1
|
Coffman L, Mejia HD, Alicea Y, Mustafa R, Ahmad W, Crawford K, Khan AL. Microbiome structure variation and soybean's defense responses during flooding stress and elevated CO 2. FRONTIERS IN PLANT SCIENCE 2024; 14:1295674. [PMID: 38389716 PMCID: PMC10882081 DOI: 10.3389/fpls.2023.1295674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 02/24/2024]
Abstract
Introduction With current trends in global climate change, both flooding episodes and higher levels of CO2 have been key factors to impact plant growth and stress tolerance. Very little is known about how both factors can influence the microbiome diversity and function, especially in tolerant soybean cultivars. This work aims to (i) elucidate the impact of flooding stress and increased levels of CO2 on the plant defenses and (ii) understand the microbiome diversity during flooding stress and elevated CO2 (eCO2). Methods We used next-generation sequencing and bioinformatic methods to show the impact of natural flooding and eCO2 on the microbiome architecture of soybean plants' below- (soil) and above-ground organs (root and shoot). We used high throughput rhizospheric extra-cellular enzymes and molecular analysis of plant defense-related genes to understand microbial diversity in plant responses during eCO2 and flooding. Results Results revealed that bacterial and fungal diversity was substantially higher in combined flooding and eCO2 treatments than in non-flooding control. Microbial diversity was soil>root>shoot in response to flooding and eCO2. We found that sole treatment of eCO2 and flooding had significant abundances of Chitinophaga, Clostridium, and Bacillus. Whereas the combination of flooding and eCO2 conditions showed a significant abundance of Trichoderma and Gibberella. Rhizospheric extra-cellular enzyme activities were significantly higher in eCO2 than flooding or its combination with eCO2. Plant defense responses were significantly regulated by the oxidative stress enzyme activities and gene expression of Elongation factor 1 and Alcohol dehydrogenase 2 in floodings and eCO2 treatments in soybean plant root or shoot parts. Conclusion This work suggests that climatic-induced changes in eCO2 and submergence can reshape microbiome structure and host defenses, essential in plant breeding and developing stress-tolerant crops. This work can help in identifying core-microbiome species that are unique to flooding stress environments and increasing eCO2.
Collapse
Affiliation(s)
- Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Hector D Mejia
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Yelinska Alicea
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Raneem Mustafa
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Kerri Crawford
- Department of Biological Sciences and Chemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biological Sciences and Chemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
2
|
Hartman K, Tringe SG. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem J 2019; 476:2705-2724. [PMID: 31654057 PMCID: PMC6792034 DOI: 10.1042/bcj20180615] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/24/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023]
Abstract
Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress.
Collapse
Affiliation(s)
- Kyle Hartman
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, U.S.A
| | - Susannah G. Tringe
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, U.S.A
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| |
Collapse
|
3
|
Wang B, Huang S, Zhang L, Zhao J, Liu G, Hua Y, Zhou W, Zhu D. Diversity of NC10 bacteria associated with sediments of submerged Potamogeton crispus (Alismatales: Potmogetonaceae). PeerJ 2018; 6:e6041. [PMID: 30533317 PMCID: PMC6284450 DOI: 10.7717/peerj.6041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background The nitrite-dependent anaerobic methane oxidation (N-DAMO) pathway, which plays an important role in carbon and nitrogen cycling in aquatic ecosystems, is mediated by “Candidatus Methylomirabilis oxyfera” (M. oxyfera) of the NC10 phylum. M. oxyfera-like bacteria are widespread in nature, however, the presence, spatial heterogeneity and genetic diversity of M. oxyfera in the rhizosphere of aquatic plants has not been widely reported. Method In order to simulate the rhizosphere microenvironment of submerged plants, Potamogeton crispus was cultivated using the rhizobox approach. Sediments from three compartments of the rhizobox: root (R), near-rhizosphere (including five sub-compartments of one mm width, N1–N5) and non-rhizosphere (>5 mm, Non), were sampled. The 16S rRNA gene library was used to investigate the diversity of M. oxyfera-like bacteria in these sediments. Results Methylomirabilis oxyfera-like bacteria were found in all three sections, with all 16S rRNA gene sequences belonging to 16 operational taxonomic units (OTUs). A maximum of six OTUs was found in the N1 sub-compartment of the near-rhizosphere compartment and a minimum of four in the root compartment (R) and N5 near-rhizosphere sub-compartment. Indices of bacterial community diversity (Shannon) and richness (Chao1) were 0.73–1.16 and 4–9, respectively. Phylogenetic analysis showed that OTU1-11 were classified into group b, while OTU12 was in a new cluster of NC10. Discussion Our results confirmed the existence of M. oxyfera-like bacteria in the rhizosphere microenvironment of the submerged plant P. crispus. Group b of M. oxyfera-like bacteria was the dominant group in this study as opposed to previous findings that both group a and b coexist in most other environments. Our results indicate that understanding the ecophysiology of M. oxyfera-like bacteria group b may help to explain their existence in the rhizosphere sediment of aquatic plant.
