1
|
Nguyen H, Das U, Wang B, Xie J. The matrices and constraints of GT/AG splice sites of more than 1000 species/lineages. Gene 2018; 660:92-101. [PMID: 29588184 DOI: 10.1016/j.gene.2018.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
To provide a resource for the splice sites (SS) of different species, we calculated the matrices of nucleotide compositions of about 38 million splice sites from >1000 species/lineages. The matrices are enriched of aGGTAAGT (5'SS) or (Y)6N(C/t)AG(g/a)t (3'SS) overall; however, they are quite diverse among hundreds of species. The diverse matrices remain prominent even under sequence selection pressures, suggesting the existence of diverse constraints as well as U snRNAs and other spliceosomal factors and/or their interactions with the splice sites. Using an algorithm to measure and compare the splice site constraints across all species, we demonstrate their distinct differences quantitatively. As an example of the resource's application to answering specific questions, we confirm that high constraints of particular positions are significantly associated with transcriptome-wide, increased occurrences of alternative splicing when uncommon nucleotides are present. More interestingly, the abundance of alternative splicing in 16 species correlates with the average constraint index of splice sites in a bell curve. This resource will allow users to assess specific sequences/splice sites against the consensus of every Ensembl-annotated species, and to explore the evolutionary changes or relationship to alternative splicing and transcriptome diversity. Web-search or update features are also included.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Benjamin Wang
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Illinois Urbana-Champaign, IL, USA
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
2
|
Kononenko O, Bazov I, Watanabe H, Gerashchenko G, Dyachok O, Verbeek DS, Alkass K, Druid H, Andersson M, Mulder J, Svenningsen ÅF, Rajkowska G, Stockmeier CA, Krishtal O, Yakovleva T, Bakalkin G. Opioid precursor protein isoform is targeted to the cell nuclei in the human brain. Biochim Biophys Acta Gen Subj 2016; 1861:246-255. [PMID: 27838394 DOI: 10.1016/j.bbagen.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain. METHODS Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus. RESULTS Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging. CONCLUSIONS AND GENERAL SIGNIFICANCE High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.
Collapse
Affiliation(s)
- Olga Kononenko
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden; State Key Lab for Molecular Biology, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden.
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Ganna Gerashchenko
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden; Department of Functional Genomics, Institute Molecular Biology, Kiev 03680, Ukraine
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, 751 23, Sweden
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 30001, Netherlands
| | - Kanar Alkass
- Department of Forensic Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Henrik Druid
- Department of Forensic Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institute, Stockholm 171 77, Sweden
| | - Åsa Fex Svenningsen
- Institute of Molecular Medicine-Neurobiology Research, University of Southern Denmark, Odense 5000, Denmark
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 2500, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 2500, USA
| | - Oleg Krishtal
- State Key Lab for Molecular Biology, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Tatiana Yakovleva
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
3
|
Huang B, Zhang L, Tang X, Zhang G, Li L. Genome-Wide Analysis of Alternative Splicing Provides Insights into Stress Adaptation of the Pacific Oyster. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:598-609. [PMID: 27771778 DOI: 10.1007/s10126-016-9720-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Alternative splicing (AS) is thought to enhance transcriptome diversity dramatically and play an important role in stress adaptation. While well studied in vertebrates, AS remains poorly understood in invertebrates. Here, we used high-throughput RNA-sequencing data to perform a genome-wide survey of AS in the Pacific oyster (Crassostrea gigas), an economically important mollusk that is cultivated worldwide. This analysis identified 8223 AS events corresponding to 4480 genes in the Pacific oyster, suggesting that about 16 % of oyster multiexonic genes undergo AS. We observed that a majority of the identified AS events were related to skipped exons (37.8 %). Then Gene Ontology analysis was conducted to analyze the function of the genes that undergo AS and the genes that produce more than five AS isoforms. After that, the expression of AS isoforms facing temperature, salinity, and air exposure challenge were examined. To validate our bioinformatic-predicted results and examine whether AS affects stress adaptation, we selected heat-shock protein 60 (HSP60) and HSP90 genes, both of which experience AS, for reverse transcription PCR (RT-PCR). We also performed quantitative real-time PCR (qRT-PCR) to determine the relative expression of each AS isoform among different stress adapted populations. Our study indicates that AS events are likely complex in the Pacific oyster and may be related to stress adaptation. These results will complement the predicted gene database of C. gigas and provide an invaluable resource for future functional genomic studies on molluscs.
Collapse
Affiliation(s)
- Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xueying Tang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd, Qingdao, China.
