1
|
Knowles JP, Shi-Wen X, Haque SU, Bhalla A, Dashwood MR, Yang S, Taylor I, Winslet MC, Abraham DJ, Loizidou M. Endothelin-1 stimulates colon cancer adjacent fibroblasts. Int J Cancer 2011; 130:1264-72. [PMID: 21445967 DOI: 10.1002/ijc.26090] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/08/2011] [Indexed: 12/25/2022]
Abstract
Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Jonathan P Knowles
- Department of Surgery, UCL Division of Surgery and Interventional Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that functions to inhibit mammary tumorigenesis by directly inducing mammary epithelial cells (MECs) to undergo cell cycle arrest or apoptosis, and to secrete a variety of cytokines, growth factors, and extracellular matrix proteins that maintain cell and tissue homeostasis. Genetic and epigenetic events that transpire during mammary tumorigenesis typically inactivate the tumor suppressing activities of TGF-beta and ultimately confer this cytokine with tumor promoting activities, including the ability to stimulate breast cancer invasion, metastasis, angiogenesis, and evasion from the immune system. This dramatic conversion in TGF-beta function is known as the "TGF-beta paradox" and reflects a variety of dynamic alterations that occur not only within the developing mammary carcinoma, but also within the cellular and structural composition of its accompanying tumor microenvironment. Recent studies have begun to elucidate the critical importance of mammary tumor microenvironments in manifesting the TGF-beta paradox and influencing the response of developing mammary carcinomas to TGF-beta. Here we highlight recent findings demonstrating the essential function of tumor microenvironments in regulating the oncogenic activities of TGF-beta and its stimulation of metastatic progression during mammary tumorigenesis.
Collapse
Affiliation(s)
- Molly A. Taylor
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Yong-Hun Lee
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Gonzalez-Cadavid NF, Rajfer J. Mechanisms of Disease: new insights into the cellular and molecular pathology of Peyronie's disease. ACTA ACUST UNITED AC 2006; 2:291-7. [PMID: 16474811 DOI: 10.1038/ncpuro0201] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 05/10/2005] [Indexed: 12/24/2022]
Abstract
Peyronie's disease (PD) is characterized by fibrotic plaques in the penile tunica albuginea that cause curvature of the erect penis, and is often accompanied by pain and/or erectile dysfunction. This condition affects up to 9% of men. Treatment is mainly surgical, as pharmacologic therapy has limited efficacy. The pathophysiology of PD is poorly understood, but development of two rat models, extrapolation of what is known about the molecular pathology of other fibrotic conditions, and emphasis on the role of myofibroblasts and adult stem cells are helping to clarify etiology and identify new pharmacologic targets. Recent studies demonstrate a role for oxidative stress and cytokine release-primarily transforming-growth-factor beta1-in development of PD fibrotic plaques. There is evidence indicating that these profibrotic factors interact with antifibrotic defense mechanisms, such as decrease of myofibroblast accumulation, elimination of reactive oxygen species by inducible nitric oxide synthase and neutralization of transforming-growth-factor beta1 by decorin, such that some plaques are in dynamic turnover. Injury to the erect penis is thought to trigger PD by inducing extravasation of fibrin and subsequent synthesis of transforming-growth-factor beta1. Despite the lack of statistical support for a causal association between trauma and PD, it is possible that undetected microtrauma is involved. It is not known whether ossification of PD plaques is linked to fibrosis progression or is a manifestation of an alternative pathway. Both processes seem to be related to activation of fibroblast/myofibroblast differentiation in the tunica albuginea and to osteogenic commitment of stem cells in this tissue.
