1
|
Badawi Y, Nishimune H. Super-resolution microscopy for analyzing neuromuscular junctions and synapses. Neurosci Lett 2020; 715:134644. [PMID: 31765730 PMCID: PMC6937598 DOI: 10.1016/j.neulet.2019.134644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Super-resolution microscopy techniques offer subdiffraction limited resolution that is two- to ten-fold improved compared to that offered by conventional confocal microscopy. This breakthrough in resolution for light microscopy has contributed to new findings in neuroscience and synapse biology. This review will focus on the Structured Illumination Microscopy (SIM), Stimulated emission depletion (STED) microscopy, and Stochastic optical reconstruction microscopy (STORM) / Single molecule localization microscopy (SMLM) techniques and compare them for the better understanding of their differences and their suitability for the analysis of synapse biology. In addition, we will discuss a few practical aspects of these microscopic techniques, including resolution, image acquisition speed, multicolor capability, and other advantages and disadvantages. Tips for the improvement of microscopy will be introduced; for example, information resources for recommended dyes, the limitations of multicolor analysis, and capabilities for live imaging. In addition, we will summarize how super-resolution microscopy has been used for analyses of neuromuscular junctions and synapses.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
2
|
Social isolation suppresses actin dynamics and synaptic plasticity through ADF/cofilin inactivation in the developing rat barrel cortex. Sci Rep 2017; 7:8471. [PMID: 28814784 PMCID: PMC5559554 DOI: 10.1038/s41598-017-08849-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Exposure to a stressful environment early in life can cause psychiatric disorders by disrupting circuit formation. Actin plays central roles in regulating neuronal structure and protein trafficking. We have recently reported that neonatal isolation inactivated ADF/cofilin, the actin depolymerizing factor, resulted in a reduced actin dynamics at spines and an attenuation of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor delivery in the juvenile rat medial prefrontal cortex (mPFC), leading to altered social behaviours. Here, we investigated the impact of neonatal social isolation in the developing rat barrel cortex. Similar to the mPFC study, we detected an increase in stable actin fraction in spines and this resulted in a decreased synaptic AMPA receptor delivery. Thus, we conclude that early life social isolation affects multiple cortical areas with common molecular changes.
Collapse
|
3
|
Tada H, Miyazaki T, Takemoto K, Takase K, Jitsuki S, Nakajima W, Koide M, Yamamoto N, Komiya K, Suyama K, Sano A, Taguchi A, Takahashi T. Neonatal isolation augments social dominance by altering actin dynamics in the medial prefrontal cortex. Proc Natl Acad Sci U S A 2016; 113:E7097-E7105. [PMID: 27791080 PMCID: PMC5111648 DOI: 10.1073/pnas.1606351113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Social separation early in life can lead to the development of impaired interpersonal relationships and profound social disorders. However, the underlying cellular and molecular mechanisms involved are largely unknown. Here, we found that isolation of neonatal rats induced glucocorticoid-dependent social dominance over nonisolated control rats in juveniles from the same litter. Furthermore, neonatal isolation inactivated the actin-depolymerizing factor (ADF)/cofilin in the juvenile medial prefrontal cortex (mPFC). Isolation-induced inactivation of ADF/cofilin increased stable actin fractions at dendritic spines in the juvenile mPFC, decreasing glutamate synaptic AMPA receptors. Expression of constitutively active ADF/cofilin in the mPFC rescued the effect of isolation on social dominance. Thus, neonatal isolation affects spines in the mPFC by reducing actin dynamics, leading to altered social behavior later in life.
Collapse
Affiliation(s)
- Hirobumi Tada
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kiwamu Takemoto
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Kenkichi Takase
- Laboratory of Psychology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Susumu Jitsuki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Waki Nakajima
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mayu Koide
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naoko Yamamoto
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kasane Komiya
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kumiko Suyama
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Akane Sano
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Akiko Taguchi
- Department of Integrative Aging Neuroscience, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Takuya Takahashi
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| |
Collapse
|
4
|
Lovati C, Giani L, Mele F, Sinelli A, Tien TT, Preziosa G, Mariani C. Brain plasticity and migraine transformation: fMRI evidences. Expert Rev Neurother 2016; 16:1413-1425. [PMID: 27388277 DOI: 10.1080/14737175.2016.1208565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Chronification transforms episodic migraine into the pathologic chronic form. Biological characteristics of the migrainous brain progressively change, in predisposed subjects, under the repetition of external and internal stimuli. Modifications involve neurons, synapses, neurotransmitters, receptors, connectivity and pain control. f-MRI is a promising way to explore the still unclear biology of this progression. Areas covered: Data included were obtained from the most relevant and updated works available on PubMed about this topic. We summarized the pathophysiology of migraine chronification and of brain plasticity, and we described the different fMRI techniques and their main evidences about migraine transformation. Expert commentary: Functional-MRI has revealed many aspects regarding the peculiarity of the migrainous brain and its tendency toward chronicity but a series of questions are still open: What are the hallmarks of the predisposition to chronification? Which elements are the cause and which the consequence of this process?