Collapse
Affiliation(s)
- Binghan Wang
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Huang
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Liangmao Zhang
- Laboratory of Environmental Planning and Management, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenbing Zhou
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Duanwei Zhu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Sarkar A, Marszalkowska M, Schäfer M, Pees T, Klingenberg H, Macht F, Reinhold-Hurek B. Global expression analysis of the response to microaerobiosis reveals an important cue for endophytic establishment of Azoarcus sp. BH72. Environ Microbiol 2016; 19:198-217. [PMID: 27727497 DOI: 10.1111/1462-2920.13569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 11/30/2022]
Abstract
The endophyte Azoarcus sp. BH72, fixing nitrogen microaerobically, encounters low O2 tensions in flooded roots. Therefore, its transcriptome upon shift to microaerobiosis was analyzed using oligonucleotide microarrays. A total of 8.7% of the protein-coding genes were significantly modulated. Aerobic conditions induced expression of genes involved in oxidative stress protection, while under microaerobiosis, 233 genes were upregulated, encoding hypothetical proteins, transcriptional regulators, and proteins involved in energy metabolism, among them a cbb3 -type terminal oxidase contributing to but not essential for N2 fixation. A newly established sensitive transcriptional reporter system using tdTomato allowed to visualize even relatively low bacterial gene expression in association with roots. Beyond metabolic changes, low oxygen concentrations seemed to prime transcription for plant colonization: Several genes known to be required for endophytic rice interaction were induced, and novel bacterial colonization factors were identified, such as azo1653. The cargo of the type V autotransporter Azo1653 had similarities to the attachment factor pertactin. Although for short term swarming-dependent colonization, it conferred a competitive disadvantage, it contributed to endophytic long-term establishment inside roots. Proteins sharing such opposing roles in the colonization process appear to occur more generally, as we demonstrated a very similar phenotype for another attachment protein, Azo1684. This suggests distinct cellular strategies for endophyte establishment.
Collapse
Affiliation(s)
- Abhijit Sarkar
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Marta Marszalkowska
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Martin Schäfer
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Tobias Pees
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Hannah Klingenberg
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Franziska Macht
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Barbara Reinhold-Hurek
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| |
Collapse
|
5
|
Faußer AC, Dušek J, Čížková H, Kazda M. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption. AOB PLANTS 2016; 8:plw025. [PMID: 27207278 PMCID: PMC4940480 DOI: 10.1093/aobpla/plw025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/19/2016] [Indexed: 06/02/2023]
Abstract
Wetland plants actively provide oxygen for aerobic processes in submerged tissues and the rhizosphere. The novel concomitant assessment of diurnal dynamics of oxygen and carbon dioxide concentrations under field conditions tests the whole-system interactions in plant-internal gas exchange and regulation. Oxygen concentrations ([O2]) were monitored in-situ in central culm and rhizome pith cavities of common reed (Phragmites australis) using optical oxygen sensors. The corresponding carbon dioxide concentrations ([CO2]) were assessed via gas samples from the culms. Highly dynamic diurnal courses of [O2] were recorded, which started at 6.5-13 % in the morning, increased rapidly up to 22 % during midday and declined exponentially during the night. Internal [CO2] were high in the morning (1.55-17.5 %) and decreased (0.04-0.94 %) during the rapid increase of [O2] in the culms. The observed negative correlations between [O2] and [CO2] particularly describe the below ground relationship between plant-mediated oxygen supply and oxygen use by respiration and biogeochemical processes in the rhizosphere. Furthermore, the nocturnal declining slopes of [O2] in culms and rhizomes indicated a down-regulation of the demand for oxygen in the complete below ground plant-associated system. These findings emphasize the need for measurements of plant-internal gas exchange processes under field conditions because it considers the complex interactions in the oxic-anoxic interface.