Collapse
|
4
|
Vernet D, Nolazco G, Cantini L, Magee TR, Qian A, Rajfer J, Gonzalez-Cadavid NF. Evidence That Osteogenic Progenitor Cells in the Human Tunica Albuginea May Originate from Stem Cells: Implications for Peyronie Disease1. Biol Reprod 2005; 73:1199-210. [PMID: 16093362 DOI: 10.1095/biolreprod.105.041038] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Tissue ossification in Peyronie disease (commonly known as Peyronie's disease [PD]), a localized fibrotic lesion within the tunica albuginea (TA) of the penis, may result from osteogenic differentiation of fibroblasts, myofibroblasts, and/or adult stem cells in the TA, and may be triggered by chronic inflammation, oxidative stress, and profibrotic factors like transforming growth factor beta 1 (TGFB1). In this study, we have investigated whether cultures of cells from normal TA and PD plaques undergo osteogenesis, express markers for stem cells, and originate other cell lineages via processes modulated by TGFB1. We found that TA and PD cells in osteogenic medium (OM) expressed osteogenic markers, alkaline phosphatase, and osteopontin and underwent calcification. PD cells, but not TA cells, formed foci in soft agar that were positive for alkaline phosphatase and calcification and expressed the mRNAs for osteoblast-specific factors pleiotrophin and periostin and bone morphogenic protein 2. Both cultures expressed stem cell marker CD34 antigen but not protein tyrosine phosphatase, receptor type c. TA and PD cells expressed smooth-muscle cell markers smoothelin and transgelin. None of the cultures underwent adipogenesis in adipogenic medium. Incubation with TGFB1 increased osteogenesis and myofibroblast differentiation and reduced CD34 antigen expression in both cultures. TA and PD cells modulated the differentiation of the multipotent C3H 10T(1/2) cells in dual cultures, into osteoblasts and myofibroblasts. In conclusion, both TA and PD cultures contain cells, presumably stem cells, that undergo osteogenic and myofibroblast differentiation, and may induce these processes by paracrine interactions. This may explain progression of fibrosis in the PD plaque and its eventual calcification.
Collapse
Affiliation(s)
- Dolores Vernet
- Department of Urology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Micke P, Ostman A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 2004; 45 Suppl 2:S163-75. [PMID: 15552797 DOI: 10.1016/j.lungcan.2004.07.977] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stroma cells, together with extracellular matrix components, provide the microenvironment that is pivotal for cancer cell growth, invasion and metastatic progression. Characteristic stroma alterations accompany or even precede the malignant conversion of epithelial cells. Crucial in this process are fibroblasts, also termed myofibroblasts or cancer-associated fibroblasts (CAFs) that are located in the vicinity of the neoplastic epithelial cells. They are able to modify the phenotype of the epithelial cells by direct cell-to-cell contacts, through soluble factors or by modification of extracellular matrix components. Seminal functional studies in various cancer types, including breast, colon, prostate and lung cancer, have confirmed the concept that fibroblasts can determine the fate of the epithelial cell, since they are able to promote malignant conversion as well as to revert tumour cells to a normal phenotype. This review focuses on characteristic changes of fibroblasts in cancer and provides the experimental background elucidating functional properties of CAFs in the carcinogenic process. A possible implication in lung carcinogenesis is emphasised. Finally, a laser-capture- and microarray-based approach is presented, which comprehensively characterises carcinoma-associated fibroblasts in their in vivo environment for the identification of potential targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Patrick Micke
- Ludwig Institute for Cancer Research, Uppsala, Sweden.