Collapse
Affiliation(s)
- Carlo Lovati
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | - Luca Giani
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | - Francesco Mele
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | | | | | - Giulia Preziosa
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | - Claudio Mariani
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| |
Collapse
|
5
|
Segal M. Dendritic spines: Morphological building blocks of memory. Neurobiol Learn Mem 2016; 138:3-9. [PMID: 27311757 DOI: 10.1016/j.nlm.2016.06.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/22/2016] [Accepted: 06/12/2016] [Indexed: 12/22/2022]
Abstract
The introduction of novel technologies, including high resolution time lapse imaging in behaving animals, molecular modification of the genome and optogenetic control of neuronal excitability have revolutionized the ability to detect subcellular changes in the brain, associated with learning and memory. The sequence of molecular cascades leading to formation, longevity and erasure of memories are being addressed in growing number of studies. Still, major issues concerning the relationship between the morphology and physiology of dendritic spines and memory mechanisms and the functional, neuronal network relevance of such parameters remain unsettled. The present review will summarize recent studies related to the immediate and long lasting changes in density, morphology and function of dendritic spines and their parent neurons following exposure to plasticity-producing stimulation in vivo and in vitro. Standing issues such as the relations between volume/shape and longevity, with respect to different classes of memories in different brain regions will be addressed. These studies indicate that the rules governing the structure/function relations of dendritic spines and memory in the brain are still not conclusive.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
6
|
Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease. Neural Plast 2016; 2016:2371970. [PMID: 27127658 PMCID: PMC4835652 DOI: 10.1155/2016/2371970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 02/07/2023] Open
Abstract
Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer's disease pathology.
Collapse
|
7
|
Nagaoka T, Kishi M. The planar cell polarity protein Vangl2 is involved in postsynaptic compartmentalization. Neurosci Lett 2015; 612:251-255. [PMID: 26683906 DOI: 10.1016/j.neulet.2015.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/23/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
Abstract
The excitatory postsynaptic region of the vertebrate hippocampus is usually compartmentalized into the postsynaptic density (PSD) and N-cadherin-rich domain, which is important for synaptic adhesion. However, the molecular mechanisms underlying the compartment formation are unknown. In the present report, we show that the planar cell polarity (PCP) protein Van Gogh-like 2 (Vangl2) plays a role in this regionalization. In cultured rat hippocampal neurons that were subjected to Vangl2 expression silencing, the formed clusters of PSD-95, one of the major scaffolding proteins in PSD, tended to overlap with those of N-cadherin. Further, in the dendrites of these neurons, the immunofluorescence of PSD-95 was to some extent diffused, without a significant change in the total signal. Because Vangl2 physically interacts with both PSD-95 and N-cadherin in vivo, these results suggest that a PCP-related direct molecular mechanism underlies the horizontal polarization of the postsynaptic regions.
Collapse
Affiliation(s)
- Tadahiro Nagaoka
- Division of Cerebral Structure, Department of Cerebral Research, National Institute for Physiological Sciences, Higashiyama 5-1, Myodaiji, Okazaki, 444-8787 Aichi, Japan
| | - Masashi Kishi
- Division of Cerebral Structure, Department of Cerebral Research, National Institute for Physiological Sciences, Higashiyama 5-1, Myodaiji, Okazaki, 444-8787 Aichi, Japan.
| |
Collapse
|
8
|
Curthoys NM, Parent M, Mlodzianoski M, Nelson AJ, Lilieholm J, Butler MB, Valles M, Hess ST. Dances with Membranes: Breakthroughs from Super-resolution Imaging. CURRENT TOPICS IN MEMBRANES 2015; 75:59-123. [PMID: 26015281 PMCID: PMC5584789 DOI: 10.1016/bs.ctm.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biological membrane organization mediates numerous cellular functions and has also been connected with an immense number of human diseases. However, until recently, experimental methodologies have been unable to directly visualize the nanoscale details of biological membranes, particularly in intact living cells. Numerous models explaining membrane organization have been proposed, but testing those models has required indirect methods; the desire to directly image proteins and lipids in living cell membranes is a strong motivation for the advancement of technology. The development of super-resolution microscopy has provided powerful tools for quantification of membrane organization at the level of individual proteins and lipids, and many of these tools are compatible with living cells. Previously inaccessible questions are now being addressed, and the field of membrane biology is developing rapidly. This chapter discusses how the development of super-resolution microscopy has led to fundamental advances in the field of biological membrane organization. We summarize the history and some models explaining how proteins are organized in cell membranes, and give an overview of various super-resolution techniques and methods of quantifying super-resolution data. We discuss the application of super-resolution techniques to membrane biology in general, and also with specific reference to the fields of actin and actin-binding proteins, virus infection, mitochondria, immune cell biology, and phosphoinositide signaling. Finally, we present our hopes and expectations for the future of super-resolution microscopy in the field of membrane biology.