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
4
|
Lo C, Kakaradov B, Lokshtanov D, Boucher C. SeeSite: Characterizing Relationships between Splice Junctions and Splicing Enhancers. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:648-656. [PMID: 26356335 DOI: 10.1109/tcbb.2014.2304294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RNA splicing is a cellular process driven by the interaction between numerous regulatory sequences and binding sites, however, such interactions have been primarily explored by laboratory methods since computational tools largely ignore the relationship between different splicing elements. Current computational methods identify either splice sites or other regulatory sequences, such as enhancers and silencers. We present a novel approach for characterizing co-occurring relationships between splice site motifs and splicing enhancers. Our approach relies on an efficient algorithm for approximately solving Consensus Sequence with Outliers , an NP-complete string clustering problem. In particular, we give an algorithm for this problem that outputs near-optimal solutions in polynomial time. To our knowledge, this is the first formulation and computational attempt for detecting co-occurring sequence elements in RNA sequence data. Further, we demonstrate that SeeSite is capable of showing that certain ESEs are preferentially associated with weaker splice sites, and that there exists a co-occurrence relationship with splice site motifs.
Collapse
|
5
|
Mittendorf KF, Deatherage CL, Ohi MD, Sanders CR. Tailoring of membrane proteins by alternative splicing of pre-mRNA. Biochemistry 2012; 51:5541-56. [PMID: 22708632 DOI: 10.1021/bi3007065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alternative splicing (AS) of RNA is a key mechanism for diversification of the eukaryotic proteome. In this process, different mRNA transcripts can be produced through altered excision and/or inclusion of exons during processing of the pre-mRNA molecule. Since its discovery, AS has been shown to play roles in protein structure, function, and localization. Dysregulation of this process can result in disease phenotypes. Moreover, AS pathways are promising therapeutic targets for a number of diseases. Integral membrane proteins (MPs) represent a class of proteins that may be particularly amenable to regulation by alternative splicing because of the distinctive topological restraints associated with their folding, structure, trafficking, and function. Here, we review the impact of AS on MP form and function and the roles of AS in MP-related disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Kathleen F Mittendorf
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
6
|
Shukla S, Oberdoerffer S. Co-transcriptional regulation of alternative pre-mRNA splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:673-83. [PMID: 22326677 DOI: 10.1016/j.bbagrm.2012.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 12/22/2022]
Abstract
While studies of alternative pre-mRNA splicing regulation have typically focused on RNA-binding proteins and their target sequences within nascent message, it is becoming increasingly evident that mRNA splicing, RNA polymerase II (pol II) elongation and chromatin structure are intricately intertwined. The majority of introns in higher eukaryotes are excised prior to transcript release in a manner that is dependent on transcription through pol II. As a result of co-transcriptional splicing, variations in pol II elongation influence alternative splicing patterns, wherein a slower elongation rate is associated with increased inclusion of alternative exons within mature mRNA. Physiological barriers to pol II elongation, such as repressive chromatin structure, can thereby similarly impact splicing decisions. Surprisingly, pre-mRNA splicing can reciprocally influence pol II elongation and chromatin structure. Here, we highlight recent advances in co-transcriptional splicing that reveal an extensive network of coupling between splicing, transcription and chromatin remodeling complexes. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Mouse Cancer Genetics Program, NCI- Frederick, NIH, Frederick, MD 21702, USA
| | | |
Collapse
|
7
|
Role of Alternative Splicing of the 5-HT2C Receptor in the Prader–Willi Syndrome. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Ye B, Kroboth SL, Pu JL, Sims JJ, Aggarwal NT, McNally EM, Makielski JC, Shi NQ. Molecular identification and functional characterization of a mitochondrial sulfonylurea receptor 2 splice variant generated by intraexonic splicing. Circ Res 2009; 105:1083-93. [PMID: 19797704 DOI: 10.1161/circresaha.109.195040] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Cardioprotective pathways may involve a mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel but its composition is not fully understood. OBJECTIVE We hypothesized that the mitoK(ATP) channel contains a sulfonylurea receptor (SUR)2 regulatory subunit and aimed to identify the molecular structure. METHODS AND RESULTS Western blot analysis in cardiac mitochondria detected a 55-kDa mitochondrial SUR2 (mitoSUR2) short form, 2 additional short forms (28 and 68 kDa), and a 130-kDa long form. RACE (Rapid Amplification of cDNA Ends) identified a 1.5-Kb transcript, which was generated by a nonconventional intraexonic splicing (IES) event within the 4th and 29th exons of the SUR2 mRNA. The translated product matched the predicted size of the 55-kDa short form. In a knockout mouse (SUR2KO), in which the SUR2 gene was disrupted, the 130-kDa mitoSUR2 was absent, but the short forms remained expressed. Diazoxide failed to induce increased fluorescence of flavoprotein oxidation in SUR2KO cells, indicating that the diazoxide-sensitive mitoK(ATP) channel activity was associated with 130-kDa-based channels. However, SUR2KO mice displayed similar infarct sizes to preconditioned wild type, suggesting a protective role for the remaining short form-based channels. Heterologous coexpression of the SUR2 IES variant and Kir6.2 in a K(+) transport mutant Escherichia coli strain permitted improved cell growth under acidic pH conditions. The SUR2 IES variant was localized to mitochondria, and removal of a predicted mitochondrial targeting sequence allowed surface expression and detection of an ATP-sensitive current when coexpressed with Kir6.2. CONCLUSIONS We identify a novel SUR2 IES variant in cardiac mitochondria and provide evidence that the variant-based channel can form an ATP-sensitive conductance and may contribute to cardioprotection.