| | | |
Collapse
|
6
|
Gonzalez-Cadavid N, Rajfer J. Mechanisms of, and novel pharmacological approaches to, Peyronie’s disease. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ddmec.2004.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhang MC, Wu J, Ardlie KG, Lin ECK. Evaluation of clinical colon carcinoma using activity-based proteomic profiling. Clin Proteomics 2004. [DOI: 10.1385/cp:1:3-4:301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004; 6:17-32. [PMID: 15261139 DOI: 10.1016/j.ccr.2004.06.010] [Citation(s) in RCA: 990] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 03/16/2004] [Accepted: 05/18/2004] [Indexed: 02/06/2023]
Abstract
Here we describe the comprehensive gene expression profiles of each cell type composing normal breast tissue and in situ and invasive breast carcinomas using serial analysis of gene expression. Based on these data, we determined that extensive gene expression changes occur in all cell types during cancer progression and that a significant fraction of altered genes encode secreted proteins and receptors. Despite the dramatic gene expression changes in all cell types, genetic alterations were detected only in cancer epithelial cells. The CXCL14 and CXCL12 chemokines overexpressed in tumor myoepithelial cells and myofibroblasts, respectively, bind to receptors on epithelial cells and enhance their proliferation, migration, and invasion. Thus, chemokines may play a role in breast tumorigenesis by acting as paracrine factors.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma in Situ/genetics
- Carcinoma in Situ/metabolism
- Carcinoma in Situ/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Division
- Cell Movement
- Chemokine CXCL12
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Disease Progression
- Epithelium/metabolism
- Epithelium/pathology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Library
- Humans
- Muscle, Smooth/cytology
- Neoplasm Invasiveness/pathology
- Neoplasm Proteins/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Minna Allinen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kunz-Schughart LA, Wenninger S, Neumeier T, Seidl P, Knuechel R. Three-dimensional tissue structure affects sensitivity of fibroblasts to TGF-beta 1. Am J Physiol Cell Physiol 2003; 284:C209-19. [PMID: 12388070 DOI: 10.1152/ajpcell.00557.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is known to induce alpha-smooth muscle actin (alpha-SMA) in fibroblasts and is supposed to play a role in myofibroblast differentiation and tumor desmoplasia. Our objective was to elucidate the impact of TGF-beta1 on alpha-SMA expression in fibroblasts in a three-dimensional (3-D) vs. two-dimensional (2-D) environment. In monolayer culture, all fibroblast cultures responded in a similar fashion to TGF-beta1 with regard to alpha-SMA expression. In fibroblast spheroids, alpha-SMA expression was reduced and induction by TGF-beta1 was highly variable. This difference correlated with a differential regulation in the TGF-beta receptor (TGFbetaR) expression, in particular with a reduction in TGF-betaRII in part of the fibroblast types. Our data indicate that 1) sensitivity to TGF-beta1-induced alpha-SMA expression in a 3-D environment is fibroblast-type specific, 2) fibroblast type-independent regulatory mechanisms, such as a general reduction/loss in TGF-betaRIII, contribute to an altered TGFbetaR expression profile in spheroid compared with monolayer culture, and 3) fibroblast type-specific alterations in TGFbetaR types I and II determine the sensitivity to TGF-beta1-induced alpha-SMA expression in the 3-D setting. We suggest that fibroblasts that can be induced by TGF-beta1 to produce alpha-SMA in spheroid culture reflect a "premyofibroblastic" phenotype.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93042 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Abstract
A malignant process interferes with the normal 'programme' of extracellular matrix biosynthesis and can modify extensively the structure and composition of the matrix. This effect appears to be attributable to several processes such as direct production of some selected matrix macromolecules by malignant cells or indirectly by the production of factors by malignant cells interfering with the regulation of normal matrix production. Other possibilities may also exist, such as the direct action of an environmental carcinogen on otherwise normal mesenchymal cells. The result is a more or less profound modification of tissue structure and composition with possible feedback effects on the malignant process. Some examples will be discussed such as elastin production by some tumours as well as the biosynthesis of some other selected matrix macromolecules as tenascin and osteopontin by breast tumours. Although the detailed mechanisms of these specific matrix productions is not yet completely elucidated, the rapidly increasing knowledge on the regulation of specific matrix production process and deranged matrix production might represent a new area of crosstalk between cancer research and matrix biology.