Collapse
Affiliation(s)
- Nikki M. Curthoys
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Matthew Parent
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | | | - Andrew J. Nelson
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Jennifer Lilieholm
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Michael B. Butler
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Matthew Valles
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Samuel T. Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| |
Collapse
|
9
|
Tsai NP. Ubiquitin proteasome system-mediated degradation of synaptic proteins: An update from the postsynaptic side. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2838-2842. [PMID: 25135362 DOI: 10.1016/j.bbamcr.2014.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
The ubiquitin proteasome system is one of the principle mechanisms for the regulation of protein homeostasis in mammalian cells. In dynamic cellular structures such as neuronal synapses, ubiquitin proteasome system and protein translation provide an efficient way for cells to respond promptly to local stimulation and regulate neuroplasticity. The majority of research related to long-term plasticity has been focused on the postsynapses and has shown that ubiquitination and subsequent degradation of specific proteins are involved in various activity-dependent plasticity events. This review summarizes recent achievements in understanding ubiquitination of postsynaptic proteins and its impact on synapse plasticity and discusses the direction for advancing future research in the field.
Collapse
Affiliation(s)
- Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Power JM, Sah P. Dendritic spine heterogeneity and calcium dynamics in basolateral amygdala principal neurons. J Neurophysiol 2014; 112:1616-27. [PMID: 24944224 DOI: 10.1152/jn.00770.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamatergic synapses on pyramidal neurons are formed on dendritic spines where glutamate activates ionotropic receptors, and calcium influx via N-methyl-d-aspartate receptors leads to a localized rise in spine calcium that is critical for the induction of synaptic plasticity. In the basolateral amygdala, activation of metabotropic receptors is also required for synaptic plasticity and amygdala-dependent learning. Here, using acute brain slices from rats, we show that, in basolateral amygdala principal neurons, high-frequency synaptic stimulation activates metabotropic glutamate receptors and raises spine calcium by releasing calcium from inositol trisphosphate-sensitive calcium stores. This spine calcium release is unevenly distributed, being present in proximal spines, but largely absent in more distal spines. Activation of metabotropic receptors also generated calcium waves that differentially invaded spines as they propagated toward the soma. Dendritic wave invasion was dependent on diffusional coupling between the spine and parent dendrite which was determined by spine neck length, with waves preferentially invading spines with short necks. Spine calcium is a critical trigger for the induction of synaptic plasticity, and our findings suggest that calcium release from inositol trisphosphate-sensitive calcium stores may modulate homosynaptic plasticity through store-release in the spine head, and heterosynaptic plasticity of unstimulated inputs via dendritic calcium wave invasion of the spine head.
Collapse
Affiliation(s)
- John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia; and Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Chaudhury A. Molecular handoffs in nitrergic neurotransmission. Front Med (Lausanne) 2014; 1:8. [PMID: 25705621 PMCID: PMC4335390 DOI: 10.3389/fmed.2014.00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/27/2014] [Indexed: 12/26/2022] Open
Abstract
Postsynaptic density (PSD) proteins in excitatory synapses are relatively immobile components, while there is a structured organization of mobile scaffolding proteins lying beneath the PSDs. For example, shank proteins are located further away from the membrane in the cytosolic faces of the PSDs, facing the actin cytoskeleton. The rationale of this organization may be related to important roles of these proteins as “exchange hubs” for the signaling proteins for their migration from the subcortical cytosol to the membrane. Notably, PSD95 have also been demonstrated in prejunctional nerve terminals of nitrergic neuronal varicosities traversing the gastrointestinal smooth muscles. It has been recently reported that motor proteins like myosin Va play important role in transcytosis of nNOS. In this review, the hypothesis is forwarded that nNOS delivered to subcortical cytoskeleton requires interactions with scaffolding proteins prior to docking at the membrane. This may involve significant role of “shank,” named for SRC-homology (SH3) and multiple ankyrin repeat domains, in nitric oxide synthesis. Dynein light chain LC8–nNOS from acto-myosin Va is possibly exchanged with shank, which thereafter facilitates transposition of nNOS for binding with palmitoyl-PSD95 at the nerve terminal membrane. Shank knockout mice, which present with features of autism spectrum disorders, may help delineate the role of shank in enteric nitrergic neuromuscular transmission. Deletion of shank3 in humans is a monogenic cause of autism called Phelan–McDermid syndrome. One fourth of these patients present with cyclical vomiting, which may be explained by junctionopathy resulting from shank deficit in enteric nitrergic nerve terminals.