Collapse
Affiliation(s)
- Bin Ye
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Comparative component analysis of exons with different splicing frequencies. PLoS One 2009; 4:e5387. [PMID: 19404386 PMCID: PMC2671145 DOI: 10.1371/journal.pone.0005387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 03/31/2009] [Indexed: 12/12/2022] Open
Abstract
Transcriptional isoforms are not just random combinations of exons. What has caused exons to be differentially spliced and whether exons with different splicing frequencies are subjected to divergent regulation by potential elements or splicing signals? Beyond the conventional classification for alternatively spliced exons (ASEs) and constitutively spliced exons (CSEs), we have classified exons from alternatively spliced human genes and their mouse orthologs (12,314 and 5,464, respectively) into four types based on their splicing frequencies. Analysis has indicated that different groups of exons presented divergent compositional and regulatory properties. Interestingly, with the decrease of splicing frequency, exons tend to have greater lengths, higher GC content, and contain more splicing elements and repetitive elements, which seem to imply that the splicing frequency is influenced by such factors. Comparison of non-alternatively spliced (NAS) mouse genes with alternatively spliced human orthologs also suggested that exons with lower splicing frequencies may be newly evolved ones which gained functions with splicing frequencies altered through the evolution. Our findings have revealed for the first time that certain factors may have critical influence on the splicing frequency, suggesting that exons with lower splicing frequencies may originate from old repetitive sequences, with splicing sites altered by mutation, gaining novel functions and become more frequently spliced.
Collapse
|
10
|
Using estimative reaction free energy to predict splice sites and their flanking competitors. Gene 2008; 424:115-20. [DOI: 10.1016/j.gene.2008.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/03/2008] [Accepted: 07/31/2008] [Indexed: 11/22/2022]
|
11
|
Searching for splicing motifs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 623:85-106. [PMID: 18380342 DOI: 10.1007/978-0-387-77374-2_6] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Intron removal during pre-mRNA splicing in higher eukaryotes requires the accurate identification of the two splice sites at the ends of the exons, or exon definition. The sequences constituting the splice sites provide insufficient information to distinguish true splice sites from the greater number of false splice sites that populate transcripts. Additional information used for exon recognition resides in a large number of positively or negatively acting elements that lie both within exons and in the adjacent introns. The identification of such sequence motifs has progressed rapidly in recent years, such that extensive lists are now available for exonic splicing enhancers and exonic splicing silencers. These motifs have been identified both by empirical experiments and by computational predictions, the validity of the latter being confirmed by experimental verification. Molecular searches have been carried out either by the selection of sequences that bind to splicing factors, or enhance or silence splicing in vitro or in vivo. Computational methods have focused on sequences of 6 or 8 nucleotides that are over- or under-represented in exons, compared to introns or transcripts that do not undergo splicing. These various methods have sought to provide global definitions of motifs, yet the motifs are distinctive to the method used for identification and display little overlap. Astonishingly, at least three-quarters of a typical mRNA would be comprised of these motifs. A present challenge lies in understanding how the cell integrates this surfeit of information to generate what is usually a binary splicing decision.
Collapse
|
12
|
Malousi A, Kouidou S, Maglaveras N. Detecting over-represented motifs in alternatively spliced exons using Gibbs sampling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2007; 2007:139-142. [PMID: 18001908 DOI: 10.1109/iembs.2007.4352242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Alternative pre-mRNA splicing is a biological mechanism with significant prevalence in complex organisms and experimentally verified association with numerous disease-causing factors. Splicing-related proteins play a significant regulatory role during this process. In this study, we applied a stochastic analysis of alternatively spliced human genes based on Gibbs sampling, in order to identify short consensus sequences that are over-represented compared to a reference Markov model describing constitutive exons of the same genes. The analysis resulted in a set of statistically significant over-represented motifs. The biological importance of these motifs was assessed by estimating the likelihood of being identified by cis-acting elements that correspond to the binding domains of splicing enhancers/silencers. The results indicate that the identified over-represented sequences are often similar to those recognized by known regulatory splicing elements.