Collapse
Affiliation(s)
- Anna C Faußer
- Ulm University, Institute of Systematic Botany and Ecology, Ulm, Germany
| | - Jiří Dušek
- CzechGlobe - Global Change Research Centre AS CR, Department of Matters and Energy Fluxes, v.v.i. České Budějovice, Czech Republic
| | - Hana Čížková
- CzechGlobe - Global Change Research Centre AS CR, Department of Matters and Energy Fluxes, v.v.i. České Budějovice, Czech Republic University of South Bohemia, Faculty of Agriculture, Department of Biology, České Budějovice, Czech Republic
| | - Marian Kazda
- Ulm University, Institute of Systematic Botany and Ecology, Ulm, Germany
| |
Collapse
|
6
|
Ferrando L, Fernández Scavino A. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol 2015; 91:fiv104. [PMID: 26324852 DOI: 10.1093/femsec/fiv104] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 11/14/2022] Open
Abstract
Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping.
Collapse
Affiliation(s)
- Lucía Ferrando
- Cátedra de Microbiología, Departamento de Biociencias. Facultad de Química, Universidad de la República. Gral. Flores 2124, Código Postal 11800 Montevideo, Uruguay
| | - Ana Fernández Scavino
- Cátedra de Microbiología, Departamento de Biociencias. Facultad de Química, Universidad de la República. Gral. Flores 2124, Código Postal 11800 Montevideo, Uruguay
| |
Collapse
|
7
|
Bodelier PLE, Bär-Gilissen MJ, Meima-Franke M, Hordijk K. Structural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils. Ecol Evol 2012; 2:106-27. [PMID: 22408730 PMCID: PMC3297182 DOI: 10.1002/ece3.34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 02/02/2023] Open
Abstract
Climate change will lead to more extreme precipitation and associated increase of flooding events of soils. This can turn these soils from a sink into a source of atmospheric methane. The latter will depend on the balance of microbial methane production and oxidation. In the present study, the structural and functional response of methane oxidizing microbial communities was investigated in a riparian flooding gradient. Four sites differing in flooding frequency were sampled and soil-physico-chemistry as well as methane oxidizing activities, numbers and community composition were assessed. Next to this, the active community members were determined by stable isotope probing of lipids. Methane consumption as well as population size distinctly increased with flooding frequency. All methane consumption parameters (activity, numbers, lipids) correlated with soil moisture, organic matter content, and conductivity. Methane oxidizing bacteria were present and activated quickly even in seldom flooded soils. However, the active species comprised only a few representatives belonging to the genera Methylobacter, Methylosarcina, and Methylocystis, the latter being active only in permanently or regularly flooded soils. This study demonstrates that soils exposed to irregular flooding harbor a very responsive methane oxidizing community that has the potential to mitigate methane produced in these soils. The number of active species is limited and dominated by one methane oxidizing lineage. Knowledge on the characteristics of these microbes is necessary to assess the effects of flooding of soils and subsequent methane cycling therein.
Collapse
Affiliation(s)
- Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
8
|
Wu L, Ma K, Lu Y. Prevalence of betaproteobacterial sequences in nifH gene pools associated with roots of modern rice cultivars. MICROBIAL ECOLOGY 2009; 57:58-68. [PMID: 18548184 DOI: 10.1007/s00248-008-9403-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 05/09/2008] [Indexed: 05/26/2023]
Abstract
The diversity and function of nitrogen-fixing bacteria colonizing rice roots are not well understood. A field experiment was conducted to determine the diversity of diazotrophic communities associated with roots of modern rice cultivars using culture-independent molecular analyses of nitrogenase gene (nifH) fragments. Experimental treatments included four modern rice cultivars (Oryza sativa, one Indica, one Japonica and two hybrid rice varieties) and three levels (0, 50, and 100 kg N ha(-1)) of N (urea) fertilizer application. Cloning and sequencing of 103 partial nifH genes showed that a diverse community of diazotrophs was associated with rice roots. However, the nifH gene fragments belonging to betaproteobacteria were dominant, accounting for nearly half of nifH sequences analyzed across the clone libraries. Most of them were similar to nifH fragments retrieved from wild rice and Kallar grass, with Azoarcus spp. being the closest cultured relatives. Alphaproteobacteria were also detected, but their relative abundance in the nifH gene pools was dramatically decreased with N fertilizer application. In addition, a high fraction of nifH gene pools was affiliated with methylotrophs and methane oxidizers. The sequence analysis was consistent with the terminal restriction fragment-length polymorphism (T-RFLP) fingerprinting of the nifH gene fragments, which showed three of four dominant terminal restriction fragments were mainly related to betaproteobacteria based on in silico digestion of nifH sequences. T-RFLP analyses also revealed that the effects of N fertilizer on the nifH gene diversity retrieved from roots varied according to rice cultivars. In summary, the present study revealed the prevalence of betaproteobacterial sequences among the proteobacteria associated with roots of modern rice cultivars. This group of diazotrophs appeared less sensitive to N fertilizer application than diazotrophic alphaproteobacteria. Furthermore, methylotrophs may also play a role in nitrogen fixation on rice roots. However, it must be noted that due to the potential bias of polymerase chain reaction protocol, the significance of non-proteobacterial diazotrophs such as Firmicutes and anaerobic bacteria is possibly underestimated.