Collapse
Affiliation(s)
- Arun Chaudhury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School and VA Boston Healthcare System , Boston, MA , USA
| |
Collapse
|
12
|
Abstract
The development of methods to follow the dynamics of synaptic molecules in living neurons has radically altered our view of the synapse, from that of a generally static structure to that of a dynamic molecular assembly at steady state. This view holds not only for relatively labile synaptic components, such as synaptic vesicles, cytoskeletal elements, and neurotransmitter receptors, but also for the numerous synaptic molecules known as scaffolding molecules, a generic name for a diverse class of molecules that organize synaptic function in time and space. Recent studies reveal that these molecules, which confer a degree of stability to synaptic assemblies over time scales of hours and days, are themselves subject to significant dynamics. Furthermore, these dynamics are probably not without effect; wherever studied, these seem to be associated with spontaneous changes in scaffold molecule content, synaptic size, and possibly synaptic function. This review describes the dynamics exhibited by synaptic scaffold molecules, their typical time scales, and the potential implications to our understanding of synaptic function.
Collapse
Affiliation(s)
- Noam E. Ziv
- Technion–Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
13
|
Nagaoka T, Ohashi R, Inutsuka A, Sakai S, Fujisawa N, Yokoyama M, Huang Y, Igarashi M, Kishi M. The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation through Direct Control of N-Cadherin. Cell Rep 2014; 6:916-27. [DOI: 10.1016/j.celrep.2014.01.044] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 01/17/2014] [Accepted: 01/31/2014] [Indexed: 01/08/2023] Open
|
14
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
15
|
Sharma K, Choi SY, Zhang Y, Nieland TJF, Long S, Li M, Huganir RL. High-throughput genetic screen for synaptogenic factors: identification of LRP6 as critical for excitatory synapse development. Cell Rep 2013; 5:1330-41. [PMID: 24316074 DOI: 10.1016/j.celrep.2013.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 09/30/2013] [Accepted: 11/04/2013] [Indexed: 01/30/2023] Open
Abstract
Genetic screens in invertebrates have discovered many synaptogenic genes and pathways. However, similar genetic studies have not been possible in mammals. We have optimized an automated high-throughput platform that employs automated liquid handling and imaging of primary mammalian neurons. Using this platform, we have screened 3,200 shRNAs targeting 800 proteins. One of the hits identified was LRP6, a coreceptor for canonical Wnt ligands. LRP6 regulates excitatory synaptogenesis and is selectively localized to excitatory synapses. In vivo knockdown of LRP6 leads to a reduction in the number of functional synapses. Moreover, we show that the canonical Wnt ligand, Wnt8A, promotes synaptogenesis via LRP6. These results provide a proof of principle for using a high-content approach to screen for synaptogenic factors in the mammalian nervous system and identify and characterize a Wnt ligand receptor complex that is critical for the development of functional synapses in vivo.
Collapse
Affiliation(s)
- Kamal Sharma
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Se-Young Choi
- Department of Physiology, Seoul National University School of Dentistry, Seoul 110-749, South Korea
| | - Yong Zhang
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Thomas J F Nieland
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Shunyou Long
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Min Li
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Arikkath J. Molecular mechanisms of dendrite morphogenesis. Front Cell Neurosci 2012; 6:61. [PMID: 23293584 PMCID: PMC3531598 DOI: 10.3389/fncel.2012.00061] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/08/2012] [Indexed: 01/28/2023] Open
Abstract
Dendrites are key integrators of synaptic information in neurons and play vital roles in neuronal plasticity. Hence, it is necessary that dendrite arborization is precisely controlled and coordinated with synaptic activity to ensure appropriate functional neural network integrity. In the past several years, it has become increasingly clear that several cell intrinsic and extrinsic mechanisms contribute to dendritic arborization. In this review, we will discuss some of the molecular mechanisms that regulate dendrite morphogenesis, particularly in cortical and hippocampal pyramidal neurons and some of the implications of aberrant dendritic morphology for human disease. Finally, we will discuss the current challenges and future directions in the field.
Collapse
Affiliation(s)
- Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|