Collapse
Affiliation(s)
- Andigoni Malousi
- Student Member, IEEE, Lab. of Medical Informatics, Faculty of Medicine, Aristotle University of Thessaloniki, 54124, P.O.Box 323, Greece,
| | | | | |
Collapse
|
13
|
Tazi J, Durand S, Jeanteur P. The spliceosome: a novel multi-faceted target for therapy. Trends Biochem Sci 2006; 30:469-78. [PMID: 16009556 DOI: 10.1016/j.tibs.2005.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/13/2005] [Accepted: 06/21/2005] [Indexed: 01/26/2023]
Abstract
The spliceosome is a dynamic and flexible ribonucleoprotein enzyme that removes intronic sequences in a regulated manner. Spliceosome action enables one stretch of genomic DNA sequence to yield several mRNAs that encode different proteins. It depends on a flexible mechanism for selecting splice sites, which calls for regulatory sequences (splicing enhancers or silencers) recognized by cognate trans-acting protein factors and constitutive ribonucleoprotein devices to build up the catalytic core. The identification of both types of elements now offers a comprehensive insight into how the spliceosome is adapted to carry out the removal of different introns and suggests novel therapeutic targets to, ultimately, restore a physiological pattern of alternatively spliced variants in a large repertoire of pathologies.
Collapse
Affiliation(s)
- Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, IFR 122, Centre National de Recherche Scientifique (CNRS), France.
| | | | | |
Collapse
|
14
|
Chen FC, Chuang TJ. The effects of multiple features of alternatively spliced exons on the K(A)/K(S) ratio test. BMC Bioinformatics 2006; 7:259. [PMID: 16709259 PMCID: PMC1526763 DOI: 10.1186/1471-2105-7-259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 05/19/2006] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The evolution of alternatively spliced exons (ASEs) is of primary interest because these exons are suggested to be a major source of functional diversity of proteins. Many exon features have been suggested to affect the evolution of ASEs. However, previous studies have relied on the KA/KS ratio test without taking into consideration information sufficiency (i.e., exon length > 75 bp, cross-species divergence > 5%) of the studied exons, leading to potentially biased interpretations. Furthermore, which exon feature dominates the results of the KA/KS ratio test and whether multiple exon features have additive effects have remained unexplored. RESULTS In this study, we collect two different datasets for analysis - the ASE dataset (which includes lineage-specific ASEs and conserved ASEs) and the ACE dataset (which includes only conserved ASEs). We first show that information sufficiency can significantly affect the interpretation of relationship between exons features and the KA/KS ratio test results. After discarding exons with insufficient information, we use a Boolean method to analyze the relationship between test results and four exon features (namely length, protein domain overlapping, inclusion level, and exonic splicing enhancer (ESE) frequency) for the ASE dataset. We demonstrate that length and protein domain overlapping are dominant factors, and they have similar impacts on test results of ASEs. In addition, despite the weak impacts of inclusion level and ESE motif frequency when considered individually, combination of these two factors still have minor additive effects on test results. However, the ACE dataset shows a slightly different result in that inclusion level has a marginally significant effect on test results. Lineage-specific ASEs may have contributed to the difference. Overall, in both ASEs and ACEs, protein domain overlapping is the most dominant exon feature while ESE frequency is the weakest one in affecting test results. CONCLUSION The proposed method can easily find additive effects of individual or multiple factors on the KA/KS ratio test results of exons. Therefore, the system can analyze complex conditions in evolution where multiple features are involved. More factors can also be added into the system to extend the scope of evolutionary analysis of exons. In addition, our method may be useful when orthologous exons can not be found for the KA/KS ratio test.
Collapse
Affiliation(s)
- Feng-Chi Chen
- Genomics Research Center, Academia Sinica, Academia Road, Nankang, Taipei 11529, Taiwan
- Division of Biostatistics and Bioinformatics, National Health Research Institute, Miaoli County 350, Taiwan
| | - Trees-Juen Chuang
- Genomics Research Center, Academia Sinica, Academia Road, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
15
|
Le Texier V, Riethoven JJ, Kumanduri V, Gopalakrishnan C, Lopez F, Gautheret D, Thanaraj TA. AltTrans: transcript pattern variants annotated for both alternative splicing and alternative polyadenylation. BMC Bioinformatics 2006; 7:169. [PMID: 16556303 PMCID: PMC1435940 DOI: 10.1186/1471-2105-7-169] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 03/23/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The three major mechanisms that regulate transcript formation involve the selection of alternative sites for transcription start (TS), splicing, and polyadenylation. Currently there are efforts that collect data & annotation individually for each of these variants. It is important to take an integrated view of these data sets and to derive a data set of alternate transcripts along with consolidated annotation. We have been developing in the past computational pipelines that generate value-added data at genome-scale on individual variant types; these include AltSplice on splicing and AltPAS on polyadenylation. We now extend these pipelines and integrate the resultant data sets to facilitate an integrated view of the contributions from splicing and polyadenylation in the formation of transcript variants. DESCRIPTION The AltSplice pipeline examines gene-transcript alignments and delineates alternative splice events and splice patterns; this pipeline is extended as AltTrans to delineate isoform transcript patterns for each of which both introns/exons and 'terminating' polyA site are delineated; EST/mRNA sequences that qualify the transcript pattern confirm both the underlying splicing and polyadenylation. The AltPAS pipeline examines gene-transcript alignments and delineates all potential polyA sites irrespective of underlying splicing patterns. Resultant polyA sites from both AltTrans and AltPAS are merged. The generated database reports data on alternative splicing, alternative polyadenylation and the resultant alternate transcript patterns; the basal data is annotated for various biological features. The data (named as integrated AltTrans data) generated for both the organisms of human and mouse is made available through the Alternate Transcript Diversity web site at http://www.ebi.ac.uk/atd/. CONCLUSION The reported data set presents alternate transcript patterns that are annotated for both alternative splicing and alternative polyadenylation. Results based on current transcriptome data indicate that the contribution of alternative splicing is larger than that of alternative polyadenylation.
