 10.1021/jp5116756] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sophie Cazalbou
- CIRIMAT Carnot Institute, UMR CNRS/INPT/UPS
5085, Faculté des Sciences Pharmaceutiques, University of Toulouse, 35 Chemin des Maraîchers, 31400 Toulouse, France
| | - Ghislaine Bertrand
- CIRIMAT Carnot Institute,
UMR CNRS/INPT/UPS 5085, University of Toulouse, Ensiacet, 4 allée
E. Monso, 31030 Toulouse cedex 4, France
| | - Christophe Drouet
- CIRIMAT Carnot Institute,
UMR CNRS/INPT/UPS 5085, University of Toulouse, Ensiacet, 4 allée
E. Monso, 31030 Toulouse cedex 4, France
| |
Collapse
|