Collapse
Affiliation(s)
- Liqin Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100094, China
| | | | | |
Collapse
|
9
|
Bodelier PLE, Stomp M, Santamaria L, Klaassen M, Laanbroek HJ. Animal–plant–microbe interactions: direct and indirect effects of swan foraging behaviour modulate methane cycling in temperate shallow wetlands. Oecologia 2006; 149:233-44. [PMID: 16736186 DOI: 10.1007/s00442-006-0445-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 04/26/2006] [Indexed: 11/26/2022]
Abstract
Wetlands are among the most important ecosystems on Earth both in terms of productivity and biodiversity, but also as a source of the greenhouse gas CH(4). Microbial processes catalyzing nutrient recycling and CH(4) production are controlled by sediment physico-chemistry, which is in turn affected by plant activity and the foraging behaviour of herbivores. We performed field and laboratory experiments to evaluate the direct effect of herbivores on soil microbial activity and their indirect effects as the consequence of reduced macrophyte density, using migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) feeding on fennel pondweed (Potamogeton pectinatus L.) tubers as a model system. A controlled foraging experiment using field enclosures indicated that swan bioturbation decreases CH(4) production, through a decrease in the activity of methanogenic Archaea and an increased rate of CH(4) oxidation in the bioturbated sediment. We also found a positive correlation between tuber density (a surrogate of plant density during the previous growth season) and CH(4) production activity. A laboratory experiment showed that sediment sterilization enhances pondweed growth, probably due to elimination of the negative effects of microbial activity on plant growth. In summary, the bioturbation caused by swan grazing modulates CH(4) cycling by means of both direct and indirect (i.e. plant-mediated) effects with potential consequences for CH(4) emission from wetland systems.
Collapse
Affiliation(s)
- Paul L E Bodelier
- Department of Microbial Wetland Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Rijksstraatweg 6, 3631AC, Nieuwersluis, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Knauth S, Hurek T, Brar D, Reinhold-Hurek B. Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 2005; 7:1725-33. [PMID: 16232287 DOI: 10.1111/j.1462-2920.2005.00841.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cultivation-independent studies suggest that roots of rice (Oryza sativa) are colonized by a diverse community of nitrogen-fixing bacteria. Here we report for the first time mRNA-based profiling of nitrogenase (nifH) genes, to study the impact of lowland-rice genotypes at the cultivar level on the functional diversity of root-associated diazotrophs. Root RNA extracts from all plants contained nifH mRNA at levels detectable by reverse transcription polymerase chain reaction (RT-PCR). Terminal restriction fragment length polymorphism (T-RFLP) analysis of RT-PCR products showed only small interplant variations. However, RNA- and DNA-based profiles obtained from the same root extractions differed from each other, suggesting that presence of diazotrophs did not necessarily coincide with active transcription of nif genes. Application of N-fertilizer at planting had a long-term effect on the profile of expressed nitrogenase genes. Phylogenetic analysis of a clone library constructed for nifH fragments expressed in wild species of rice roots indicated that active diazotrophs were not related to cultured strains. The composition of active diazotrophic communities was compared for six related cultivars of O. sativa, wild species Oryza brachyantha, and a genetic cross between it and cv. IR56, grown under identical conditions in rice field soil in the Philippines without N-fertilizer application. Remarkable varietal differences in root associated nifH-gene expressing communities were detected. This underlines the importance of mRNA-based approaches to study functional diversity and eventually identify key diazotrophs in a particular environment.
Collapse
Affiliation(s)
- Stefan Knauth
- University Bremen, Faculty of Biology, Laboratory of General Microbiology, Bremen, Germany
| | | | | | | |
Collapse
|