Collapse
Affiliation(s)
- Vincent Le Texier
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jean-Jack Riethoven
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- 18 Crispin Close, Haverhill, Suffolk, CB9 9PT, UK
| | - Vasudev Kumanduri
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Chellappa Gopalakrishnan
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Fabrice Lopez
- INSERM ERM206, Université de la Méditerranée, Luminy case 928 – 13 288 Marseille Cedex 09, France
| | - Daniel Gautheret
- INSERM ERM206, Université de la Méditerranée, Luminy case 928 – 13 288 Marseille Cedex 09, France
| | - Thangavel Alphonse Thanaraj
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- 4 Copperfields, Saffron Walden, Essex, CB11 4FG, UK
| |
Collapse
|
16
|
Chen FC, Chen CJ, Ho JY, Chuang TJ. Identification and evolutionary analysis of novel exons and alternative splicing events using cross-species EST-to-genome comparisons in human, mouse and rat. BMC Bioinformatics 2006; 7:136. [PMID: 16536879 PMCID: PMC1479377 DOI: 10.1186/1471-2105-7-136] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/15/2006] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) is important for evolution and major biological functions in complex organisms. However, the extent of AS in mammals other than human and mouse is largely unknown, making it difficult to study AS evolution in mammals and its biomedical implications. RESULTS Here we describe a cross-species EST-to-genome comparison algorithm (ENACE) that can identify novel exons for EST-scanty species and distinguish conserved and lineage-specific exons. The identified exons represent not only novel exons but also evolutionarily meaningful AS events that are not previously annotated. A genome-wide AS analysis in human, mouse and rat using ENACE reveals a total of 758 novel cassette-on exons and 167 novel retained introns that have no EST evidence from the same species. RT-PCR-sequencing experiments validated approximately 50 approximately 80% of the tested exons, indicating high presence of exons predicted by ENACE. ENACE is particularly powerful when applied to closely related species. In addition, our analysis shows that the ENACE-identified AS exons tend not to pass the nonsynonymous-to-synonymous substitution ratio test and not to contain protein domain, implying that such exons may be under positive selection or relaxed negative selection. These AS exons may contribute to considerable inter-species functional divergence. Our analysis further indicates that a large number of exons may have been gained or lost during mammalian evolution. Moreover, a functional analysis shows that inter-species divergence of AS events may be substantial in protein carriers and receptor proteins in mammals. These exons may be of interest to studies of AS evolution. The ENACE programs and sequences of the ENACE-identified AS events are available for download. CONCLUSION ENACE can identify potential novel cassette exons and retained introns between closely related species using a comparative approach. It can also provide information regarding lineage- or species-specificity in transcript isoforms, which are important for evolutionary and functional studies.
Collapse
Affiliation(s)
- Feng-Chi Chen
- Genomics Research Center, Academia Sinica, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Chuang-Jong Chen
- Genomics Research Center, Academia Sinica, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Jar-Yi Ho
- Genomics Research Center, Academia Sinica, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Trees-Juen Chuang
- Genomics Research Center, Academia Sinica, Academia Road, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
17
|
Lai CH, Hu LY, Lin WC. Single amino-acid InDel variants generated by alternative tandem splice-donor and -acceptor selection. Biochem Biophys Res Commun 2006; 342:197-205. [PMID: 16472775 DOI: 10.1016/j.bbrc.2006.01.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 01/20/2006] [Indexed: 11/23/2022]
Abstract
We have investigated putative single amino-acid InDel variants with human ESTs. Examination of the formation process for single amino-acid InDel variants indicates a possible splicing mechanism in addition to the genomic insertion/deletion events as would be expected. The wobble-splicing transcripts were often generated around the intron-exon boundaries by selecting an alternative neighboring splice signal sequence, in particular the tandem agNAG or GTNgt sequence at the splice-acceptor or -donor site, thus creating single amino-acid InDel isoforms. Another category of variants was identified with one altered amino-acid plus one amino-acid InDel, under divergent coding-frame usage. We demonstrate that such minute distance of splice site choice generates an even greater level of transcriptome diversity, and suggest that non-functional synonymous or intronic SNPs could be converted to functionally significant InDel alterations through this process. This subtle alteration in mRNA and protein-coding sequence may elicit a great impact upon human genome and proteome diversity.