Collapse
Affiliation(s)
- Anna Kadar
- 2nd Department of Pathology, Semmelweis University of Medicine, Ulloi ut 93, 1091 Budapest, Hungary.
| | | | | | | |
Collapse
|
11
|
Abstract
Sixteen dogs (2-12 years of age) presented with one (n = 15) or two (n = 1) cutaneous nodules (n = 16) or a dermal plaque (n = 1). Intact males (n = 9) and neutered males (n = 4) were more affected than were females (n = 3). Histologically, these lesions were characterized by focal dermal and subcutaneous deposition of thick hyalinized collagen fibers intermingled with fibroblasts, and in 13 of 17 lesions, a variable number of CD18-positive cells were interpreted as reactive macrophages. Fibroblasts in three dogs formed intersecting fascicles, interpreted as evidence of malignant transformation. The terms keloidal fibroma and keloidal fibrosarcoma can be applied to these lesions. Excision was curative in five dogs with keloidal fibroma for which follow-up was available. However, because malignant transformation may occur, wide excision of canine keloidal lesions is warranted.
Collapse
Affiliation(s)
- I Mikaelian
- Idexx Veterinary Services, West-Sacramento, CA 95605, USA
| | | |
Collapse
|
12
|
Abstract
Tumor progression occurs within a microecosystem, where cancer cells and myofibroblasts exchange proteinases and cytokines that promote growth directly through stimulation of proliferation and survival, as well as invasion through local proteolysis of the extracellular matrix and stimulation of motility. Myofibroblasts maintain the capacity of fibroblasts to induce differentiation. Fibroblasts are the main source of tumor-associated myofibroblasts. The transition to myofibroblasts also occurs in noncancerous situations. This transition is modulated by mechanical stress and cytokines, amongst which transforming growth factor-beta. The cross-talk between cancer cells and myofibroblasts illustrates the microecosystem of tumor invasion. In order to consider myofibroblasts as a possibly new target for cancer therapy, further characterization of the molecular cross-talk between myofibroblasts and cancer cells is required.
Collapse
Affiliation(s)
- Olivier De Wever
- Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, Gent, Belgium
| | | |
Collapse
|
13
|
Kunz-Schughart LA, Heyder P, Schroeder J, Knuechel R. A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res 2001; 266:74-86. [PMID: 11339826 DOI: 10.1006/excr.2001.5210] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of our study was to establish spheroid cocultures as a valid 3-D in vitro model mimicking tumor-fibroblast interactions in scirrhous breast tumors. The experimental setup was designed to verify if in cocultures (a) adherence and migration reflect the invasive potential of breast tumor cells, (b) breast tumor cells induce tumor-associated fibroblast differentiation, and (c) tumor-derived fibroblasts better reflect the in vivo situation than normal skin fibroblasts. Only one (SK-BR-3) out of five tumor cell types showed extensive fibroblast infiltration, MCF-7 cells frequently invaded fibroblast spheroids; BT474, T47D, and ZR-75-1 were noninvasive. While tumor cell invasion was independent of fibroblast origin, tumor-associated myofibroblast differentiation defined by alpha-SMA expression was demonstrated for tumor-derived but not normal skin fibroblasts in coculture indicating that (a) tumor cell invasion and myofibroblast differentiation are autonomous processes and (b) cocultures with tumor-derived fibroblasts resemble advanced stages of desmoplastic carcinomas while cocultures with normal skin fibroblasts rather reflect the early tumor development. The latter is also implied by fibroblast-associated alterations in tumor cell morphology and ECM distribution in the system. By using RNA arbitrarily primed PCR and cells isolated from cocultures by fluorescence-activated and magnetic cell separation, peripheral myelin protein PMP22/SR13 has been identified as a novel candidate with potential relevance in the interaction between tumor cell and normal fibroblast since PMP22 mRNA was significantly reduced in normal skin fibroblasts in coculture with BT474 cells.
Collapse
Affiliation(s)
- L A Kunz-Schughart
- Institute of Pathology, University of Regensburg, 93042 Regensburg, Germany.
| | | | | | | |
Collapse
|