Collapse
Affiliation(s)
- Chun-Hung Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | |
Collapse
|
18
|
Stamm S, Riethoven JJ, Le Texier V, Gopalakrishnan C, Kumanduri V, Tang Y, Barbosa-Morais NL, Thanaraj TA. ASD: a bioinformatics resource on alternative splicing. Nucleic Acids Res 2006; 34:D46-55. [PMID: 16381912 PMCID: PMC1347394 DOI: 10.1093/nar/gkj031] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. We present the continuation and upgrade of the ASD [T. A. Thanaraj, S. Stamm, F. Clark, J. J. Riethoven, V. Le Texier, J. Muilu (2004) Nucleic Acids Res. 32, D64-D69] that consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database of computationally delineated alternative splicing events. Its data include alternatively spliced introns/exons, events, isoform splicing patterns and isoform peptide sequences. AltSplice data are generated by examining gene-transcript alignments. The data are annotated for various biological features including splicing signals, expression states, (SNP)-mediated splicing and cross-species conservation. AEdb forms the manually curated component of ASD. It is a literature-based data set containing sequence and properties of alternatively spliced exons, functional enumeration of observed splicing events, characterization of observed splicing regulatory elements, and a collection of experimentally clarified minigene constructs. ASD includes a workbench, which is an analysis tool that enables users to carry out splicing related analysis such as characterization of introns for various splicing signals, identification of splicing regulatory elements on a given RNA sequence, prediction of putative exons and prediction of putative translation start codons. The different ASD modules are integrated and can be accessed through user-friendly interfaces and visualization tools. ASD data has been integrated with Ensembl genome annotation project as a Distributed Annotation System (DAS) resource and can be viewed on Ensembl genome browser. The ASD resource is presented at (http://www.ebi.ac.uk/asd).
Collapse
Affiliation(s)
- Stefan Stamm
- University of Erlangen, Institute for BiochemistryFahrstrasse 17, 91054 Erlangen, Germany
| | - Jean-Jack Riethoven
- European Bioinformatics Institute, Wellcome Trust Genome CampusHinxton, Cambridge, CB10 1SD, UK
- University of Erlangen, Institute for BiochemistryFahrstrasse 17, 91054 Erlangen, Germany
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon1649-028 Lisbon, Portugal
| | - Vincent Le Texier
- European Bioinformatics Institute, Wellcome Trust Genome CampusHinxton, Cambridge, CB10 1SD, UK
- University of Erlangen, Institute for BiochemistryFahrstrasse 17, 91054 Erlangen, Germany
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon1649-028 Lisbon, Portugal
| | - Chellappa Gopalakrishnan
- European Bioinformatics Institute, Wellcome Trust Genome CampusHinxton, Cambridge, CB10 1SD, UK
- University of Erlangen, Institute for BiochemistryFahrstrasse 17, 91054 Erlangen, Germany
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon1649-028 Lisbon, Portugal
| | - Vasudev Kumanduri
- European Bioinformatics Institute, Wellcome Trust Genome CampusHinxton, Cambridge, CB10 1SD, UK
- University of Erlangen, Institute for BiochemistryFahrstrasse 17, 91054 Erlangen, Germany
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon1649-028 Lisbon, Portugal
| | - Yesheng Tang
- University of Erlangen, Institute for BiochemistryFahrstrasse 17, 91054 Erlangen, Germany
| | - Nuno L. Barbosa-Morais
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon1649-028 Lisbon, Portugal
| | | |
Collapse
|
19
|
Zheng CL, Fu XD, Gribskov M. Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse. RNA (NEW YORK, N.Y.) 2005; 11:1777-87. [PMID: 16251388 PMCID: PMC1370866 DOI: 10.1261/rna.2660805] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alternative splicing is a major contributor to genomic complexity, disease, and development. Previous studies have captured some of the characteristics that distinguish alternative splicing from constitutive splicing. However, most published work only focuses on skipped exons and/or a single species. Here we take advantage of the highly curated data in the MAASE database (see related paper in this issue) to analyze features that characterize different modes of splicing. Our analysis confirms previous observations about alternative splicing, including weaker splicing signals at alternative splice sites, higher sequence conservation surrounding orthologous alternative exons, shorter exon length, and more frequent reading frame maintenance in skipped exons. In addition, our study reveals potentially novel regulatory principles underlying distinct modes of alternative splicing and a role of a specific class of repeat elements (transposons) in the origin/evolution of alternative exons. These features suggest diverse regulatory mechanisms and evolutionary paths for different modes of alternative splicing.
Collapse
Affiliation(s)
- Christina L Zheng
- Biomedical Sciences Graduate Program, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
20
|
Wang M, Marín A. Characterization and prediction of alternative splice sites. Gene 2005; 366:219-27. [PMID: 16226402 DOI: 10.1016/j.gene.2005.07.015] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Revised: 04/20/2005] [Accepted: 07/08/2005] [Indexed: 11/16/2022]
Abstract
Human alternative isoform, cryptic, skipped, and constitutive splice sites from the ALTEXTRON database were analysed regarding splice site strength, composition, GC content, position and binding site strength of polypyrimidine tract and branch site. Several features were identified which distinguish alternative isoform and cryptic splice sites, but not skipped splice sites from constitutive ones. These include splice site strength, introns GC content, U2AF35 binding site score, and oligonucleotide frequencies. For the predictive classification of splice sites, pattern recognition models for different splicing factor binding sites and oligonucleotide frequency models (OFMs) were combined using backpropagation networks. 67.45% of acceptor sites and 71.23% of donor sites are correctly classified by networks trained for classification of constitutive and alternative isoform/cryptic splice sites. A web-application for the prediction of alternative splice sites is available at http://es.embnet.org/~mwang/assp.html .
Collapse
Affiliation(s)
- Magnus Wang
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes 6, E-41012 Sevilla, Spain.
| | | |
Collapse
|
21
|
Hiller M, Huse K, Platzer M, Backofen R. Non-EST based prediction of exon skipping and intron retention events using Pfam information. Nucleic Acids Res 2005; 33:5611-21. [PMID: 16204458 PMCID: PMC1243800 DOI: 10.1093/nar/gki870] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/19/2005] [Accepted: 09/09/2005] [Indexed: 11/12/2022] Open
Abstract
Most of the known alternative splice events have been detected by the comparison of expressed sequence tags (ESTs) and cDNAs. However, not all splice events are represented in EST databases since ESTs have several biases. Therefore, non-EST based approaches are needed to extend our view of a transcriptome. Here, we describe a novel method for the ab initio prediction of alternative splice events that is solely based on the annotation of Pfam domains. Furthermore, we applied this approach in a genome-wide manner to all human RefSeq transcripts and predicted a total of 321 exon skipping and intron retention events. We show that this method is very reliable as 78% (250 of 321) of our predictions are confirmed by ESTs or cDNAs. Subsequent analyses of splice events within Pfam domains revealed a significant preference of alternative exon junctions to be located at the protein surface and to avoid secondary structure elements. Thus, splice events within Pfams are probable to alter the structure and function of a domain which makes them highly interesting for detailed biological investigation. As Pfam domains are annotated in many other species, our strategy to predict exon skipping and intron retention events might be important for species with a lower number of ESTs.
Collapse
Affiliation(s)
- Michael Hiller
- Institute of Computer Science, Friedrich-Schiller-University Jena, Chair for Bioinformatics, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
22
|
Andreadis A. Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2005; 1739:91-103. [PMID: 15615629 DOI: 10.1016/j.bbadis.2004.08.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 08/27/2004] [Indexed: 12/12/2022]
Abstract
Organization of cytoskeletal elements is critical for cellular migration and maintenance of morphology. Tau protein, which binds to and organizes microtubules, is instrumental in forming and maintaining the neuronal axon. Disturbances in tau expression result in disruption of the neuronal cytoskeleton and formation of pathological tau structures (neurofibrillary tangles, NFTs) found in brains of dementia sufferers. Null tau mice, although viable, exhibit developmental and cognitive defects and transgenic mice which overexpress tau develop severe neuropathies. The neuron-specific tau transcript produces multiple isoforms by intricately regulated alternative splicing. These isoforms modulate tau function in normal brain. Moreover, aberrations in tau splicing regulation directly cause several neurodegenerative diseases. Thus, tau splicing regulation is vital to neuronal health and correct brain function. This review briefly presents our cumulative knowledge of tau splicing-cis elements and trans factors which influence it at the RNA level, its effect on the structure and roles of the tau protein and its repercussions on neuronal morphology and neurodegeneration.
Collapse
Affiliation(s)
- Athena Andreadis
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 06155, USA.
| |
Collapse
|
23
|
Wang Y, Wang J, Gao L, Lafyatis R, Stamm S, Andreadis A. Tau exons 2 and 10, which are misregulated in neurodegenerative diseases, are partly regulated by silencers which bind a SRp30c.SRp55 complex that either recruits or antagonizes htra2beta1. J Biol Chem 2005; 280:14230-9. [PMID: 15695522 DOI: 10.1074/jbc.m413846200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. Exon 2 modulates the tau N-terminal domain, which interacts with the axonal membrane. Exon 10 codes for a microtubule binding domain, increasing the affinity of tau for microtubules. Both exons are excluded from fetal brain, but their default behavior is inclusion, suggesting that silencers are involved in their regulation. Exon 2 is significantly reduced in myotonic dystrophy type 1, whose symptoms include dementia. Mutations that affect exon 10 splicing cause frontotemporal dementia (FTDP). In this study, we investigated three regulators of exon 2 and 10 splicing: serine/arginine-rich (SR) proteins SRp55, SRp30c, and htra2beta1. The first two inhibit both exons; htra2beta1 inhibits exon 2 but activates exon 10. By deletion analysis, we identified splicing silencers located at the 5' end of each exon. Furthermore, we demonstrated that SRp30c and SRp55 bind to both silencers and to each other. In exon 2, htra2beta1 binds to the inhibitory heterodimer through its RS1 domain but not to exon 2, whereas in exon 10 the heterodimer may sterically interfere with htra2beta1 binding to a purine-rich enhancer (defined by FTDP mutation E10-Delta5 = Delta280K) directly downstream of the silencer. Increased exon 10 inclusion in FTDP mutant ENH (N279K) may arise from abolishing SRp30c binding. Also, htra2beta3, a naturally occurring variant of htra2beta1, no longer inhibits exon 2 splicing but can partially rescue splicing of exon 10 in FTDP mutation E10-Delta5. This work provides interesting insights into the splicing regulation of the tau gene.
Collapse
Affiliation(s)
- Yingzi Wang
- Shriver Center at University of Massachusetts Medical School, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sorek R, Shemesh R, Cohen Y, Basechess O, Ast G, Shamir R. A non-EST-based method for exon-skipping prediction. Genome Res 2004; 14:1617-23. [PMID: 15289480 PMCID: PMC509271 DOI: 10.1101/gr.2572604] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2004] [Accepted: 06/02/2004] [Indexed: 11/25/2022]
Abstract
It is estimated that between 35% and 74% of all human genes can undergo alternative splicing. Currently, the most efficient methods for large-scale detection of alternative splicing use expressed sequence tags (ESTs) or microarray analysis. As these methods merely sample the transcriptome, splice variants that do not appear in deeply sampled tissues have a low probability of being detected. We present a new method by which we can predict that an internal exon is skipped (namely whether it is a cassette-exon) merely based on its naked genomic sequence and on the sequence of its mouse ortholog. No other data, such as ESTs, are required for the prediction. Using our method, which was experimentally validated, we detected hundreds of novel splice variants that were not detectable using ESTs. We show that a substantial fraction of the splice variants in the human genome could not be identified through current human EST or cDNA data.
Collapse
Affiliation(s)
- Rotem Sorek
- Department of Human Genetics, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| | | | | | | | | | | |
Collapse
|
25
|
Establishment and application of minigene models for studying pre-mRNA alternative splicing. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf03182765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Wang J, Gao QS, Wang Y, Lafyatis R, Stamm S, Andreadis A. Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. J Neurochem 2004; 88:1078-90. [PMID: 15009664 DOI: 10.1046/j.1471-4159.2003.02232.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. In humans, exon 10 of the gene is an alternatively spliced cassette which is adult-specific and which codes for a microtubule binding domain. Mutations that affect splicing of exon 10 have been shown to cause inherited frontotemporal dementia (FTDP). In this study, we reconstituted naturally occurring exon 10 FTDP mutants and classified their effects on its splicing. We also carried out a comprehensive survey of the influence of splicing regulators on exon 10 inclusion and tentatively identified the site of action for several of these factors. Lastly, we identified the domains of regulators SWAP and hnRNPG, which are required for regulation of exon 10 splicing.
Collapse
Affiliation(s)
- Junning Wang
- Shriver Center at UMMS, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Comparative analyses of ESTs and cDNAs with genomic DNA predict a high frequency of alternative splicing in human genes. However, there is an ongoing debate as to how many of these predicted splice variants are functional and how many are the result of aberrant splicing (or 'noise'). To address this question, we compared alternatively spliced cassette exons that are conserved between human and mouse with EST-predicted cassette exons that are not conserved in the mouse genome. Presumably, conserved exon-skipping events represent functional alternative splicing. We show that conserved (functional) cassette exons possess unique characteristics in size, repeat content and in their influence on the protein. By contrast, most non-conserved cassette exons do not share these characteristics. We conclude that a significant portion of cassette exons evident in EST databases is not functional, and might result from aberrant rather than regulated splicing.
Collapse
Affiliation(s)
- Rotem Sorek
- Department of Human Genetics, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
28
|
Thanaraj TA, Stamm S, Clark F, Riethoven JJ, Le Texier V, Muilu J. ASD: the Alternative Splicing Database. Nucleic Acids Res 2004; 32:D64-9. [PMID: 14681360 PMCID: PMC308764 DOI: 10.1093/nar/gkh030] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing is widespread in mammalian gene expression, and variant splice patterns are often specific to different stages of development, particular tissues or a disease state. There is a need to systematically collect data on alternatively spliced exons, introns and splice isoforms, and to annotate this data. The Alternative Splicing Database consortium has been addressing this need, and is committed to maintaining and developing a value-added database of alternative splice events, and of experimentally verified regulatory mechanisms that mediate splice variants. In this paper we present two of the products from this project: namely, a database of computationally delineated alternative splice events as seen in alignments of EST/cDNA sequences with genome sequences, and a database of alternatively spliced exons collected from literature. The reported splice events are from nine different organisms and are annotated for various biological features including expression states and cross-species conservation. The data are presented on our ASD web pages (http://www.ebi.ac.uk/asd).
Collapse
Affiliation(s)
- T A Thanaraj
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | | | | | |
Collapse
|